
Lecture 25: Graph Algorithms

Agenda:

• Graph traversal — Depth-first search

• DFS application: finding biconnected components

Reading:

• Textbook pages 540 – 549, 558 – 559

1

Lecture 25: Graph Algorithms

Depth First Search (DFS):

• Input: simple undirected graph G = (V, E)

• Output: all vertices discovered (pick one vertex from each
component as the start vertex)

• Idea: to search deeper in the graph whenever possible ...

• Pseudocode (recursive version):

procedure DFS(G) **G = (V, E)

for each v ∈ V do
c[v]← WHITE **unknown yet
p[v]← NIL **predecessor

time ← 0
for each v ∈ V do

if c[v] = WHITE then
DFS-visit(v)

procedure DFS-visit(v) **any v ∈ V

c[v]← GRAY **start discovering v
time ← time + 1
dtime[v]← time
for each u ∈ Adj[v] do

if c[u] = WHITE then
p[u]← v
DFS-visit(u)

c[v]← BLACK **finished discovering
time ← time + 1
ftime[v]← time

2

Lecture 25: Graph Algorithms

DFS example:

• V = {1,2,3,4,5,6}
E = {{1,3}, {1,5}, {2,4}, {2,5}, {3,4}, {3,5}, {4,6}}
s = 2

mx1
�

�
�

�
�

�

A
A
A
A
A
Ax3 x5

x4
�

�
�

�
�

�

x2

x6

Adjacency lists:

1: 3 5
2: 4 5
3: 1 4 5
4: 2 3 6
5: 1 2 3
6: 4

3

1 2 3 4 5 6 DFS-visit path
color W W W W W W
parent NIL NIL NIL NIL NIL NIL
dtime ∞ ∞ ∞ ∞ ∞ ∞ initialization

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G W W W W W
parent NIL NIL NIL NIL NIL NIL
dtime 1 ∞ ∞ ∞ ∞ ∞ DFS-visit(1)

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G W G W W W
parent NIL NIL 1 NIL NIL NIL
dtime 1 ∞ 2 ∞ ∞ ∞ DFS-visit(1-3)

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G W G G W W
parent NIL NIL 1 3 NIL NIL
dtime 1 ∞ 2 3 ∞ ∞ DFS-visit(1-3-4)

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G G G G W W
parent NIL 4 1 3 NIL NIL
dtime 1 4 2 3 ∞ ∞ DFS-visit(1-3-4-2)

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G G G G G W
parent NIL 4 1 3 2 NIL
dtime 1 4 2 3 5 ∞ DFS-visit(1-3-4-2-5)

ftime ∞ ∞ ∞ ∞ ∞ ∞
color G G G G B W
parent NIL 4 1 3 2 NIL
dtime 1 4 2 3 5 ∞ DFS-visit(1-3-4-2-5)

ftime ∞ ∞ ∞ ∞ 6 ∞
color G B G G B W
parent NIL 4 1 3 2 NIL
dtime 1 4 2 3 5 ∞ DFS-visit(1-3-4-2)

ftime ∞ 7 ∞ ∞ 6 ∞
color G B G G B G
parent NIL 4 1 3 2 4
dtime 1 4 2 3 5 8 DFS-visit(1-3-4-6)

ftime ∞ 7 ∞ ∞ 6 ∞
color G B G G B B
parent NIL 4 1 3 2 4
dtime 1 4 2 3 5 8 DFS-visit(1-3-4-6)

ftime ∞ 7 ∞ ∞ 6 9
color G B G B B B
parent NIL 4 1 3 2 4
dtime 1 4 2 3 5 8 DFS-visit(1-3-4)

ftime ∞ 7 ∞ 10 6 9
color G B B B B B
parent NIL 4 1 3 2 4
dtime 1 4 2 3 5 8 DFS-visit(1-3)

ftime ∞ 7 11 10 6 9
color B B B B B B
parent NIL 4 1 3 2 4
dtime 1 4 2 3 5 8 DFS-visit(1)

ftime 12 7 11 10 6 9

Lecture 25: Graph Algorithms

DFS example:

• Adjacency lists:

1: 3 5
2: 4 5
3: 1 4 5
4: 2 3 6
5: 1 2 3
6: 4

• DFS tree: [dtime, ftime]

x 1: [1, 12]
�

�
�x 3: [2, 11]

�
�

�x4: [3, 10]
�

�
�x
2: [4, 7]�

�
�x

5: [5, 6]

@
@

@x 6: [8, 9]

Notes:

– the result would be a forest of rooted trees

– the root of each tree is up to the selection (ordering of
the vertices)

– parent of x is predecessor p[x]

– different orderings of adjacency lists might result in dif-
ferent trees

– nested structure of [dtime, ftime]

— they don’t intersect each other

4

Lecture 25: Graph Algorithms

DFS analysis:

• n = |V |, m = |E|

• Handshaking Lemma:
∑

v∈V
degree(v) = 2m

• Analysis:

– each vertex is discovered exactly once (WHITE → GRAY
→ BLACK)

each edge is examined exactly twice

– running time:

1. adjacency list representation:

Θ(n + 2m) = Θ(n + m)

2. adjacency matrix representation:

Θ(n + n2) = Θ(n2)

– space complexity:

1. adjacency list representation:

Θ(n + m)

2. adjacency matrix representation:

Θ(n2)

5

Lecture 25: Graph Algorithms

Classifying graph edges with BFS/DFS:

• During the traversal, all vertices and edges are examined

• Given a BFS/DFS traversal forest:

– tree root — start vertex for that component

– tree edge — child discovered while processing the parent

– each edge in the original graph is examined twice

• Question:

Where are the other possible edges, besides tree edges ???

• Answer:

With respect to the traversal forest, categorize graph edges
by their first time encounter:

– tree edges

– back edges: to ancestor

– forward edges: to descendant

– cross edges: to non-ancestor, non-descendant

Note: in undirected graphs, “back” = “forward”

• Examples:

6

Lecture 25: Graph Algorithms

An example:

• Adjacency lists:

1: 3 5
2: 4 5
3: 1 4 5
4: 2 3 6
5: 1 2 3
6: 4

• DFS tree (start vertex 1):

x 1
�

�
�x 3

�
�

�x4
�

�
�x
2�

�
�x

5

@
@

@x6

• BFS Tree (start vertex 2):

x2
�

�
�

�
�

�

@
@

@
@

@
@x4 x5

�
�

�
�

�
�

A
A
A
A
A
Ax3 x6

�
�

�
�

�
�x1

7

Lecture 25: Graph Algorithms

Properties of BFS/DFS:

• BFS:

– each graph edge connects two vertices with level-difference
≤ 1

Proof.

– no back / forward edges

• DFS:

– each non-tree edge is a back edge

Proof.

– no forward edges

– no cross edges

– vertex processing time intervals [dtime[v], ftime[v]] and
[dtime[w], ftime[w]]:

[dtime[v], ftime[v]] ⊂ [dtime[w], ftime[w]] — v is a de-
scendant of w in the DFS forest

[dtime[v], ftime[v]] ∩ [dtime[w], ftime[w]] = ∅— no ancestor-
descendant relationship between v and w

• BFS vertex order:

level-order of each tree in the BFS forest

• DFS vertex order:

pre-order of each tree in the DFS forest

• Some other vertex order associated with rooted trees:

– in-order (for binary trees only)

– post-order

8

Lecture 25: Graph Algorithms

Vertex order with respect to a binary rooted tree:

• Tree:

x2
�

�
�

�
�

�

@
@

@
@

@
@x4 x5

�
�

�
�

�
�

A
A
A
A
A
Ax3 x6

�
�

�
�

�
�x1

• Vertex orders:

– level-order: level by level (each level: left to right)

(2,4,5,3,6,1)

– pre-order: parent - child one - child two - . . . - last child

(2,4,3,6,5,1)

– in-order: left child - parent - right child

(3,4,6,2,1,5)

– post-order: child one - child two - . . . - last child - parent

(3,6,4,1,5,2)

9

Lecture 25: Graph Algorithms

Biconnected component:

• Definition — every pair of vertices are connected by two
vertex-disjoint paths

• Cut vertex — its removal increases the number of connected
components

• Fact: biconnected ⇐⇒ no cut vertices

• Biconnected component ⇐⇒ maximal connected subgraph
containing no cut vertex

• In a DFS tree:

– root is a cut vertex iff it has ≥ 2 child vertices

– any other vertex is a cut vertex iff vertices in the child
subtrees have no back edges to its proper ancestors

• One simplest implementation (assuming connected):

1. try every vertex v as the start vertex and do the DFS

2. in the DFS tree, if degreeDFS(v) > 1, decompose the
graph accordingly into degreeDFS(v) subgraphs with only
one common vertex v

3. repeat on subgraphs until for every subgraph the DFS
tree with every possible start vertex has a root degree 1

Problem: too time consuming Θ(n(n + m)) ...

• Idea in finding biconnected components via DFS tree

— (Θ(n + m)):

for each vertex v, and each of its child w, keep track of furthest
back edge from the w-subtree (detail next lecture)

10

Lecture 25: Graph Algorithms

Have you understood the lecture contents?

well ok not-at-all topic

� � � depth first search execution

� � � depth first search analysis

� � � graph edge categorization

� � � BFS/DFS vertex order

� � � biconnected component & cut vertex

� � � one simplest implementation

11

