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The scale-space S(x, a) of a signal J(x) is defined as the space of the zero-crossings from
{v2G(a)* [(x)}, where G is a Gaussian filter. We present a new method for parsing
scale-space, spatial stability analysis, that allows the localization of region boundaries from
scale space. Spatial stability analysis Is based on the observation that zero-crossings of region
boundaries remain spatially stable over changes in filter scale. It {s shown that spatial stability
analysis leads to an edge detection scheme with good noise resilience characteristics and that it
can lead to improvements in “shape from texture” methods. © 1988 Academic Press, Inc.

1. INTRODUCTION

One goal of a visual system is to construct a representation of the visual input in
terms of objects and their three-dimensional structure, i.e., their shape, spatial
relationships, and surface properties. Recent work within artificial intelligence has
shown that there exists a variety of methods that allow the successful recovery of
information about the three-dimensional world from one or more two-dimensional
images. These methods include, for example, the recovery of shape from stereo
[21, 10], of shape from motion [13], of shape from shading {12}, or of shape from
texture [16, 14].

One property common to most “shape from” methods seems to be the nse of
multiple representations of image information, usually delimited by the outputs of
multiple spatial or spatio-temporal filters. Further, the choice of such filters seems {0
be task dependent along with the associated comparison rules which generate
estimates of categorical quantities such as edges, etc. [19, 7). The use of multiple
image representations is motivated by the fact that the physical phenomena of the
world can lead to events in the filter outputs over a large range of resolutions. No
single filter can, however, respond optimally over the whole range of such resolu-
tions.

The analysis of images at several resolution levels leads to the problem of how
image information contained within each level is combined. More specifically, some
physical phenomenon may be limited to a certain resolution band and thus will
produce an event in only a subset of the layers, and it is within this context that one
is faced with the problem of matching corresponding events between layers. One
example of such a matching rule is the “spatial coincidence assumption”™ [20] which
is used in matching the zero-crossings of differently sized V3G filters where it is
assumed that zero-crossings localized identically over adjacent filters are due to a
single physical phenomenon.
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As a generalization of such processes, Witkin [26, 27] has considered how the
complete space of zero-crossings of continuously scaled filters may be adequate to
determine images, per se, or to define specific image properties. It is this generaliza-
tion which is of focal interest to this paper. Witkin’s approach is based on the
notion of scale-space which, for one-dimensional signals, is defined as follows. Let

9%G(x, 0)
dx?

E(x,0)= +I(x) (1)

correspond to the convolution (*) of the input signal /(x) with the second-partial
derivative of a Gaussian filter:

G(x;0) = e~ YA/, (2)

oy27
The filter “scale” is determined by o, being the standard deviation of the (unit area)
Gaussian filter, and, as will be seen, the differentiation process has the effect of
converting this low pass kernel (2) into a band-pass filter. The scale space S(x, o) of
the signal is then defined as the set of all zero-crossings (or level-crossings), where

S(x, 0) = {(x,cr)|E(x,c) =Oand%f— ¢o,a>0}_ (3)

These points in scale space form continuous curves that are either open contours
(extending from a neighbourhood of o =0 to co: great circles) or are convex
extending from an open neighbourhood of ¢ = 0 to a finite maximom, o,,,.

Witkin’s notion of scale-space has created considerable interest in the literature
and there are several important results or properties of the scale-space that apply
both to one- and two-dimensional signals. Yuille and Poggio [29] proved that the
scale-space of the zero- (or level-) crossings, of almost all signals filtered by a
Gaussian, determines the signal uniquely up to a scaling constant. Further, Rotem
and Zeevi [22] have shown vnder what conditions and how 2D-signals can be
recovered from their zero-crossings. The importance of this lies in the fact that—for
almost all signals—mno information is lost by working in scale-space rather than in
the image domain. Yuille and Poggio [29] and Koenderink [17] proved that the
Gaussian does not create zero-crossings as the scale o increases, and that the
Gaussian is the only filter with this “nice” scaling behaviour. This, in turn, has
important consequences on the way the scale-space of images can be analyzed, as is
discussed below.

2. PARSING SCALE-SPACE

To evaluate the usefulness of scale-space as an advanced image representation, we
must know how easy it is to locate and extract “important” image properties from
scale-space. What “important properties” are is largely determined by what subse-
quent “shape from” and related processes require. In the case of “shape from
texture,” for example, we are interested in locating boundaries of objects or, more
generally, “inside” boundaries of more or less homogeneous image patches. The
notion of scale-space is thus useful only in conjunction with rules for parsing
scale-space into more advanced representations used by later processing modules.
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Witkin {23, 27] has proposed a method for parsing scale-space, stability analysis,
that allows the extraction of primitive events that occur over a large range of scales
and to organize them into a qualitative signal description capturing major events in
the signal. Every zero-crossing can be described by a scale-value, the o-coordinate of
its apex point, and an interval bounded by the two positions of the zero-crossing
curve for o — . Assuming that zero-crossing curves never cross each other, one can
define the stability of a zero-crossing curve as the difference between its scale value
and the largest scale value of zero-crossing curves contained in its interval, Reducing
the scale-space to zero-crossing curves whose stability exceeds a certain threshold
then leads to a signal description that—intuitively—captures the “major features”
of the signals, as can be seen in Witkin [27].

One problem with Witkin’s stability analysis is that it is based on the assumption
that zero-crossing curves do not cross each other, an assumption that has recently
been shown to be false [15]. Another problem occurs when one tries to extend
Witkin’s stability analysis to two dimensions:

Two-dimensional zero-crossing surfaces can, and in practice often do, split and
merge as the scale o is changed [24]; a mce example of which is shown in Babaud,
Witkin, and Duda [1]. There is, consequently, no topologically simple region
associated with a zero-crossing surface and so Witkin’s stability criterion can no
more, if at all, be defined in a simple way. Further, tracing a two-dimensional
zero-crossing surface from its peak downwards across scales becomes computation-
ally much more difficult than the simple curve tracing for one-dimensional signals.

3. SPATIAL STABILITY ANALYSIS

We propose an alternative definition of zero-crossing stability, spatial stability,
which does not require the “nice” scaling behaviour of Witkin’s stability criterion.
The spatial siability, S,(x), of a position x In an image I(x) is defined as the
greatest depth of zero-crossings over o in scale-space with respect to a given
neighbourhood of radius p about %. Our definition is based on the assumption that
important physical events can be conceived of as (generalized) boundaries and, for
stability, these boundaries must satisfy two constraints:

(A1) A boundary is a region of steep gradient and high contrast.
(A2) A boundary is well-defined if it has no neighbouring boundaries.

Assumption Al implies that boundary edges have a broad spectrum and so the
corresponding zero-crossing will exist at multiple scales. Assumption A2 guarantees
that the zero-crossing position of a boundary edge is not affected by neighbouring
boundaries.

Without loss of gemerality, in this case, support for (Al) comes from the
observation that the Fourier transform (&) of the second derivative of the one-
dimensional Gaussian filter ((1) and (2)) is

F(d*G/dx?) = —d7 u’exp{ —2w%%u?}, (4)

where u corresponds to the spatial frequency (in picture cycles) coordinate. It is
readily seen from (4) that the peak frequency of this filter occurs at

dF(d*G/dx?) du = 0,
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that 1s, when

(5)

V2
U= —.
2mo
Consequently, by decreasing ¢ the filter (peak) moves up the spectrum and so
images with broad spectra are more likely to have broader ranges (“deeper” in
scale-space) of zero-crossings.

The neighbourhood constraint (A2) comes about via the well-known observation
that in scale space (due to the different filter scales) spatially proximate zero-cross-
ing contours are more likely to dynamically change each other to form new curves,
particularly those of the convex type: ideally, spatially stable edges should have
stable zero-crossing contours. This spatial stability criterion of zero-crossings is an
extension of the “spatial coincidence assumption™ [20, 19]:

If a zero-crossing segment is present in a sct of independent v 2 channels over a contiguous
range of sizes, and the segment has the same position: and orientation in each channel, then the
set of such zero-crossing segments indicates the presence of an intensity change in the image
that is due to a single physical phenomenon (a change in reflectance, illumination, depth, or
surface orientation). [19, p. 70]

Not only do we assume that zero-crossings localized identically over adjacent filters
are due to a single physical phenomenon, but that the range of filters, as measured
by the spatial stability index, is an appropriate indicator of the importance of that
particular physical phenomenon for describing the signal.

3.1. Implementation of Spatial Stability Analysis

Before we discuss further properties of (and extensions to) spatial stability
analysis, we present the algorithm for computing spatial stability and a few
examples.

It is obvious that spatial stability analysis cannot be implemented with a continu-
ous variation of the filter size and that the o-space has to be sampled at regular,
snall intervals. We have obtained satisfactory results nsing o-sampling intervals of 1-
or g-octaves. Further, it has already been found in a number of psychophysical
experiments [5, 3] and spectral compression algorithms [6] that the human visual
system cannot apparently discrimminate spatial information produced from spatial
components closer than this +  octave distance.

All analyses were done using an Imaging Technology image processing system on
a PDP 11/23 computer. Scenes containing natural objects were digitized, via a
frame grabber, as 512 X 512, 8-bit pixel images, which then were analyzed to first
extract zero-crossings and then spatial stability via parallel pipeline pixel processor
operations,

Since this project was specifically aimed at investigating two-dimensional images,
we have used the (usual) Laplacian or W2 operator to represent the second
derivatives of an isotropic Gaussian since it is also an isotropic operator (see [23]).
Accordingly, the image was first filtered by a digital approximation of the
v 2G(x, y, o) filter (see [18] for details):

r2—2g2 —r?
viG(x, y,0) = Soae |oXP , ri=x%+y? (6)
wo o
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for image cartesian coordinates (x, y). o was varied in a 1-16 pixel range in both
and { octave increments yielding 17 and 33 scale space “slices,” respectively. The
discrete approximation to VG was chosen in such a way as to maximize the
resolution and support of the kernel without producing an overflow in the 16-bit
output of the pipe-line pixel processor. The kernel sizes varied from 7+7 pixels
{o =1 pixel) to 85%85 pixels (o = 16 pixels). Zero-crossings were then located in
each scale space slice. Zero-crossings with small gradients may be located within
extended zero-value areas due to the limited resolution of the convolution. These
zero areas were therefore removed by alternatively growing positive and negative
regions until all pixels were classified as being either positive or negative. This
ensured that no zero-crossing contour was incomplete. Figure 1 shows zero-crossing
images obtained with filter sizes of ¢ = 1, 0 = 4, and o = 16 pixels (Fig. 1b-d).

The computation of the spatial stability index S,(x, y) from the (zero-crossing}
scale-space is straightforward. Let

1, if there exists a zero-crossing
in the p-neighbourhood )
z,(x,y,0) = {(x", y)/((x, 9) = (x, ¥))" = 07}
of (x, y) for filter size o,
0, otherwise.

For a sequence of “zero-crossing slices” Z (x, y,01) -+ Z,(x, y, 6,) the spatial
stability index S,(x, y) then corresponds to the length / of the longest subsequence
Z,(x,y,0) -+ Z,(x, y,0,.,_,) such that

I1 Z(x,y,06)=1.

;
GEE =Ty

Thus to determine Sy(x, y) we simply compute the maximum number of zero-cross-
ing slices along the o direction having a zero-crossing at position (x, y). To
determine S,(x, y) for p > 0 we first compute Z (x, y, ¢) by OR-ing Z,(x, y, o)
within the neighbourhood p and then compute the maximum number of adjacent
o-slices with Z (x, y,6) =1 as before. The resultant spatial stability image is
shown in Fig. le, where the intensity at any pixel is proportional to its spatial
stability,

3.2. Properties of Spatial Stability Analysis

The computation of spatial stability within a fixed neighbourhood does not take
account of the fact that the accuracy of zero-crossing localization decreases with
filter size and that even the zero-crossing of an isolated edge embedded in white
noise may be be spatially shifted. To overcome this problem we introduce an
aperture for position uncertainty which is proportionate to o.

Let 1 be an isolaied step edge of contrast € embedded in white noise of variance
n?, and let var(Z_) be the variance of the zero-crossing position (d2/dx?)G, = I. It
can be shown [&] that

Var{Z_ ) « o:—j. (7}
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F1c. 1. (a) Two natural (golf ball and indoor scene) and one white noise image of size 256 X 256
pixels at 8-bit resolution. (b) Zero-crossings obtained with filter size ¢ = L pixels. (¢) Zero-crossings
obtained with filter size o = 4 pixels. {d) Zero-crossings obtained with filter size ¢ = 16 pixels. (¢} Spatial
stability images for neighbourhood radius p = 0, with pixel intensity being proportional to the spatial
stability value.

One way to account for this localization uncertainty is to vary the stability
neighbourhood with g, ie., to blur the zero-crossing image with a filter whose size
varies with o, before computing spatial stability. Figure 2 shows the spatial stability
image with spatial stability neighbourhood varying proportionally to ¢°, o'/2, and
[ 1.

It is interesting to see that these “cones of uncertainty” have little effect on the
spatial stability images, mainly due to the fact that white noise is, by definition,
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a b ) c

FIG. 2. (a) Spatial stability image with stability neighbourhoed radins varying proportionally to o°.
(b) Spatial stability image with stability neighbourhood radius varying propertionally to 612 (c) Spatial
stability image with stability neighbourhood radius varying proportionally to o.

uncorrelated. Hence estimates of zero-crossing presence is not improved by consid-
ering edge presence in broader {uncorrelated) neighbourhoods. Conversely, we
found this criterion not to be useful with unperturbed shapes due to the degree of
correlations present. That is, in both situations there is a trade-off between misses
and false alarms over increasing window sizes,

In general the differences between stability in white noise and more naturally
occurring images 1s illustrated in Fig. 3. As expected the white noise images are less
stable and stable points are randomly distributed over the image.

To show that spatial stability is resilient to additive white noise we note that it is
a result of the correlation between the various scale-space slices of the image. It is
therefore possible to relate the shapes of spatial stability maps to the ensemble of
cross-correlations between filtered versions of the input. We first note that the
v 2G(x, o) operation is isotropic and so the cross-correlation between two such
versions (o0,, 6, space constants or scales) is determined by the Fourier series
(inverse discrete Fourier transform)

Clx) = [ f4,(0) - 4,(0) - A2 (wexp{27(u - x)} du, (8)

where x = (x, y) and u = {u, v) are the image and spatial frequency domain
co-ordinate systems, respectively. A; and A, correspond to the Fourier amplitude
spectra of the two v 2G filters (having zero phase spectra) while A(u) corresponds
to the image power spectrum. Clearly, as 4, and A, become more spectrally
disjoint, as they do as o, and o, differ, then the cross-correlation image attennates.
Further, for white noise, A%(u) is a constant, and so the “disjointness’ of the filters
is more emphasized as the ¢°s diifer relative to that for normal images where 4%(n)
is generally monotonically decreasing from the spectral (DC) centre.
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Fic. 3. Spatial stability images of patterns embedded in white neise: {a) SNR = oo; (b) SNR = 5; (¢)
SNR = 3; (d) SNR = 1.

Alternatively (8) demonstrates that the cross-correlation image consists of the
cross-correlation between the filters and the image autocorrelation image, due to the
commutability and associativity of the cross-correlation process:

(v26(x,0)*1)*(VG(x,0%)*1)
= (v2G(x,0)*VG(x,0,))*(I+1). (9)

ClZ (X}

Now, for white noise I * I = 8(x), the Dirac 8-function, reducing Cj,(x) to

Ca{x) = v2G(x,0)*vV?G(x, 5,), (10)
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and using the unit area version of v 2G (2) this, in one dimensjon, reduces to

C(x)= —6x2+3)e™ %, foro?=o2+ o2, (11)

: ! ( x4
o>27
the direct cross-correlation between the filters whose likelihood of correspondence
decreases with the separation of theier spectral peaks, or o2 in (11).

For these reasons we can see that spatial stability has a “noise cleaning” effect, or
is resilient to additive white noise in the sense that any process that combines
“labelled” filter outputs (e.g., zero-crossings) as a function of their correspondence
(correlation) will have weak and randomly distributed responses to white noise,

4. PARSING SCALE-SPACE FOR TEXTURAL ANALYSIS

In Section 2 we argued that the notion of “scale-space” cannot be justified
independently of rules for parsing scale-space into more advanced representations
suitable for later processes. Qur line of justification is based on the fact that spatial
stability analysis allows the extraction and localization of region boundaries inde-
pendent of the level of resolution at which they occur. Further, one can show [4]
that efficient pattern learning and classification can be accomplished by means of
cross-correlational processes based on the stability map of images. Second, the
stability map of images can be used to construct qualitative image descriptions
capturing major image events, using methods similar to Witkin’s [24] stability
analysis.

In this section we outline two ways to parse scale-space in conjunction with
spatial stability analysis, aimed at constructing an image representation suitable for
“shape from texture” methods. These methods are based on the assumption that
object surfaces are homogeneous with respect to some local geometric measure. The
spatial variation of this measure can then be used to obtain constraints on the
orientation of local surface patches, given the additional assumption that discon-
tinuities in surface orientation occur rarely. First, in the case of regular patterns,
constraints on local surface orientation are derived from the spatial variation of size,
orientation, or distortion of the texture elements that are assumed to cover the
surface [16]. Second, in the case of arbitrary textures, constraints on local surface
orientation may be derived from some other local geometric measure [25, 9].

In the following we outline how both these approaches can be improved using
spatial stability analysis. First, in the case of regular patterns, we discuss how to use
spatial stability analysis for the extraction of texture elements from images, indepen-
dent of their level of resolution. Second, in the case of arbitrary textures, we outline
how spatial stability analysis can be used to improve the use of local geometric
measures, again independent of their level of resolution.

4.1. Regular Patterns

For regularly textured patterns two problems must be addressed before any
“shape from texture” method can be applied—problems which have rarely been
addressed in the literature. First, how are the texture elements extracted from an
image? Second, the boundary of a textured region must be determined in order to
confine the interpretation of textural variation to that region. Both the textured
boundaries and the texture elements may arise at any level of resolution, and in the
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following we attempt to solve both problems by parsing scale-space in conjunction
with spatial stability analysis.

Rephrasing the problems, we have to parse scale-space into a representation
making explicit houndaries of homogeneous regions and making explicit the texture
elements contained within each region. The texture elements can, in turn, be
considered as textured regions, containing smailer texture elements: the notion of
“texture” is relative to the enclosing boundary.

To express region containment we define a topological region nesting level T(x, y)
as follows:

0, if (x, y) belongs to the absolute
- image boundary,
if (x, y) is contained “inside” the first

T(x = .
(x. ) ZET0-crossing contour,

n, if (x, y)is contained “inside” the nth
ZEeTo-Crossing contour.,

The computation of the region nesting level is straightforward in the case of a
zero-crossing map, i.e., one scale-space slice, Starting with level T = 0 on the image
boundary, the current nesting level is propagated with a region growing algorithm
up to a zero-crossing contour. Once this region growing cycle terminates, T is then
increased by one and the new nesting level is propagated. The algorithm terminates
when all pixels have been classified. The topological region nesting level T(x, y) can
then be used to define the texture elements to some region R: under ideal
—.conditions, T(x, y) > ¢ for all pixels of region R, then T(x, y) >+ 1 for all
texture elements of that region. This straightforward extraction of texture elements
requires, however, knowledge of which level of resolution the texture elements arise,
as it is based on a single filter size.

If the level of resolution is not known then spatial stability analysis can be used to
extract texture elements, assuming that both the texture region and its texture
elements are bounded by boundaries satisfying assumptions (Al) and (A2). We now
outline how a modified topological region nesting level T*(x, y) can be used to
extract texture elements, independent of the level of resolution.

In the case of a single zero-crossing map, the topological region nesting level
T(x, y) is well defined since all zero-crossing curves are either closed or cross-the
image boundary [24]. The latter does not occur with a finite image and filter size and
with a large enough zero-crossing map. However, the situation becomes more
complex if the topological region nesting level is defined for regions with stable
boundaries only. Thresholding boundaries with some minimum stability value does
not guarantee that the boundaries are closed curves. One way 1o solve this problem
is to complete stable confours by means of an interpolation scheme. There is,
however, another way to define a topological region nesting level on the spatial
stability map.

Assume that the scale-space of some image has been sampled in » scale-space
slices. For each of the slices {S,(x, y),i=1,..., n} the topological region nesting
level {T:{x, y),i=1,..., n} is well defined. Then we define the modified topological
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Fig. 4. Topological region nesting level map of fwo images, a golf ball and a pine cone. The pixel
intensity is proportional to T*{x, y) {see text).

region nesting level over the whole scale space, T*(x, y) as

™(x,5) =~ 3 Tix, ). (12)

i=1

The region nesting level map of two images is shown in Fig. 4, with pixel
brightness being proportional to T*(x, y). The maps suggest that this analysis can
successfully recover homogeneous regions and texture elements contained in each
region. It turns out, however, that the region nesting level T(x, y) defined for stable
regions, cannot be easily recovered from the T*-map. First, the T*-map does not
meet the requirement that these regions be bounded by stable edges, and hence
regions may be created in the T*-map that are not due to a single physical
phenomenon, such as the upper and lower half of the golf ball in Fig. 4a, that are
segregated due to different illumination conditions. Second, for some region that is
not detected at all levels of resolution T*(x, y) < T{x, y). For both reasons,
T(x, y) can, at best, be obtained from T*(x, y) through some nonlinear transfor-
mation. Like others, to this stage we cannot see how such topological measures can
be further used, per se, to parse image information unless extra knowledge is
introduced or such results are, in various ways, compared to our stability results or
even the differential geometry of the image. Indeed, computations dependent on
“closed” or “regular” features are unreliable in image understanding and, as with
stability analysis, our approach is to develop statistical measures for the presence of
structures physically present rather than impose artificial object interpretation
schemes on the image.

4.2. Arbitrary Textures

In the more general case of arbitrarily textured patterns, “shape from texture”
methods can still be applied, assuming that object surfaces are invariant with
respect to, at least, one local geometric measure, and assuming that this measure can
be identified. Further, the principle of textural homogeneity can be weakened to the
assumption that the distribution of some local geometric measure remains invariant
over a surface. One approach to textural interpretation that is based on the latter
assumption is Witkin’s [25] analysis of the texture edge orientation distribution.
Under the assumption that the distribution of edge orientations is isotropic one can
derive (probabilistic) constraints on the local surface orientation.
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FiG. 5. Image with superimposed edge orientation lines. For display purposes the edge orientation
lines are shown on a coarse grid. The length of the edge orientation lines is proportional to their spatial

stability value.

As in the case of texture element identification for regular patterns, we are faced
with two problems that precede the application of “shape from texture” interpreta-
tions. First, the appropriate geometric measure can arise at any level of resolution,
and second, we have fo guarantee that the measure is determined by a single
physical phenomenon. In this case of edge orientation distributions, for example,
the appropriate level of resolution is related to the granularity of the surface texture
and surface orientation constraints should be derived only from edges that are
clearly related to the surface granules. Both problems can again be dealt with by
parsing scale-space using spatial stability analysis that allows the identification of
texture-related edges independent of the level of resolution at which they arise.

The usefulness of spatial stability analysis for the generalized texture analysis is
based on the assumption that edges mear the appropriate level of resolution
correspond closely between adjacent scale-space slices, whereas edges at other levels
of resolution are more or less unrelated since they do not correspond to a single
physical phenomenon. Thus spatial stability for texture edges related to the natural
texture of an object is expected to be higher than that for other texture edges.

The approach we followed consisted essentially of extracting local edge orienta-
tion from the spatial stability map, weighting the orientation map linearly with their
spatial stability value. Figure 5 shows the edge orientation map overlayed on the
original image. The length of the edge orientation lines is proportional to their
spatial stability value. For display purposes, edges have been sampled on a very
coarse grid.

5. DISCUSSION

As has been pointed out in Section 1, scale-space determines the image uniquely,
up to a scaling constant [28]. It is, however, not obvious how to recover the image,
per se, or more generally, how to recover a given image property from scale-space.
Spatial stability analysis has been shown to lead to successful recovery of region
boundaries, without relying on “nice” scaling properties of scale-space. Further, it
has been shown that spatial stability analysis leads to an edge-only based image
representation characterized by resolution independence and good noise resilience.
Both these characteristics support its benefits for pattern recognition applications.
Within the framework of “shape from texture” methods we have provided evidence
that spatial stability analysis solves some problems that have hardly been addressed
at all in literature.
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Spatial stability analysis can be regarded, in some way, as an exercise in how to
recover image information from scale-space. In a more general framework it may,
however, turn out that extending the scale-space with descriptions obtained from
the image directly may be more appropriate than deriving these descriptions from
scale-space. E

This claim holds trivially for the zero-crossing gradient, a piece of image informa-
tion which is lost in the scale-space representation. This inherent ambiguity of
scale-space based image representations, or, in fact any edge-only based image
representation, can, for example, lead to deterioration or even breakdown in pattern
matching in situations where pattern information is carried mainly in contrast
symmetries. In our current work we have augmented scale-space by local geometric
properties of the input image at the zero-crossing positions, as principle directions
and curvature information. Such additions are particularly useful for “disambiguat-
ing” stable edges extracted from coarsely sampled scale-space.

The space of possible enhancements of edge-only based image descriptions is
large; examples include the “topographic” labeling of the image intensity surface
{11} or the enhancement of image descriptions with differential geometry primitives
as discussed by Besl and Jain [2]. Both approaches require, however, further
investigations with respect to their snitability within a multi-resolution (e.g., scale-
space based) framework. Further, these approaches can only be properly evaluated
in terms of their usefulness for later processes operating on these representations.
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