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Abstract--In this paper we consider a technique for pattern classification based upon the development of 
prototypes which capture the distinguishing features ("disjunctive prototypes") of each pattern class and, via 
cross-correlation with incoming test images, enable efficient pattern classification. We evaluate such a 
classification procedure with prototypes based on the images per se (direct code), Gabor scheme (multiple 
fixed filter representation) and an edge (scale space-based) coding scheme. Our analyses, and comparisons 
with human pattern classification performance, indicate that the edge-only disjunctive prototypes provide 
the most discriminating classification performance and are the more representative of human behaviour. 
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I. INTRODUCTION 

Pattern recognition or classification methods, which 
have evolved over the past 20 years, usually involve 
three processes: (a) pattern encoding or feature 
selection, (b) supervised learning where prototypical 
descriptions of pattern classes are produced within the 
chosen feature space, and (c) classification of new input 
samples in terms of their proximity to class proto- 
types. ") A variety of explicit features have been 
evaluted over the decades varying from perceptron- 
type feature analyzers [edge, bar detectors; e.g. Ref. 
(2)] to components of orthogonal transforms such as 
Fourier, Hadamard and Walsh, and global features 
(moment parameters, etc.). 131 Such mappings of 
patterns from the n × m dimensional input image 
space to feature space have proved to be relatively 
inefficient, since the number of features (feature space 
dimensions) required to retain the uniqueness of input 
patterns is large given the overhead of the transforma- 
tions involved. Further, most of these feature 
extraction techniques are limited to specific types of 
patterns and do not allow for pattern matching 
invariant to position, size and orientation of the input. 

With recent developments in computational vision 
and the availability of fast parallel pixel processors, a 
number of new approaches to feature selection have 
emerged which pose new ways of developing proto- 
types and classifying images invariant to specific 
transformations. In this paper we concentrate upon 
what we refer to as implicit descriptions of patterns 
based upon three different types of image representa- 
tions of recent interest to human and computer vision 
research. All three representations are based on 
attempts to arrive at pattern prototypes defined as 

images rather than centroids in feature spaces. In this 
sense the implicit features are extracted by filters and 
the prototypes themselves are viewed as adaptive 
filters which are designed to optimize the classification 
processes. 

These three different representations are as follows. 
(1) The "direct scheme" (DS) where it is assumed that 
the appropriate feature space is the n × m dimensional 
vector space of the original image. As will be seen, in 
this method prototypes are generated as combinations 
of appropriately aligned samples and classification is 
accomplished through the development of disjunctive 
prototypes generated by comparing across classes. (2) 
A "Gabor scheme" (GS) is discussed and illustrated. 
Here the input samples are decomposed via sets of 
(fixed) orientation/size specific (Gabor) filters. Such 
filtered versions are aligned across samples and 
classification is accomplished via how images match 
each prototype with respect to the similarities between 
their associated filter responses. Though such filters 
are proposed to represent the types of decompositions 
which occur within the primary projection area of the 
vertebrate visual cortex, ~4'5~ it is clear that this scheme, 
in its linear form, can perform no better than the DS 
scheme, due to the linearity of the matching 
(correlation) process as enacted piece-wise via each 
filter. 

It is relatively obvious that efficient pattern 
classification techniques should be based upon 
feature encoders which differentiate between classes as 
much as possible while still capturing the common 
features within given class samples. Techniques based 
directly upon pixels or filtered images have the 
disadvantage of not suppressing regions of common 
contrast between classes. Indeed, by using image 
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encoding techniques which emphasize the regions of 
contrast change, as in edge-only images, it is possible 
to further differentiate between pattern classes. The 
problem remains, however, how to obtain a reason- 
able definition of image edges. In our third implicit 
feature representation scheme, the "edge scheme" (ES), 
we have used two-dimensional "scale space '~61 to 
extract an edge mapping of the input signals. Here 
scale space refers to the location of zero (or level) 
crossings in an image as a function of many different 
isotropic bandpass filters (or "scales") defined by V2G 
kernels (as before). We (see Discussion) will also 
generalize this scheme to what we call "extended scale 
space" (ESS) where images are described by edges and 
the luminance gradient at each zero-crossing contour. 

As already mentioned, all three methods retain the 
image as the "feature space". However, only "critical 
regions" of this space are selected for correlational 
consideration as a function of the signals being 
processed and the registration method used. Further, 

such regions are presumed to be more relevant to 
classification if they index structural relationships or 
properties of the imaged object and are stable under 
noise perturbations. In this sense we propose a model 
for pattern recognition which is not dependent on 
prior known feature lists or transformation methods. 
Rather, we supply a set of computationally efficient 
algorithms which adaptively generate "critical 
features" for classification as outputs of generic classes 
of filters and comparison methods. 

2. COMPUTATIONAL PROCEDURES 

Figures 1-4 define, in general terms, the three 
processes of feature extraction, prototype formation 
and pattern classification as viewed from the three 
different encoding models. That is, we assume a 
supervised learning environment where the recog- 
nition system has a data base of samples for each class 
and is able to construct "prototypes" via the processes 

(a) DS 

(b) GS 

Si/ x cr~i 

S" o x ,r~ 

(C) ES 

Common 
edge 
extractor 

Fig. 1. Three prototype learning schemes (stage 1) as determined by their representations of the input samples (So: sample i of 
class j) are shown here. (a) Direct scheme (DS)--class prototypes (Cj) are formed via the direct sum of samples aligned by a 
normalized cross-correlation ® criterion; aj refers to the reference sample for classj. (b) Gabor scheme (GS)-- as above, except 
that a prototype image (C k is formed for each filter (k). S ~ refers to the kth filtered version of sample i of class j, while a k refers 
to the kth filtered version of the reference sample for class j. (c) Stability scheme (ES)--as in (a) except "stable edge" versions 
(T~) are produced for each sample in terms of the accumulated evidence for edges over various scales (see text) at each position. 
Here ~P refers to the non-linear process of registering the zero (or level) crossings of the filter outputs; Tj refers to the reference 
sample. In all three cases 5: peak refers to the accumulation of samples via shifts corresponding to the peak of the 

sample-to-reference cross-correlation. 
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Fig. 2. Examples of prototypes emerging from the three encoding processes for five input samples for a given class. Here the 
resultant prototypes are derived by the alignment and summation procedures defined in Fig. 1 and examples of pixel-by-pixel 

(direct alignment), Gabor (vertical and 30 oriented filters), and stability analysis (edge encoding) are shown. 

defined in Fig. 1. Here the prototypes are analogous to 
centroids of sample classes in feature space and, in this 
case, correspond to one image, or a set of images, per 
class. Each of these processes will be discussed in the 
following sections. However, it should be noted that 
the prototype formation and classification processes 
vary as a function of the feature encoding system. We 
also assume, for the purposes of illustration, that the 
sample patterns are already matched for orientation 
and size though the system can be extended to 
automatically accommodate for such differences (see 
Section 3 for details). 

2.1. Feature encoding and initial prototype format ion 
processes 

In the DS scheme it is assumed that the feature space 
is defined by the image itself(of dimension n x m) and 
that the feature "strengths" are determined by the 
input pixel intensities. Under this model initial 
estimates of the class prototypes are formed from the 
sum of individual samples aligned with respect to the 
peak of their normalized cross-correlation with a 
reference sample a,. That is, the prototype image for 

P R  21:6-G 

class j, Cj, is determined by: 
m _1 ¢ 

c ,  Ix, y) = Z s , d x  - ~,, y - fl,) (l) 
mii= 1 

where Sii is the ith sample of class j, (~i, fli) corresponds 
to the position of the peak value of Sq ®a], and 

0 < S 0 ®cr~ 

fl 
f' [" 7v2 

_< 1.0, (2) 

with equality, if and only if aj = 2S 0. mj refers to the 
number of samples in classj. It is well known [see Ref. 
(7)] that such normalized cross-correlations align or 
match patterns according to their "shape" similarity 
compared to the direct cross-correlator [numerator in 
equation (2)] which can be contaminated by local 
luminance offsets unrelated to shape. Such a process is, 
by definition, shift invariant (Fig. la). 
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Fig. 3. Stages II and III of the recognition system are given here. (a) Stage II involves an orthogonalizing "disjunctive" process 
where new prototypes are formed which emphasize the differentiating features of each class. (b) Stage III--classification: (i) 
direct scheme--new input samples (S) are classified according to which prototype produces the greatest peak in the associated 
normalized cross-correlation image(x); (ii) Gabor scheme- as in (a) except that peak outputs over the r filters are combined; 

(iii) stability scheme- as in (a) except the samples are converted to "edge-only" images as in Fig. lc. 

The GS scheme (Fig. lb) differs from the DS scheme 
insofar as each class sample (S~) is decomposed by a set 
of r filters of specified spatial, spectral resolutions and 
bandwidths. From these images r different prototypes 
are formed for each class via the alignment process 
described by (1) and (2) above. Each "Gabor  filter" is 
determined by a two-dimensional form of even 
elementary Gabor  signals: ~4) 

g(x, y) = e -[~x -x°~2 + i~.-y0~-]/~2.cos[2rc(u0x + v0y)]. (3) 

Here the isotropic spatial aperture is determined by 
(the space constant), positioned at (x0, Y0) of center 
spatial frequency (u0, v0), having a band width of 1/~ in 
picture cycles. 

The ES scheme illustrated in Fig. lc differs from the 
above (independent) model insofar as outputs of each 
filtering/thresholding operation are combined and 
then aligned to form only one prototype per class: a 

"conjunctive" process. The purpose of this is to capture 
features common to a set of filters, in particular, edge 
features such as zero-crossings. Termed "spatial 
stability" analysis, ~8) this process is aimed at capturing 
more salient image edges by determining the degrees to 
which the same zero-crossing positions of band-pass 
filters [in particular, V 2 G(X, a) filters] occur over a 
range of filters (or "scale") values. 

More formally, a sample image S U is initially 
decomposed by a set of band-pass V2G(X, fl) filters to 
result in outputs S~(X) by: 

S~(X)  = V2G(S:flk),Sq(X), for X = (x, y) (4) 

cS2 c~2 2 =  1 

exp { - ra/2ffk}* S U (X), 
* denoting convolution. These operations produce the 
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r images S~!i-S ~ shown in Fig. lc. From these outputs 
we extract the zero-crossings to result in a broad 
sample of the image "scale-space" (see Ref. (6) for more 
details). That is, the transformation process qJ shown 
in Fig. lc corresponds to the selection of sample filter 
points in the S~(X) images where: 

S~(X) = 0, and VS,(X) :~ 0, for V - - -  + - - .  (5) 
0x ~y 

We then define the "spatial stability" image as that 
corresponding to the number of zero-crossings which 
occur at a given pixel over a range of/3k values. We use 
this latter term since highly stable image edge points 
must correspond to zero-crossings over a large 
number of scales [/3 in equation (4)] consistent with 
the fact that this local region must have a broad (local) 
Fourier power spectrum indicative of high contrast 
and steep gradient - the ingredients for distinct edge 
information. Secondly, this definition of stable edges 
minimizes the occurrence of edges in white noise alone. 
This follows from the observation that, for sets of 
isotropic (even) filters [.fl.-..fi} the cross correlation 
between their outputs, to white noise inputs, is 
determined by: 

C(X ) = ~ Fk(u) Ft(u)cos(u. x), (6) 
u 

where Fk and F~ correspond to the Fourier power 
spectra of filters f~ and .f~ (u refers to spectral co- 
ordinates: spatial frequencies). Consequently the 
correlations between pixels is specifically dependent 
on the inner product or spectral separation between 
the filter power spectra. However, as the scales (/3) of 
the V:G(X, /3) operators differ their correlation 
decreases, so decreasing the probability of consistent 
zero-crossing points (see Ref. (8) for more details). If the 
image is uncorrelated, as in white noise images, then 
the likelihood of common zero-crossings must 
decrease as the filters become more spectrally 
separated. Conversely, the method used here to define 
stable edges is one way of depicting correlations over 
scales within the image. Such encoding characteristics 
of this scheme are not inherent in the direct and Gabor 
encoding schemes. 

A prototype for each class is then formed by 
summing each T, with respect to the relative position 
of each sample's normalized cross-correlation peak 
[equation (2)]. to result in the classj  prototype: 

Cj(X) = ~ T!i(x- ~,), (7) 

for mj samples in class j. Again, normalization is 
necessary in order to decrease false alignments based 
upon higher edge densities uncorrelated with the 
reference edge information, according to (2). 

Figure 2 shows examples of the prototypes 
generated by the three different encoding models 
though only the vertical and 30 ° orientated Gabor filter 
prototypes are shown. The direct scheme prototype 

was defined from (1) and (2) to result in an image 
representative of the (aligned) "average" image from 
the samples. 

In the Gabor scheme we have assumed that each 
Gabor signal [see equation (3)] is defined in every 
image pixel and so we could enact the decomposition 
by filtering in the Fourier domain. Here equation (3) 
assumes the spectral form: 

2 ( ~  - u 0 ) 2  

G(u) = e ~ for u -= (u, v) and u0 = (u0, v0). (8) 

We have employed 18 such filters of three different 
centre frequencies and six different orientations: 
equally spaced in 30' increments from centre-to- 
centre. For an input 128 x 128 pixel format the centre 
frequencies and bandwidths were {8 + 4, 16 + 8, 
32 +_16} picture cycles, for each orientation com- 
ponent. Such filters are consistent with orientation 
detector profiles recorded by electrophysiologists in 
the primary projection area of the vertebrate visual 
cortex. ~4.5~ 

For the edge scheme (Fig. lc) we have implemented 
equations (4), (5) and (7) with respect to 17 different/3 
values ranging from 1 to 16 in 4 ~ octave steps to 
produce the prototype shown in Fig. 2, where edge 
strength is denoted by intensity. 

The five samples shown in Fig. 2 were generated by 
taking linear combinations of three basic faces with 
weights shown in column 1 of Fig. 4b. That is, the five 
samples corresponding to class 1 (Fig. 4a, b) were 
constructed by the choice of five different weights of 
the three basic faces. For example, sample 1 of class 1 
consisted of 0.6 of face 1, 0.3 of face 2 and 0.1 of face 3. 
Clearly class 1 was biased towards a prototype 
resembling face 1 (of the three basic shapes) relative to 
the other two. These basic faces are shown in the top 
row of Fig. 6a (see weights in Fig. 6b). As will be seen, 
we have employed such small differences within and 
between pattern classes to challenge both models and 
human observers. 

2.2. Prototype disjunction: orthogonalization of filters 
As outlined in the Introduction, these representa- 

tion schemes for pattern classification are based upon 
the notion of implicit description of discriminating 
class features in terms of filter operations on images. 
That is, class prototypes formed in the supervised 
learning stage (as in Figs 1 and 2), are viewed as images 
which are to be matched, by cross-correlation, with 
new inputs for classification. The "implicitness" refers 
to the fact that the critical features are contained 
within the image: the features are located at various 
positions without using an explicit feature list. 

However, if classification is to be accomplished via 
such a matching processs, then the degree of class 
differentiation is determined by the orthogonality of 
the prototypes (being adaptive filters). Here two 
prototypes are orthogonal via the usual zero scalar 
product criterion: 
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(a) 

(b) 

Class 1 Class 2 Class 3 

Sample 1 .6, .3, .1 .3, .6, .1 .3, .1, .6 

Sample 2 .7, .2, .1 .2, .7, .1 .2, .1, .7 

Sample 3 .5, .25, .25 .25, .5, .25 .25, .25, .5 

Sample 4 .4, .3, .3 .3, .4, .3 .3, .3, .4 

Sample 5 .5, .3, .2 .3, .5, .2 .3, .2, .5 

Fig. 4. Samples (difficult cases) used in the training sequence for a three-class classification task. They were generated via linear 
combinations of three faces having coefficients defined in (b). 
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t" 
Ci 1 Cj¢~ I C,(x)Cj(x)dx = O. (9) 

d x 

We can further define absolute orthooonality (A) in 
terms of the two prototypes having shift invariant 
zero-scalar product, or: 

{ v ~ f •  C~(x)Cj(x + ot)dx = Cq(~) =_ Oc:~C, .-L Cj.(IO) 

By the convolution theorem we know that equation 
(9) holds if, and only if, C~ and Cj have Fourier spectra 
which are perfectly disjoint. That is: 

Vu, A,(u). Aj(u) = O, (11) 

where A~ corresponds to the Fourier amplitude (or 
power) spectrum of C~. 

The prototype formation process, so far defined, 
does not guarantee orthogonality (in either sense) of 
the filters insofar as they only attempt to represent 
common features within the class samples. One simple 
way of"orthogonalizing" the prototypes is to compute 
the class filter by a "disjunctive" process such as: 

1 n 

~ t '  (12) Cj(x) = max/. 0, Cj(x) - ~ - 1  k~l Ck(x - 6.~k) 
kcj 

where 6~k is the shift corresponding to the peak of the 
(normalized) cross-correlation between prototypes j 
and k, as defined by equation (2) (see Fig. 3a). Such 
disjunctive operations, which emphasize prototype 
differences, constitute a simple method of introducing 
a degree of orthogonality into the class filters, via (9) 
and (10) while still preserving the important image 
features. This process would result in a greater 
difference between the peaks in the cross-correlations 
between prototypes and samples from each class. 

2.3. Classification stage: pattern recognition 
This final classification stage is illustrated in Fig. 3b 

where the class membership (pattern recognition) is 
determined by the class prototype with the highest 
peak cross-correlation. In the case of multiple 
(independent) decompositions, as in the Gabor scheme 
(GS), classification is made according to a norm 
defined over the associated peak cross-correlation 
vector. Further, the likelihood of class membership (or 
relative strength of membership) would be determined 
from the comparison of cross-correlation peaks over 
the classes. Here, again, normalization via equation (2), 
is required. More formally, the class membership 
likelihood vector LJ for an input sample s is defined by: 

I- r ql.2 t '  L j) = { L k__2 rm.x(S® ey}]2 ] (,3) 

for n classes and r filters per class (for DS and ES r = 1). 
('~ corresponds to the kth disjunctive filter (prototype) 
f()r class j, (~) to normalized cross-correlation. (2) 

Befi)re describing some test examples, an important 
point should be noted about the GS process. In its 

linear formulation it is clear that the GS scheme can 
differentiate no better than the DS scheme since the 
Gabor filters cannot capture any more features than 
those contained in the original image, given that we use 
cross-correlation (matched filtering) as the com- 
parison process. For this reason we have not directly 
included this scheme in our simulations. Rather, we 
have included some discussion of the scheme since it is 
of interest to biological spatial vision (see Introduc- 
tion). Further, as will be seen in Section 3, this scheme 
has interesting properties for matching invariant to 
rotation, shift and size differences between samples 
and prototypes (see Zetsche and Caellit~3)). 

Consequently we have run the DS and ES feature 
extraction schemes over the prototype and classifica- 
tion procedures with a number of face types with 
varying within- and between-class differences. Figure 4 
shows the most difficult case involving three classes 
whose samples are quite similar. Such faces were 
generated from linear combinations of three basic faces. 
Subtle mouth, nose and eye differences between classes 
were produced by the different weighting coefficients 
shown in Fig. 4b. Figure 5 shows prototypes and 
disjunctive prototypes formed for the DS and ES 
schemes as determined by equations (3) and (11). 

Figure 6a shows a set of new samples for 
classification via the prototypes shown in Fig. 5. They 
were also generated by linear combinations of the 
same three basic faces used to form the prototypes with 
linear combination coefficients as shown in Fig. 6b. 
The performance of DS, ES and their direct and 
disjunctive forms are shown in Figs 7a and b. Though 
a variety of criteria can be used to evaluate the 
performance of such pattern classification schemes, we 
have compared these predictions with human perfor- 
mance by training observers to 100~o learning 
criterion and then presenting the new patterns a large 
number of times to determine the likelihood of 
classification into one of the three classes. 

In more detail, three observers, with normal acuity, 
were presented with the training set (Fig. 4a) until they 
could be perfectly classified. In this learning phase a 
given experimental trial consisted of presenting each 
training sample for 200 ms on an Electrohome 12" 
monitor, at a visual angle of 2 ,  space average 
luminance of 18cd/m ~' and 0.8 contrast (/max- lmin)/ 
(/max + Imin), where lm,x and Imi n correspond to maximum 
and minimum luminances of the image. Immediately 
after the offset of the sample they were informed as to 
the class to which the sample belonged via the display 
(for 1 second) of the roman numerals I, II or III. All 
samples were randomized over trials. After this 
sequence they were tested under identical display 
conditions, except that they were required to respond 
as to the class of the sample. This procedure continued 
till 100% correct classification performance occurred. 
The test phase was similar to the latter (probe) 
component of the learning phase though involving 
new patterns each of which was displayed 50 times 
over trials per observer to obtain a classification 
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Fig. 5. Initial (rows l, 3) and disjunctive (rows 2, 4) prototypes formed for the samples shown in Fig. 4 by the alignment process 
with respect to the direct (rows l, 2) and edge (rows 3, 4) encoding schemes. 

preference or choice frequency score. As shown in 
Fig. 6, these new faces were generated from the same 
basic images though using different weighting coef- 
ficients (see Fig. 6b). 

Since observers showed little variation in responses 
(specifically, a mean standard error of estimate, MSE, 
of 6.7 over all examples), we have combined their data 
in Fig. 7c to illustrate, more clearly, performance in 
comparison to the models (Figs 7a and b). What, of 
course, is interesting is the consistency between class 
membership determined by the disjunctive edge 
prototypes and human performance, relative to that of 
the direct (and so, Gabor) scheme. Indeed, observers 
consistently reported that they accomplished the task 
by looking for facial features which distinguished one 
class from another, usually in the eye, nose and mouth 
region. Since the edge disjunctive prototypes both 
capture the salient features within a class and the 
discriminating features between classes in an implicit 
image form, it is not surprising that they do reflect the 
types of internal representations employed by obser- 
vers in classification tasks involving such precision. 
We have correlated all the predicted disjunctive 
prototype matching values (Fig. 7b) with observed 
behaviour to result in a Pearson's correlation 
coefficient of r = 0.89, so explaining 799/0 of the 
preference results, a correlation clearly significantly 
greater than zero (P < .01). However, since the other 
models (Figs 7a and 7b (dotted lines)) did not show any 
systematic relationship to observer responses we have 
omitted further statistical comparisons. 

3. EVALUATION AND EXTENSIONS 

In the above procedures we have used the 
normalized cross-correlator 12t as a criterion for the 
development of implicit feature descriptions of class 
prototypes, their differentiating (disjunctive) features, 
and pattern classification. We have found that the 
disjunctive edge scheme proved to be the most 
discriminating type of prototype for classification. 
This follows from the observations that edge codes 
emphasize the distinguishing pattern features of the 
class and the disjunctive process emphasizes the 
unique features within a class--relative to others. 
Further, it is this code which seems to best parallel 
human performance. 

Such procedures differ from more traditional pat- 
tern classification techniques insofar as the following. 

(i) The underlying feature space consists of the image 
itself and critical features are depicted by various 
filtering and thresholding processes which are adap- 
tive to within- and between-class comparisons. 

(ii) Similarity is defined by normalized cross-correla- 
tion, and the optimal pattern classifier is determined 
by a set of adaptive filters determined by within-class 
conjunction and between-class disjunction operations. 
The disjunctive technique endeavors to orthogonalize 
the filters (prototypes) as much as possible without 
detracting from the shape characteristics involved. 

(iii) The classifier is analogous to the Least Squares 
Minimum Distance Classifier m insofar as the classif- 
ication vector's dimension is equal to the number of 
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(a) 

(b) 

Class 1 Class 2 Class 3 

Sample 1 1.0, 0.0 0 .0 0.0,  1. 0 0.0 0.0, 0.0 1.0 

Sample 2 .75, .15, .1 .1, .75, .15 .15, .1, .75 

Sample 3 .55, .3, .15 .3, .55, .15 .15, .3, .55 

Sample 4 .45, .35, .2 .2, .45, .35 .35, .2, .45 

Sample 5 .45, .25, .3 .25, .45, .3 .3, .25, .45 

Fig. 6. (a) Examples of new sample images used to evaluate the different classification methods. Here the prior allocation of 
samples to classes was done according to their linear weightings with respect to the basic three faces used to generate all images. 

Linear weighting coefficients are shown in (b). 
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Fig. 7. Performance of the direct (DS: - - -) and edge (ES:----) encoding schemes using no disjunction (a) and disjunctive (b) 
prototypes. The curves refer to the peaks in the normalized cross-correlation for each of the three class prototypes used on each 
sample. (c) shows results from the psychophysical experiment where the class classification frequencies are shown per sample. 
Here incorrect classifications correspond to the curves which do not match the class number. In all cases the abscissas are 

numbered from 1 to 5 according to their class sample label (see Fig. 6). 

classes and  the disjunctive me thod  a t tempts  to 
maximally  differentiate the cross-correlat ions over 
classes. 
The benefits of such processes are tha t  they are 
implementable  in current  (parallel) pipe-line pixel and  

array processors ~9) and  they do not  require the pr ior  
selection of features ei ther in the image or some 
t ransform domain.  

Like most  o ther  pa t te rn  recognit ion techniques,  the 
proposed a lgor i thms (Figs 1 and  3) are only shift 
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invariant and so the sample and test patterns must be 
standardized for size and orientation before the 
process can be implemented. A number of procedures 
have been recently developed to overcome this 
problem including the definition of features via the 
equivalent two-dimensional circular harmonic power 
spectrum amplitudes, ~°'H~ log-polar transforms of 
image edge coordinates 191 and matching in joint image 
log-polar spectral domains for shift, rotation and size 
invariance) TM 

Though we have shown support for the ES scheme 
in the case of classifying patterns such as faces, etc., it 
has one important limitation which is, in principle, 
solvable. Images are not uniquely represented by such 
samples of scale space slices and, if we are to keep the 
number of filters to a minimum, what is required is an 
extra determination of the contrast direction at each 
edge point of the image, particularly those which have 
high stability. For example, augmenting the scale 
space [as determined by equations (4) and (5)] to 
include both minimum (zero-crossing contour) and 
maximum (direction of maximum contrast change) 
principle curvatures seem appropriate extensions to 
normal scale space encoding of pattern information. 
Such a representation is under investigation as a 
logical extension of the ES scheme. By treating such 
image pairs as one complex image, the matched 
filtering processes described above could be applied to 
these augmented features for alignment, prototype 
formation and pattern classification. To this date, 
however, we have found few cases in pattern 
recognition where such additional calculations seem 
necessary given the fact that the relative position of 
zero-crossings at different scales already implicitly 
encodes contrast direction to some extent. 

classification methods based upon image domain 
operations. We have developed procedures which 
endeavor to maximally differentiate classes by the 
emphasis of differentiating features and have shown 
these techniques to be particularly useful with 
edge-only representations. The algorithms are being 
extended to include problems of recognition-under- 
transformations and more details of contrast 
gradients. Since all computations are based upon 
convolution processes, it is envisaged that such an 
approach to pattern recognition is readily applicable 
to current parallel architectures. 

SUMMARY 

In this paper we consider how human and machine 
pattern learning and classification may be accom- 
plished by cross-correlation procedures based upon 
one of three types of encoding processes: (1) direct 
pixel-by-pixel registration; (2) via the outputs of 
two-dimensional Gaborfilters; and (3) the registration 
of edge information derived from pattern scale space 
properties. Further, a disjunctive prototype function 
stage is introduced to produce orthogonalized class 
filters (or templates) to optimize between-class 
discrimination. We show that the edge-only (disjunc- 
tive) encoding process performs better than the others 
and more closely corresponds to human performance. 
Finally, some extensions of these processes are 
discussed for matching inferred shape characteristics 
of objects and recognition invariant to the position, 
orientation and size of target patterns. 

4. CONCLUSIONS 

In this paper we have explored a class of pattern 
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