Lecture 25: Graph Algorithms
Agenda:

e Graph traversal — Depth-first search

e DFS application: finding biconnected components

Reading:

e Textbook pages 540 — 549, 558 — 559

Lecture 25: Graph Algorithms
Depth First Search (DFS):

e Input: simple undirected graph G = (V, E)

e Output: all vertices discovered (pick one vertex from each
component as the start vertex)

e Idea: to search deeper in the graph whenever possible ...

e Pseudocode (recursive version):

procedure DFS(G) x»*G = (V, F)
for each v €V do
c[v] < WHITE **unknown yet
p[v] <« NIL *x*predecessor

time «— O
for each v € V do
if c[v] = WHITE then
DFS-visit(v)

procedure DFS-visit(v) **any v €V

c[v] < GRAY **start discovering v
time <« time + 1
dtime[v] < time
for each u € Adj[v] do
if c[u] = WHITE then

plu] —wv

DFS-visit(u)
c[v] < BLACK *xfinished discovering
time <« time + 1
ftime[v] < time

Lecture 25: Graph Algorithms

DFS example:

o V= {17273747576}

E={{1,3},{1,5},{2,4},{2,5},{3,4},{3,5},{4,6}}
s=2

Adjacency lists:

oOuRWNH

AR NRLPW
NWPHPOIO
w o O

1 2 3 4 5 6 DFS-visit path
color W W W W W W
parent | NIL NIL NIL NIL NIL NIL
dtime | oo 00 00 00 00 00 initialization
ftime | 00 00 00 00 00
color G A% w W w W
parent | NIL NIL NIL NIL NIL NIL
dtime |1 00 00 fo'e) 00 00 DFS-visit (1)
ftime | o 00 00 (%) oo 00
color G W G w W W
parent | NIL NIL 1 NIL NIL NIL
dtime |1 00 2 00 00 00 DFS-visit(1-3)
ftime | 00 00 00 00 00
color G w G G w W
parent | NIL NIL 1 3 NIL NIL
dtime |1 00 2 3 00 00 DFS-visit(1-3-4)
ftime | o 00 00 (%) oo 00
color G G G G w W
parent | NIL 4 1 3 NIL NIL
dtime |1 4 2 3 00 00 DFS-visit (1-3-4-2)
ftime | 00 00 S 00 00
color | G G G G G wW
parent | NIL 4 1 3 2 NIL
dtime |1 4 2 3 5 oo | DFS-visit(1-3-4-2-5)
ftime | o 00 00 (%) oo 00
color G G G G B W
parent | NIL 4 1 3 2 NIL
dtime |1 4 2 3 5 0 DFS-visit(1-3-4-2-5)
ftime | 00 00 00 6 00
color G B G G B wW
parent | NIL 4 1 3 2 NIL
dtime |1 4 2 3 5 [e'e] DFS-visit (1-3-4-2)
ftime | o 7 00 0 6 o]
color G B G G B G
parent | NIL 4 1 3 2 4
dtime |1 4 2 3 5 8 DFS-visit (1-3-4-6)
ftime | 7 00 00 6 00
color G B G G B B
parent | NIL 4 1 3 2 4
dtime |1 4 2 3 5 8 DFS-visit (1-3-4-6)
ftime | o 7 00 00 6 9
color G B G B B B
parent | NIL 4 1 3 2 4
dtime |1 4 2 3 5 8 DFS-visit(1-3-4)
ftime | o 7 00 10 6 9
color G B B B B B
parent | NIL 4 1 3 2 4
dtime |1 4 2 3 5 8 DFS-visit (1-3)
ftime | o 7 11 10 6 9
color B B B B B B
parent | NIL 4 1 3 2 4
dtime | 1 4 2 3 5 8 DFS-visit (1)
ftime |12 7 11 10 6 9

Lecture 25: Graph Algorithms
DFS example:

e Adjacency lists:

QoRUNE
ArENNRPW
NWPHOIO
wo O

e DFS tree: [dtime,ftime]

Notes:

— the result would be a forest of rooted trees

— the root of each tree is up to the selection (ordering of
the vertices)

— parent of x is predecessor p[z]

— different orderings of adjacency lists might result in dif-
ferent trees

— nested structure of [dtime, ftime]
— they don't intersect each other

Lecture 25: Graph Algorithms

DFS analysis:
e n=[|V|, m=|[E]|
e Handshaking Lemma:) _ degree(v) =2m

e Analysis:

— each vertex is discovered exactly once (WHITE — GRAY
— BLACK)

each edge is examined exactly twice
— running time:
1. adjacency list representation:
O(n+2m) =0(n+m)
2. adjacency matrix representation:
O(n + n?) = 0(n?)
— Space complexity:
1. adjacency list representation:
O(n+m)

2. adjacency matrix representation:
O(n?)

Lecture 25: Graph Algorithms
Classifying graph edges with BFS/DFS:

e During the traversal, all vertices and edges are examined

e Given a BFS/DFS traversal forest:
— tree root — start vertex for that component
— tree edge — child discovered while processing the parent

— each edge in the original graph is examined twice

e Question:

Where are the other possible edges, besides tree edges 777

e Answer:

With respect to the traversal forest, categorize graph edges
by their first time encounter:

— tree edges

— back edges: to ancestor

— forward edges: to descendant

— Cross edges: to non-ancestor, non-descendant

Note: in undirected graphs, “back” = ‘“forward”

e Examples:

Lecture 25: Graph Algorithms

An example:

e Adjacency lists:

QORWONE
ArENNRPW
NWHOTO
wo o

e DFS tree (start vertex 1):

e BFS Tree (start vertex 2):

2

Lecture 25: Graph Algorithms
Properties of BFS/DFS:

e BFS:

— each graph edge connects two vertices with level-difference
<1

Proof.

— no back / forward edges

e DFS:

— each non-tree edge is a back edge
Proof.

— no forward edges
— NO Cross edges

— vertex processing time intervals [dtime[v], ftime[v]] and
[dtime[w], ftime[w]]:
[dtime[v], ftime[v]] C [dtime[w], ftime[w]] — v is a de-
scendant of w in the DFS forest
[dtime[v], ftime[v]] N [dtime[w], ftime[w]] = () — no ancestor-
descendant relationship between v and w
e BFS vertex order:

level-order of each tree in the BFS forest

e DFS vertex order:
pre-order of each tree in the DFS forest

e Some other vertex order associated with rooted trees:
— in-order (for binary trees only)

— post-order

Lecture 25: Graph Algorithms

Vertex order with respect to a binary rooted tree:

o TIree:

e \Vertex orders:

— level-order: level by level (each level: left to right)
(2747 57 37 67 1)

— pre-order: parent - child one - child two - .. .- last child
(2747 37 67 57 1)

— in-order: left child - parent - right child
(37 47 67 27 175)

— post-order: child one - child two - .. .- last child - parent
(37 6747 1757 2)

Lecture 25: Graph Algorithms

Biconnected component:

Definition — every pair of vertices are connected by two
vertex-disjoint paths

Cut vertex — its removal increases the number of connected
components

Fact: biconnected «<— no cut vertices

Biconnected component <= maximal connected subgraph
containing no cut vertex

In a DFS tree:
— root is a cut vertex iff it has > 2 child vertices

— any other vertex is a cut vertex iff vertices in the child
subtrees have no back edges to its proper ancestors

One simplest implementation (assuming connected):
1. try every vertex v as the start vertex and do the DFS

2. in the DFS tree, if degreeppq(v) > 1, decompose the
graph accordingly into degreep¢(v) subgraphs with only
one common vertex v

3. repeat on subgraphs until for every subgraph the DFS
tree with every possible start vertex has a root degree 1

Problem: too time consuming ©(n(n +m)) ...
Idea in finding biconnected components via DFS tree

— (©(n+m)):

for each vertex v, and each of its child w, keep track of furthest
back edge from the w-subtree (detail next lecture)

10

Lecture 25: Graph Algorithms

Have you understood the lecture contents?

well ok not-at-all topic

depth first search execution
depth first search analysis
graph edge categorization
BFS/DFS vertex order

biconnected component & cut vertex

O O o o o o
O O o o o o
O O o o o o0

one simplest implementation

11

