Finding Complex Targets in Complex Scenes using
Machine Learning Techniques: a viable Surveillance
Paradigm?

Terry Caellit Walter F. Bischof?

1Department of Computer Science, Curtin University of Technology, GPO Box
U1987, Perth, WA 6001, Australia, Email: tmc@cs.curtin.edu.an

2Department of Psychology, University of Alberta, Edmonton, Alberta, T6G 2E9,
Canada, Email: wib@psych.ualberta.ca

Abstract

In this paper, we discuss automatic rule generation techniques for learn-
ing relational properties of 2-D visual patterns and 3-D objects from training
samples where the observed feature values are continuous. In particular, we
explore a new conditional rule generation method that defines patterns (or
objects) in terms of ordered lists of bounds on unary {single part) and hin-
ary {part relation) features. The technique, termed Conditional Rule Gen-
eration (CRG), was specifically developed to integrate the relational struc-
tares of graph representations of patierns and the generalization character-
istics of Evidenced-based Systems (EBS). CRG takes into account the label-
compatibilities that should occur between unary and binary rules ir their very
generation, a condition that is, generally, not gnaranteed in well-known Rule
Generation and Machine Learning techniques as they have been applied to
problems in Computer Vision. We show how this technique applies to the
recognition of complex targets and of objects in scenes, and we show the ex-
tent to which the learned rules can identify patterns and objects that have
undergone non-rigid distortions.

1 Introduction

To develop systems which can detect relatively complex patterns or objects in com-
plex scenes requires efficient and robust techniques for describing patterns and
searching for them in such data structures. Machine learning, as it applies to the
detection, recognition and surveillance of scenes, provides methods for solving such
problems. In particular, in this paper we address the issue of just how ML is used
in the following sub-system domains of:

o Feature Selection: The automatic selection and/or ordering of encoded features
that can optimize the recognition processes.

¢ Generalization: The automatic generation of “structural descriptions” of tar-
gets that can cover a range of training pattern examples, as well as distorted
and unseen examples.

o Efficiency: The optimization of search and matching procedures.

These goals can be attained, with differing degrees of success, using a wide variety
of representations, learning and matching technologies.

The type of representation most frequently used in vision has been the relational
structure (RS) where patterns are encoded ag parts (graph vertices) and part rela-
tions (graph edges), both being described by a set of attributes or features. Such
graph representations are limited in the sense that generalization in terms of either
new views or non-rigid transformations of objects are difficult to represent. Fur-
ther, pattern recognition typically involves graph matching, with a computational
complexity that exponentiates with the number of parts {1, 2]. Little attention has
been paid to the design of optimal search procedures that use conjoint feature states
(Le. conjunctions of particular sets of feature values) to define important charac-
terizations of patterns, and they are less than ideal for the recognition of objects
embedded in scenes. Typically, they use prior knowledge to prune the search space,
as has been explored by a number of anthors (for example, [3, 4]).

In contrast to the RS representation and associated constraint-based graph
matching (tree search) methods, evidenced-based systems (EBS) provide a different
approach to the recognition problem. Like RS, EBS works within the Supervised
Learning (Learning from Example) paradigm and require subprocesses for encod-
ing, segmentation and part/relational feature extraction. Patterns and objects are
encoded by rules of the form:

if {condition} then {evidence weights for each class}

where the rule condition is usually defined in terms of bounds on feature values, and
where rules instantiated by data activate weighted evidence for different pattern
classes. Such rules can be defined over pattern features of arbitrary arities and
the main problem in EBS has been to determine the feature bounds and evidence
weights. That is, EBS typically involves partitioning feature spaces into regions
associated with different pattern classes, and the problem has been to determine
clagsification rules that attempt to minimize misclassification while, at the same
time, maximizing rule generalization. Since these regions are not necessarily class
disjoint, evidence weights are typically used to index the degrees to which samples
within the region correspond to different classes. “Generalization” is then defined
by the associated volumes of the regions that define the rules in feature space.

Evidence weights are typically derived from the relative frequencies of different
classes per region [5] or, more recently, by minimum entropy and associative neural
network techniques [6]. In either case, the label-compatibilities of data parts and
their relations were only encoded through the simultaneous activation of both unary
and binary rules.

Although such systems allow generalizations from samples, they only attain im-
plicit learning of the RS, in so far as unary rules (rules related to part features) and
binary rules (rules related to part relational features) are both activated to evidence
patterns or objects. EBS do not explicitly consider the compatibility between unary
and binary rules as they reference specific pattern parts and their relations. Indeed,
patterns are uniquely defined by the enumeration of specific labeled unary and binary
feature states of the form U; — By; — U;. The two patterns shown in Figure 1 have
isomorphic unary and binary feature states but are not identical. This shows that
the existence of such correspondences does not guarantee identity in shape unless
the unary and binary feature labels are compatible. Even given this, determining the
uniqueness of a pattern may involve checking for attribute and label consistencies
of higher order than, say, the consistencies of isolated parts or part-relation pairs.
Rules satisfying the “label compatibility” property of rules must evidence specific
objects or patterns uniquely, i.e. lists of unary and binary feature states must evid-
ence specific joint occurrences of parts and relations. The problem then is how rules
having this property can be generated automatically.

As already stated, the simplest representation for visual patterns that takes into
account the label-compatibility of unary and binary features, is a graph. Graph

Figure 1: Two patterns with isomorphic unary (U = vertex color and orientation)
and binary (B = line length and orientation) feature states but differing in their label-
compatibilities: the sequences of U; — By; - Uj... differ between the two patterns).

matching techniques are used to solve the recognition problem where a sample pat-
tern structure {for example, new data for classification) is matched to a model struc-
ture by searching for a label assignment that maximizes some objective similarity
function [2]. Pattern classes are represented by sets of instances and classification
is thus achieved by searching through all model graphs to determine the one produ-
cing the best match. This representation and graph matching approach, in the form
of interpretation trees and feature indexing, has been the preferred architecture for
object recognition [4, 7).

Different approaches to improving the efficiency of the matching processes have
been proposed, such as constraint-based decision trees [3], “pre-compiled” tree gen-
eration [8], heuristic search techniques {9], dynamic programming [10], relaxation
labeling [11] or hierarchical model fitting [12]. However, the problem of learning
and constructing union and discrimination trees for structural descriptions has been
addressed only sporadically in the literature, such as in [13] within the framework of
inductive learning of symbolic structural descriptions or in [14] within the framework
of probabilistic inductive prediction of sequential patterns.

In summary, graph matching methods solve the label-compatibility problem but
do not allow for efficient representation of patfern classes via union and discrim-
ination trees. Further, such representations and algorithms do not consider a fun-
damental issne in pattern recognition, generalization, i.e. the ability for the system
to recognize equivalences between patterns that are not identical. Alsc, they do
not fully exploit learning to determine the optimal search path amongst unary and
binary feature states to evaluate the existence of specific patterns. For example,
in 3D object recognition, it is often necessary to classify objects as belonging to a
gpecific object type even though individual samples of the class may be non-rigid
transformations of other members of the same class - as in different types of coffee
mugs, ete. At the same time, we wish to automatically generate descriptions of 3D
objects that not only enable such generalizations but also do so with respect to the
description length of the rules (the length of strings of unary-hinary-unary-... feature
bounds). Evidence-based systems provide for generalization, but do not adequately
address the label-compatibility problem.

In the following Sections we focus on the analysis of a new technique for the learn-
ing of structural relations, Conditional Rule Generation (CRG). It generates a
tree of hierarchically organized rules for classifying structural pattern descriptions
that aims at “best” generalizations of the rule bounds with respect to rule length
(the number of U-B-U, etc., conditional feature lists). The aim of this paper is to
show how the technique can be used to solve problems involving the recogrition of
2D patterns and 3D objects in complex visual scenes.

2 The Conditional Rule Generation Method

In CRG, rules are defined as clusters in Conditional Feature Spaces which correspond
to either unary or binary features of the training data. The clusters are generated to
satisfy two conditions: one, they should maximize the covering of samples from one
class and, two, they should minimize the inclusion of samples from other classes. In
our approach, such rules are generated through controlled decision tree expansion
and cluster refinement as described below.

2.1 Clnster Tree Generation

Each pattern (a 2D sample pattern or a view of a 3D object) is composed of a
number of parts (pattern components) where, in turn, each part p,,r = 1,..., N is
described by a set of unary features ¥(p-), and pairs of parts (p,, p,} belonging to the
same sample {but not necessarily all possible pairs) are described by a set of binary
features b(p,,ps). Below, S{(p,) denotes the sample (in 3D object recognition, a
“view”) a part p, belongs to, C(p,) denotes the class (3D object recognition - object)
S(p,) belongs to, and H; refers to the information, or cluster entropy statistic:

H, = "Z%’k In g {1}
&

where g;; defines the probability of elements of cluster i belonging to class k. We
first construct the initial unary feature space for all parts over all samples and
classes U = {i(p.),r = 1,.,N} and partition this feature space into clusters U;.
In our approach, the initial clustering procedure is not critical, as will be discussed
further below. Clusters that are unique with respect to class membership (with
entropy H; = 0} provide a simple classification rule for some patterns (e.g. Us in
Figure 2). However, each non-unique (unresolved) cluster U; is further analyzed
with respect to binary features by constructing the (conditional) binary feature
space UB; = {b(pr,ps) | @pr} € U; and S{p,) = S(ps)}. This feature space is
clustered with respect to binary features into clusters UB;;. Again, clusters that
are unigue with respect to class membership provide classification rules for some
objects (e.g. UB11 in Figure 2). Each non-unique cluster UB;; is then analyzed
with respect to unary features of the second part and the resulting feature space
UBU;; = {ilps) | blpr,ps) € UBy;} is clustered into clusters UBU;j;. Again,
unique clusters provide class classification rules for some objects (e.g. UBUa1 in
Figure 2), the other clusters have to be further analyzed, either by repeated condi-
tional clustering involving additional parts at levels UBURB, UBUBU, etc. or through
cluster refinement, as described below.

Each element of a cluster at some point in the cluster tree corresponds to a
sequence U; — Byj ~ U; « Bjg... of unary and binary features associated with a non-
cyclic sequence (path) of pattern parts. In the current implementation, we analyze all
path permutations in order to guarantee classification of arbitrary partial patterns,
even though this leads to the generation of redundant set of rules. Elsewhere, we
have studied ways of reducing this redundancy through the use of feature ordering
{151

In the current implementation of CRG, we have used a simple splitting-based
clustering method to enable the generation of disjoint rules and to simplify the
clustering procedure. Cluster trees are generated in a depth-first manner up to a
maximum level of expansion. Clusters that remain unresolved at that level are split
in a way described in the following Section.

UBU212

UBU213

UBUI12 UuBU21 UBU23

Figure 2: Cluster Tree generated by the Conditional Rule Generation Procedure
(CRG). The unresolved unary clusters (U1 and U3) - with element from more than
one class - are expanded to the binary feature spaces UB; and UB,, from where
clustering and expansion continues until either all rules are resolved or the prede-
termined maximum rule length is reached, in which case rule splitting occurs.

2.2 Cluster Refinement

All non-unique (unresolved) clusters remaining at a given level of the cluster-tree
generation (e.g. clusters UBU 212, UBUa3 and UBUsg; in Figure 2) have to be ana-
lyzed further to construct unigue decision rules. One way of doing this is to simply
expand the cluster tree, analyzing unary and binary attributes of additional parts to
generate tules of the {UBUB...} form. However, this may never give completely “re-
solved” branches in the cluster tree. Alternatively, the derived clusters in the tree
can be refined or broken into smaller clusters, using more discriminating feature
bounds, as described below. Both approaches have their respective disadvantages.
Cluster refinement leads to an increasingly complex feature-space partitioning and
thus may reduce the generality of classification rules. Cluster-tree expansion, on
the other hand, successively reduces the possibility of classifying pattern fragments,
or, in 3D object recognition, classifying objects from partial views. In the end, a
compromise has to be established between both approaches.

In cluster refinement, two issues must be addressed, the refinement me-thod and
the level at which cluster refinement should be performed. Consider the cluster tree
shown in Figure 2 with non-unique clusters UBU 912, U/BU 913 and I/BU232. One way
to refine clusters (for example, cluster UBU 237) is to re-cluster the associated feature
space (UBU3) into a larger number of clusters. However, classification rules associ-
ated with other clusters (UBU g3y and UBUsgs)} are lost and have to be recomputed.
Alternatively, given that each cluster is bounded by a hyper-rectangle in feature
space, refinement of a cluster can be achieved by splitting this rectangle along some
optimal boundary. This ensures that other sibling clusters remain unaffected. With
respect to the level at which cluster refinement is performed, instead of splitting an

unresolved leaf cluster (UBUy32) one could split any cluster in the chain of parent
clusters (UB23 or Us).

Consider splitting the elements of an unresolved cluster ' along a (unary or
binary) feature dimension F. The elements of C are first sorted by their feature
value f(c), and then all possible cut points T midway between successive feature
values in the sorted sequence are evaluated. For each cut point T, the elements
of C are partitioned into two sets, P; = {e¢ | f(c) < T} with n; elements and
Py = {c| f(c) > T} with ng elements. We define the partition entropy Hp(T) as

HP(T) =?’L]_H(P1) +n2H(P2). (2)

the cut point Tr that minimizes Hp(Tr) is considered the best point for splitting
cluster C' along feature dimension F (see also [16]). The best split of cluster C'
is congidered the one along the feature dimension F' that minimizes Tr. As noted
above, rather than splitting an unresolved leaf cluster Cr, one can split any cluster
C; in the parent chain of C. For each cluster C;, the optimal split Tr is computed,
and the cluster C; that minimizes Tr is considered the optimal level for refining the
cluster tree. Clusters above Cr may contain elements of classes other than those
that are unresolved in Cp,. Hence, in computing Hp for those clusters, we consider
only elements of classes that are unresolved in Cy.

Two further properties of the splitting procedure are important, since they affect
the type of rules generated by CRG. First, if a nonterminal cluster of the cluster tree
is split, the feature spaces conditional upon that cluster are recomputed since the
elements of the feature space have changed. Second, in the case of a tie, i.e. if two
or more clusters have the same minimal partition entropy Hp(T"), the cluster higher
in the cluster tree is split. Together, this leads to CRG having a clear preference
for shallow cluster trees and for short rules, which, in turn, leads to efficient rule
evaluation.

The rules generated by CRG are sufficient for classifying new pattern or pattern
fragments, provided that they are sufficiently similar to patterns presented during
training and provided that the patterns contain enough parts to instantiate rules.
However, cluster trees and associated classification rules can also be used for partial
rule instantiation. A rule of length m (for example, a UBUBU-rule) is said to be
partially instantiated by any shorter (I < m) sequence of unary and binary features
(for example, a UBU-sequence). From the cluster tree shown in Figure 2, it is clear
that a partial instantiation of rules (for example, to the I/B-level) can lead to unique
classification of certain pattern fragments (for example, those matched by the U/3 or
UB1; rules, but it may also reduce classification uncertainty associated with other
nodes in the cluster tree (for example, U7 Bag). From the empirical class frequencies
of all training patterns associated with a node of the cluster tree {for example,
{7 Ba3), one can derive an expected classification vector, or evidence vector. The
evidence vector is used to predict the classification vector of any part, or sequence
of parts, that instantiates the associated rule.

In summary, CRG has been specifically developed to enable the learning of pat-
terns defined by parts and their relations. The technique determines the type of
inductive learning (attribute generalizations) that can be performed and the asso-
ciated minimum length descriptors of shapes for recognition. Finally, since the
method precompiles patterns as relational trees, the technigue is ideally suited for
the learning of patterns with variable complexity and their detection in scenes.

3 Detecting 2D Patterns in Scenes

In this Section, we illustrate learning of 2D patterns using the CRG method, the
recognition of these patterns embedded in more complex scenes using the rules

class 1 T

(b)
fl_as_,s_?, //
class 3 /f\

(¢}

IR I ay

mal| K8
<[
NE
<|[=

class 4 %

(a)

Figure 3: (a) Four classes of patterns with four training patterns (views) each.
Each pattern is composed of three lines. Lines are described by the unary features
“line length” and “orientation”, and pairs of lines are described by the binary fea-
tures “distance of line centers” and “intersection angle”. (b) Montage of (slightly
distorted) line triples. (c) In the adjacency graph for the montage, dots indicate
the position of the line center and adjacent lnes (with a center distance below a
given limit) are connected. (d) Result of the pattern classification using the rules
generated by CRG. Class labels for each line are shown on the right.

generated by CRG. The example, line triples, consists of four classes of patterns
with four training examples each (see Figure 3a). Fach pattern is described by
the unary features “length” and “orientation”, and the binary features “distance of
line centers” and “intersection angle”. The line patterns are simplified versions of
paiterns found in geomagnetic data that are used to infer the presence of certain
metals or minerals.

CRG was run with maximum rule length set to moxzlevel = 5 (i.e. rules up to
the form of UBUBUare being generated), and it produced 35 rules, 3 U-rules, 18
UB-rules, 2 UBU-rules, and 12 UBUB-rules.

At recognition time, a montage of patterns was presented (see Figure 3b), and
the patterns were identified and classified as described below, producing the clas-
sification result shown in Figure 3d. Pattern identification and classification was
achieved using the following steps:

1) Unary features are extracted for all scene parts (lines), and binary features
are extracted for all adjacent scene parts, i.e. pairs whose center distance does not
exceed a given limit. The adjacency graph is shown in Figure 3¢, where dots indicate
the position of the line centers, and adjacent paftern parts (lines) are conmected.

2} Given the adjacency graph, all non-cyelic paths up to a certain length { are ex-
tracted, where | < mazlevel. These paths, termed chains, constitute the basic units
for pattern classification. A chain is denoted by S =< p;,p;, ..., pn > where each p;
denotes a pattern part. For some chains, all parts belong to a single learned pattern,
but other chains are likely to cross the “boundary” between different patterns.

3) Each chain S =< p;, pj, ..., pn > 18 now classified using the classification rules
produced by CRG. Depending on the unary and binary feature states, a chain may
or may not instantiate one (or more) classification rules. In the former case, rule
instantiation may be partial (with a non-unique evidence vector E(S)), or complete

(with H[E(S)] = 0). As discussed above, the evidence vector for each rule instanti-
ation is derived from the empirical class frequencies of the training examples.

4) The evidence vectors of all chains < p;,,pjy, .o, Pn >y < Pigs Pias --r P >, €lC.,
terminating in p,, determine the classification of part p,. Some of these evidence
vectors may be mutually incompatible and others may be non-unique (through par-
tial rule instantiation}). Here, we have studied two ways of combining the evidence
vectors, a winner-take-all solution and a relaxation labeling solution.

Implementation of the winner-take-all (WTA) solution is straightforward. The
evidence vectors of all chains terminating in p, are averaged to give Eqy (pn), and
the most likely class label is enacted. However, the WTA solution does not take into
account that, for a chain § =< p;, p;, ..., pn >, the average evidence vectors Ey,{p;),
E'av(pj), ...,E'm,(n) may be very different and possibly incompatible. If they are
very different, it is plausible to assume that the chain S is “crossing” boundaries
between different patterns/objects. In this case, the chain and its evidence vectors
should be disregarded for the identification and classification of scene parts.

This is achieved in the relaxation labeling (RI) solution, where evidence vec-
tors are weighted according to intra-chain compatibility. Specifically, the RL solution
is given by

Efp)y=3] > Ep)C(pi,pn) (3)

S=<pi.. P>

where E*(p;) corresponds to the evidence vector of p; at iteration ¢, with E0 (p:) =
Eqeu(p;). C(pi,pn) corresponds to the compatibility between parts p; and p,,, and &
is the logistic function

®(z) = (1 + exp[-20(z — 0.5)]} L. (4)

Further, we have encoded the compatibility function in terms of the scalar product
between the evidence vectors of parts p; and p,,

Clpi,pn) = E(ps) - E(pa)- (3)

For identical evidence vectors E(p;) and E(py), C{pi, pn) = 1, and for incompatible
evidence vectors, for example E(p;) = (1,0,0] and E{p,) = [0,1,0], C{ps, pn) = 0.

Compatibility of evidence vectors is a weak constraint for updating the evid-
ence vectors of each part and it may even have an adverse effect if the adjacency
graph is complete. Much stronger constraints can be derived from, for example,
the label-compatibilities between pattern parts, or from pose information in the case
of 3D object recognition. The usefulness of such information is, however, pattern
dependent and considered beyond the scope of the present paper. In any case, for
the simple patterns shown in Figure 3, and the low connectivity of the adjacency
graphs of the montages, the relaxation method outlined here proved to be sufficient
to obtain perfect part labeling. The results obtained using this technique are shown
in Figure 3d.

4 3D Object Recognition using Range Data
4.1 Encoding of Object Surfaces

In the previous Section, we have illustrated the CRG method with a recognition
problem involving 2D line patterns. For 3D recognition systems, the input can
consist of intensity (brightness and/or color) data generated by a video camera, or
of range (depth) data. The latter can be sensed by active vision (laser range finders

or strip lighting devices) or can, for example, consist of sparse depth maps produced
by Shape-from-X methods.

We deal with range data, and for the purpose of this paper, we do not deal
with this initial sensing problem and simply assume that we already have view-
dependent range (depth) maps of 3D objects. However, as in the 2D case, we
deal with the recognition of isolated objects and objects in scenes. One of the
main reasons for using such view-dependent data formats is that the computations
of surface curvatures, or pixel labels in general, are restricted to what is visible.
That is, there exists full view-independent surface information that is not visible:
for example, the “inside regions” of some concave objects. The additional benefit
of computing curvatures from such a data format (Monge patch data of the form
{z,y,2{z,y)) is that more standard signal processing techniques can be used to
regularize the evaluation of derivatives, etc. (see [17} for more details). What is
important, however, is that we have computed object unary and binary part features
with respect to the full 3D properties of the range data. That is, questions as to
the benefits and deficits of view-dependent versus view-independent representations
involves evaluations of both the data format and the types of features to be computed.

Full view-independent representations involve complete 3D descriptions of sur-
face patches and the fact that these patch features are evaluated from view-dependent
aspects is actually not the essential issue involved. For example, computing surface
features that are invariant to rigid motions is as important to a “view-independent”
representation as that of using full 3D CAD models. That is, for recognition pur-
poses, it is the invariance of the representation that determines the degree of invari-
ance in the models as much as the types of data inputs used. For these reasons,
we have adhered to the view-dependent format. Further, the issue of the minimum
number of views required to obtain correct identification of objects invariant to view
is not so much a problem of the data formats but a problem of the types of object
classes involved. For example, we only need one view of an ant and one of an
elephant for fully invariant and correct 2-object classification performancel

Over the past decade, a variety of techniques have been developed for the regis-
tration of surface “shape” that produce representations which are invariant to rigid
motions - a condition of central importance to robust Object Recognition Systems
(ORS). Principal curvatures, Mean (H) and Gaussian (K) curvatures satisfy these
conditions [18] though there are many different methods available for computing
them. H and K are defined by:

Efm; + fyy + fmmf;‘ + fyyfa? - Qf:':-fyfmﬂ

H= :
2 L+ 12+ 1)

(6)

and oo)
_ Jaalyy — Jg
K=Grarpme ™

for the Monge patch (view-dependent depth map) case where f,, refers to partial
differentiation of f with respect to v (v =) and v {v =) and f(z,y) to the
view-dependent range image.

Such computations require initial surface smoothing which is usually accom-
plished by fitting quadratic surfaces [19] or by low-pass filtering (surface blurring),
after which partial derivatives are computed. Using this latter form of smoothing
we have also used Fourier methods to compute the derivatives. That is, from the
Differentiation Theorem [20] the partial derivatives of the function f(z,y) (repres-
enting, in this case the Monge patch surface model (z,y, z = f(z,%))) is determined
(for each variable denoted by x) by:

ef ,
S = Pl (@) F) ®)

where F' corresponds to the Fourter transform of f and F~! to the inverse Fourier
transform. That is, to partially differentiate an image f(=x,y) with respect to z, its
Fourier transform is multiplied by the real (quadratic, second order of differentiation)
or imaginary (linear, first order) ramp function (4u)" - resulting in even and odd
bandpass filkers. The benefits of such methods He in the degree of “support” for
computing fa, fy, feys foe, foy - the components of H and K. Furthermore, one of the
main sources of “noise” in computing # and K lies in the division of images having
different differential (bandpass) information - particularly in the regions of curvature
zero-crossings. Our solution has been to compute zero-crossings, or segmentation,
directly from the determinant of the Hessian (“shape” operator), the numerator of
K):

S(2,9) = foefyy — a:zy (%)

segmenting the surface into convex, concave and planar regions. We then compute
the complete H and K values within the resultant regions (see the following Section)
using the low-pass filtering in conjunction with the spectral method for the compu-
tation of derivatives (see (8) above). The net result is to produce estimates of H
and K with respect to a “scale” defined by the low-pass filter.

4.2 Segmentation

The issue of segmentation for ORS’s, and for range data specifically, has received a
good deal of attention in recent years. Common to most approaches is the devel-
opment of surface part clustering in terms of similarities in surface point position,
normals, or curvature information or surface curve fitting parameters. Segmentation,
in these low-level terms does not gnarantee the derivation of “parts” that are consist-
ent with, for example, “model parts” defined by other processes, and some attempts
have been made to split and merge such initially segmented regions, consistent with
known patch feature bounds of the object parts in the database [7].

An alternative way of guaranteeing compatibility between model and test data
parts is to use a segmentation procedure that is guaranteed to apply equally to both
domains and uses features that are invariant to the parameterization of the surface.
Fortunately, Mean () and Gaussian (K} curvatures satisfy these conditions. We
have chosen to use zerc-crossings of the determinant of the Hessian {see (9) above)
as our segmentation procedure - which determines convex, concave and planar re-
gions in a way which minimizes noise amplification that typically occurs when full
H andfor K zero-crossings are evaluated. Such a segmentation procedure applies
equally to models and data and is invariant to rigid motions. As mentioned above,
we still use full H and K values to characterize each such region and so the initial
segmentation is simply an adaptive data reduction method to package surface parts
in ways that can be compared across data and models.

The major problem with using zero-crossings lies in determining what constitutes
“gero”. The problem of thresholds for zero-crossings has recently been discussed
[21]. Here, we have used a straight forward iraining approach where the threshold
was determined from the maximum non-zero value of the Hessian’s response (9) to
the known planar background, assuming that scene objects are in front of a planar
background [22].

4.3 Feature Extraction

In ORS, the purpose of segmentation is to enable an efficient data structure for the
definition of models by the properties of surface patches and their relational features.
Such features need to optimize two somewhat contradictory goals: invariance and
uniqueness. The former refers to the need to represent models in ways which are

| Predicate | Type | Computation

Unary Size U.D.1 Area

Span U.D.2 31} Spanning distance (Max)
U.B.1 Perimeter

U.B.2 mean Curvature

U.B.3 mean torsion

B-type | B.B.1 length of jumps

B.B.2 length of creases

Binary | Jumpgap | B.D.1 bounding distance

B.1D.2 Centroid distance

B.D.3 Maxdistance

B-angle | B.A.1 differences in normal angles
B.A .2 average bounding angle
between surfaces

N-angle | B.A.3 normal angle differences

Table 1: Typical Unary and Binary Surface Features

invariant to rigid motions, pose, etc., while the latter refers to the development
of representations which uniquely define the model. For example, H and K are
invariant to rigid motions but are only unique up to the general type of surface and do
not uniquely define it. Such uniqueness comes from the Gauss-Weingarten equations
with the Mainardi-Codazzi compatibility equations defining the constraints on the
differential (tensor) operators [18].

Model surface features are usually of two generic forms [22]. Unary features refer
typically to (local) surface patch properties (such as curvatures), global patch prop-
erties (such as areas), or to to properties of patch boundaries (such as perimeter).
Binary features typically capture part relationships such as distances, angles, and
also include boundary relationships (see below). Typical examples of all feature
types are shown in Table 1 {center colummn) and those used in this implementa-
tion are shown in Table 1 (right column). The right-hand column groups features
into different types, unary curvatures {U.C), unary distance (U.D), unary boundary
{(U.B) and binary boundary (B.B), binary distance (B.D) and binary angle (B.A).

We have employed statistics of the pixel (“local”) Mean and Gaussian curvatures
of each patch. These features define surface shape characteristics that are invariant
to rigid motions. Such measures eliminate the need for less quantitative features,
such as “sense” which defines only the type of surface shape. Such “local” unary
features are view-independent and they enable the identification of a part when only
a section of it is visible - given that the section is representative of the part shape
(i.e., if it is an unbiased sample). “Global” unary features are lesg invariant since
they are computed over a full patch and so are subject to, for example, self-occlusion
for different views. We have, however, included the areas, perimeters and spanning
distances as already used in current implementations - though area is directly related
to the average of the Ganssian curvature. We have defined part boundary (edge)
properties by their associated curvature and torsion statistics. In particular, the
torsion statistic defines the degree to which the bounding contours deviate from
planarity and, from the Serret-Frenet equations, these features uniquely define a
contour in 3D - invariant to rigid motions. Here we have computed boundary contour
curvatures(x) and torsion{r) statistics by their finite different forms. Curvature is
defined by

Figure 4: Rendered view of each of the seven objects used in the 3D object recog-
nition experiment.

K(s) = (10)

where
ts(8) = (:I:S(S +1) — z4(s), yS(S + 1) - yS(S)rZS(S + 1) - 35(3))
and
Xs(s) ={(z(s +1) —z(s),y(s +1) — y(s), 2(s + 1) — z(s))

for s being the parameter of the curve (contour) equation
X(s) = (z(s),y(s), 2(s)).

Torsion is defined by

7(8) = —by(3) - n{s) (i)

where
b(s) = 7(s) x n{s)

with x corresponding to vector (cross) product, and

n(s) = k(s)/ | b(s} |

corresponding to the normal to the curve at s.

We have used the binary features total lengths of jumps and creases between
shared contours, consistent with recent object recognition systems (for example,
[5]). Such continuous versions of these binary features are more suitable for a feature
space (vector space) representation and for the rule generation (clustering) procedure
proposed in the current paper.

4.4 Learning Structural Descriptions of Objects

In the 3D object recognition example, seven synthetic objects were learned at train-
ing time. Each object was presented in isolation and from 20 different views (equally
spaced over three Euler angles). Examples views of each object are shown in Fig-
ure 4.

Figure 5: Two different montages of synthetic objects (left and right panel). (Top)
Range images of two scenes used to test object identification and classification.
{Middle) Segmented depth map regions (defined by different gray levels) from the
zero-crossings of Gaussian curvature. (Bottom) Region classification for the two
montages. Different grey levels define different class labels.

Analysis of the depth maps for each object and view proceeded as described in
the Sections 4.1 - 4.3, resulting, for each view, in a set of depth map regions that
were described by the unary and binary features shown in Table 1.

These rules were then used to classify montages of objects such as shown in
Figure 5. Here, the top row shows the depth maps of two montages, the middle
row shows the segmented depth map regions, and the bottom row shows the region
classifications. For the montage on the left, object overlap is relatively small, and
for the montage on the right it is substantial. Chain analysis and part classification
proceeded as described in Section 3, both for the WTA-scheme and the RL scheme.

Number | WTA scheme | RL scheme
of parts
left scene 82 76 78
right scene 63 53 56

Table 2: Number of correct region classifications for two scenes in Pigure 5, using
the WTA-scheme and the RL-scheme.

In the RL scheme, relaxation was run for 20 iterations, followed by a WTA iteration
on the final evidence vectors to produce a unique classification for each region. A
summary of the correct region classification, for both schemes and for both the left
and right montage in Figure 5, is given in Table 2. From the results in this Table,
as well as from the classification map in Figure 5, it is clear the the rules produced
by CRG are capable of classifying correctly a majority of object regions.

5 3D Object Recognition using Intensity Data

The blocks example presented in this Section counsists of various configurations of
colored toy blocks. The configurations are learned in isolation (see Figure 6} and
have to be identified in more complex arrangements (see Figure 7). The training
set consisted of 5 classes of block configurations, each with three training examples,
and the test arrangements consisted of up to 20 blocks.

Images of the training and test scenes were captured with a color camera. Prepro-
cessing was fairly simple, consisting of a segmentation stage and a feature ertraction
stage. Segmentation was achieved using a form of K-means clustering (minimizing
within-cluster variance in feature space) on position (z,y) and color (r, g,b) attrib-
utes [23]. For the resulting clusters, small clusters were merged with larger neighbor
clusters in order to eliminate spurious image regions. Given the rich image inform-
ation, it is not surprising that the resulting image regions correspond fairly well to
the individual blocks.

In the feature exiraction stage the following unary features were extracted for
each image region: size (in pixels), compactness (perimeter?/area), and the nor-
malized color signals B/(R+ G + B), G/{R+ G + B), and Bf(R+ G + B). For
pairs of image regions the following binary features were computed: absolute dis-
tance of region centers, minimum distance between the regions, distance of region
centers normalized by the sum of the region areas, and length of shared boundaries
normalized by total boundary length.

For the training data, CRG analyzed 276 different paths of pattern parts and
produced 32 rules: 9 U-rules, 4 UB-rules, 12 UBU-rules, 3 UBUB-rules, and 4
UBUBU -rules. From the distribution of rule types, it is evident that CRG used
predominantly unary features for classification. Given the fact that CRG has a
strong tendency to produce shallow cluster trees and short rules (see Section 2.2),
and given the fact that the unary features are quite diagnostic (see Figure 6), this
result is not surprising. However, each unary and binary feature was used in at
least some of the classification rules.

Classification performance was tested with several complex configurations of
block patterns, two of which are shown in Figure 7, together with the classification
results. Classification proceeded as described in Section 3, using the chain analysis
and relaxation labeling solution. For both scenes, all parts {11 in Figure 7a, 17
in Figure 7b) were classified correctly with the exception of a single part from the
class-4 configuration (see Figures 7c and 7d).

Figure 6: Images of five classes of toy block configurations with three views each.
The image parts are described by the unary features size, eccentricity and the three
normalized color coordinates. Pairs of image parts are described by the binary fea-
tures of midpoint distance, area-normalized midpoint distance, minimum distance
and normalized shared boundary length.

For comparison purposes, we have analyzed the block example using classical
decision trees [24]. In the first analysis, each image part P of the training and
test images was described by 13 features. These features consisted of the five unary
features of P (see above), the four binary features (see above) of the relation between
P and its closest neighbor, and another four binary features of the relation between
P and its second-closest neighbor. For the class-1 cases which consisted of two parts
only, the feature values for the second binary relation were set to “unknown”. A
decision tree was generated using C4.5 with defanlt parameters [24], and the resulting
tree was used to classify all parts of the test scenes in Figure 7. In each of the two
scenes, 3 parts were misclassified. The good performance obtained with C4.5 is
consistent with the observation that the use of higher-order relational information
does not seem to be crucial for successful classification of this data set.

In this first analysis, features of all UBB-triples {(unary features and binary

Figure 7: Two block scenes and their classifications. (a} Block scene consisting of 11
blocks corresponding to examples of classes 2, 3, and 4. (b) Block scene consisting
of 17 blocks corresponding to examples of all classes. {c) Classification result for
block scene in (a) with region labels corresponding to classes. (d) Classification
result for block scene in {b) with region labels corresponding to classes.

features of relations with two other parts) were used for classification. A second
analysis, using UBU-triples {with 14 features: the same five unary features of all
pairs of parts, as well as the same four binary features of their relation) was per-
formed, but the results cannot be interpreted as easily. For the scene in Figure Ta,
33 out of 110 UBU-triples or 30% were misclassified, and for the scene in Figure 7b
103 out of 272 UBU-triples or 37.8% were misclassified. One reason for the error
rate being so high is the fact that no analysis corresponding to the chain analysis
described in Section 3 was performed with the C4.5 results. However, the error rates
seem to be too high to be corrected using the relaxation scheme proposed there.

A general point is, however, more important. The CRG method generates rules
of {minimal) variable length optimized for a given training set, whereas the decision
tree (C4.5) fizes the dimensionality of the feature space and rule length. The choice
of UB B-triples for the block example lead to a C4.5 performance that was essentially
the same as that of CRG, but for the UBU-triples C4.5 performance was much worse.
This choice has to be done a priori whereas it is adjusted dynamically in the CRG
method.

6 Discussion

CRG develops structural descriptions of patterns in the form of decision trees on
attribute bounds of ordered predicates (see Figure 2). It is thus useful to compare it
with other techniques from Machine Learning which attain similar ends symbolically.

CRG shares with ID3 / C4.5 [25, 24], and related techniques, similar methods for
the search and expansion of decision trees. However, these latter technigues were not
designed to generate rules satisfying label compatibility between unary and binary
predicates. CRG, on the other hand, is explicitly designed to develop rules for
unique identification of classes with respect to their “structural” (i.e. linked unary
and binary feature) representation. The application of C4.5 to the block example
in the previous Section was therefore somewhat misleading, in the sense that label-
compatible data were generated beforehand.

In decision trees, features or attributes are analyzed within a single feature space,
independent of their relationships or arities, and no preferential order is imposed
on the features. In contrast, the CRG method generates conditional features spaces
as required, and it defines a preferential ordering on attributes in the sense that,
for example, a split of a U-feature is preferred over a split of UBU-features. This
preferential order leads to the generation of shallow cluster trees and short rules, as
discussed in the previous Sections.

Decision trees operate on a fixed path length (for example, the UBB- or UBU-
triples in the block example) and thus force, a priori, the choice of relational struc-
tures to be analyzed. CRQG, on the other hand, has variable length path expansion
determined by the number of parts and their relations that are required to uniquely
define patterns. Consequently, CRG is superior to classic decision trees when clas-
sification relies on relational information and does so to different degrees for dif-
ferent examples or classes. Under these circumstances one would be forced to use
high-dimensional features spaces with classical decision trees, whereas CRG would
generate minimal depth trees. Furthermore, generating minimum depth trees is of
crucial importance since the number of paths grows exponentially with path length.

In summary on can say the classical decision trees are ettribute-indered in the
sense that various levels in the tree define different attributes and the nodes define
different, attribute states. To this decision tree structure, CRG adds another layer,
a part-indexed tree of features spaces, each with its own attribute-indexed decision
tree. With this tree of decision trees, CRG imposes both a limit on the number of
attributes that are being considered, and an ordering on the evaluation of attributes.

CRG uses linearly separable attribute bounds for rules or generalizations. Since
CRG is part-indexed and not explicitly attribute-indexed, this is not required but
has been used in this implementation for comparison purposes. Finally, the compu-
tational complexity of CRG is, in principle, identical to decision trees insofar as the
attribute testing and splitting procedures are similar. However, the unique relational
aspects of CRG may or may not result in more efficient learning, depending on the
type of learning context.

Recently, Quinlan [26] and Muggleton and Buntine [27] have investigated general
methods for learning symbolic relational structures in the form of Horn clauses in
the following sense. In FOIL, [26] considers the problem of learning, from positive
examples (closed world) or positive and negative examples, conjunctions of literals
that satisfy

C« L1 g eey Lm

where (' would correspond, in our case, to a class label. FOIL solves such problems
by expanding the literals - adding predicates and their variables - to the right-hand-
side to maximize the covering of positive instances and to minimize inclusion of
negative ones. In this framework, then, CRG is also concerned with generating
similar class descriptions of the specific forms:

Cl! « UYX),BMX,Y),UXY),B(Y, 2),UZ), ...
O« UY(X),BV(X,Y),UNY), BXY, 2),U%(Z), .
ClL, « UNX),B\(X,Y),U*Y),BXY,Z),UYZ), ..
Cor « UMX),B(X,Y),U(¥), BA(Y, 2),U(Z), ..
However, CRG differs significantly from FOIL in the following ways:
1) the choice of unary U-rules and binary B-rules as bounded attribute (feature)

states, is determined within continuous unary and binary feature spaces;
2) the ordering of literals must be satisfied in the rule generation;

3) the search technique uses backtracking and recursive splitting and
4} the resultant rules are not only Horn clauses but each literal indezes bounded
regions in the associated feature space (as shown in Figure 2).

The CRG method is an example of the general solution to complex pattern
recognition problems involving the generation of rules, as bounded predicate Horn
Clauses, which are linked together in ways that determine “structure” uniquely
enough to identify classes but enable generalization to tolerate distortions. Both
aims, uniqueness and generalization, are not explicitly guaranteed in other methods,
such as neural networks or decision trees. Further, uniqueness and generalization
constitute the equivalent of a “cost” function in CRG, and the search technique has
been developed to satisfy these constraints.

Finally, CRG raises the question as to what really is a “structural description”
of a pattern. CRG simply generates conditional rules that combine an attempt
to generalize the pattern definitions in terms of feature bounds and to restrict the
description lengths as much as possible. For complex and highly variable training
patterns, CRG can generate a large number of rules which can be thought of as a
set of equivalent descriptions of the pattern structure. It is possible to determine
the more frequently occurring paths and associated feature bounds from the cluster
tree, if the notion of “commonness” is deemed necessary for a structural description.
However, this may not really be a meaningful definition of structure. Rather than
producing a singular rule structure, a “structural description” is defined by a set of
rules that CRG generates from a set of training patterns.

CRG offers a way for automatically generating structural descriptions which
enable rapid tree-based search techniques in complex scene data. For this reason it
provides a most useful approach to problems in target detection, surveillance and
security applications where not all objects in the scene are required to be identified
but those which are also require robust description and rapid detection.

Acknowledgments

TMC was supported by a grant from the Australian Research Committee. WI'B was
supported by grant OGP38251 from the Canadian Natural Sciences and Engineering
Council.

References

[1] R. E. Tarjan and A. E. Trojanowski, “Finding a maximum independent. set,”
STAM Journal of Computing, vol. 6, pp. 537-546, 1977.

[2] D. Ballard and C. Brown, Computer Vision. Englewood Cliffs, NJ: Prentice-
Hall, 1982,

[3] W. E. L. Grimson, Object Recognition by Computer. Cambridge, MA: MIT
Presgs, 1990.

[4] P.Flynn and A. K. Jain, “3D object recognition using invariant feature indexing
of interpretation tables,” Computer Vision, Graphics, and Image Processing,
vol. 55, pp. 119-129, 1992,

[5] A. K. Jain and D. Hoffman, “Evidence-based recognition of objects,” [EFE
Trensactions on Pattern Analysis and Machine Intelligence, vol. 10, pp. 783~
802, 1988,

[6] T. Caelli and A. Pennington, “An improved rule generation method for
evidence-based classification systems,” Pattern Recognition, vol. 26, pp. 733~
740, 1993.

[7] P. Flynn and A. K. Jain, “Three-dimensional object recognition,” in Handbook
of Paitern Recognition and Image Processing, Volume 2: Computler Vision
(T. Y. Young, ed.}, New York, NY: Academic Press, 1993,

[8} K. Ikeuchi and T. Kanade, “Automatic generation of object recognition pro-
grams,” Proceeding of the IEEE, vol. 76, pp. 1016-1035, 1988.

[9] R. C. Bolles and P. Horaud, “A three-dimensional part orientation system,”
The International Journal of Robotics Research, vol. 5, pp. 3-26, 1986.

[10] M. A. Fischler and R. A. Elschlager, “The representation and matching of
pictorial structures,” IEEE Transactions on Computing, vol. 22, pp. 67-92,
1973.

[11] R. Mohan and R. Nevatia, “Using perceptual organization to extract 3-d struc-
tures,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 11, pp. 1121-1139, 1989.

[12] D. G. Lowe, “Three-dimensional object recognition from single two-dimensional
images,” Artificial Intelligence, vol. 31, pp. 355-395, 1987.

[13] R. Michalski and R. E. Stepp, “Automated construction of classifications: Con-
ceptual clustering versus numerical taxonomy,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 5, pp. 396-409, 1983.

[14] K. C. C. Chan, A. K. Wong, and D. K. Y. Chiu, “Learning sequential patterns
for probabilistic inductive prediction,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 24, pp. 1532-1547, 1094,

[15] W. F. Bischof and T. Caelli, “Learning structural descriptions of patierns: A
new technique for conditional clustering and rule generation,” Pattern Recog-
nition, vol. 27, pp. 1231-1248, 1994,

[16] U. Fayyad and K. Trani, “On the handling of continuous-valued attributes in
decision tree generation,” Machine Learning, vol. 8, pp. 87-102, 1992.

[17] E. Barth, T. Caelli, and C. Zetsche, “Image encoding, labelling and recon-
struction from differential geometry,” Computer Vision, Graphics and Image
Processing, vol. 55, pp. 428-448, 1993,

(18] M. D. Carmo, Differential geometry of Curves and Surfaces. Englewood Cliffs,
NJ: Prentice Hall, 1976.

[19] P. Best and R. Jain, “Invariant surface characteristics for 3D object recognition
in range images,” Computer Vision, Graphics end Imaoge Processing, vol. 33,
pp. 33-80, 1986.

[20] A. Rosenfeld and A. Kak, Digital Picture Processing. New York, NY: Academic
Press, 1982.

i21] N. Yokoya and M. Levine, “Range image segmentation based on differential
geometry: A hybrid approach,” IEEE Transactions on Paitern Analysis and
Machine Intelligence, vol. 11, pp. 643-649, 1989. '

[22] T. Caelli and A. Dreter, “Variations on the evidenced-based object recognition
theme,” Pattern Recognition, vol. 27, pp. 185-204, 1094,

[23] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood Cliffs,
NJ: Prentice Hall, 1988,

[24] J. R. Quinlan, C4.5 Programs for Machine Learning. San Mateo, CA: Morgan
Kaunfmann, 1993.

[25] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81
106, 1986.

[26] J. R. Quinlan, “Learning logical definitions from relations,” Machine Learning,
vol. 5, pp. 239-266, 1990.

[27] S. Muggleton and W. Buntine, “Machine invention of first-order predicates by
inverting resolution,” in Proceedings of the Fifth International Conference on
Machine Learning, pp. 339-352, 1988.

[28] A. Pearce, T. Caelli, and W. F. Bischof, “Rulegraphs for graph matching in
pattern recognition,” Pattern Recognition, vol. 27, pp. 1231-1248, 1994,

