
Lecture 13: Quick Sort

Agenda:

• Quicksort

– Algorithm recall

– Correctness

– WC running time (KC)

– BC running time (KC)

Reading:

• Textbook pages 149 – 153

1



Lecture 13: Quicksort

Another sorting meets divide-and-conquer (recall):

• The ideas:

– Pick one key (so far, the last key)

– Compare to others: partition into smaller and greater
sublists

– Recursively sort two sublists

• Pseudocode:

procedure Quicksort(A, p, r) **p 146

if p < r then
q ← Partition(A, p, r)
Quicksort(A, p, q − 1)
Quicksort(A, q + 1, r)

procedure Partition(A, p, r) **p 146
** A[r] is the key picked to do the partition

x← A[r]
i← p− 1
for j ← p to r − 1 do

if A[j] ≤ x then
i← i + 1
exchange A[i]↔ A[j]

exchange A[i + 1]↔ A[r]
return i + 1

• A[1..9] = {3,6,4,7,1,2,5,9,8}

2



Lecture 13: Quicksort

Quicksort correctness:

• It follows from the correctness of Partition.

• Partition correctness:

– Loop invariant:

At the start of for loop:

1. A[p..i] ≤ A[r] — A[s] ≤ A[r], p ≤ s ≤ i

2. A[(i + 1)..(j − 1)] > A[r]

3. x = A[r]

– Proof of LI: (pages 147 – 148)

1. Initialization

2. Maintenance

3. Termination

– LI correctness implies Partition correctness

3



Lecture 13: Quicksort

Quicksort notes:

• Why we study it:

– very efficient, in use

– divide-and-conquer, randomization

– huge literature

– a model for analysis of algorithms

• History:

– Hoare 1961: conception

– Knuth 1973: first analysis

– Sedgewick 1980: more analysis

– McDiarmid, Hayward, etc.

4



Lecture 13: Quicksort

Quicksort recursion tree:

• Observations:

– (Again) key comparison is the dominant operation

– Counting KC

— only need to know (at each call) the rank of the split
key

• An example:
06
�����

XXXXX

04
�����

H
HH

09
�

��
hhhhhhh

02
���

HHH

05 07
HHH

12
���

HHH

01 03 08 11
�

��

13
H

HH

10 14
HHH

15

• More observations:

– In the resulting recursion tree, at each node

(all keys in left subtree) ≤ (key in this node) < (all keys
in right subtree)

– 1-1 correspondence:

quicksort recursion tree ←→ binary search tree

5



Lecture 13: Quicksort

Quicksort WC running time:

• The split key is compared with every other key: (n− 1) KC

• Recurrence:

T (n) = T (n1) + T (n− 1− n1) + (n− 1),

where 0 ≤ n1 ≤ n− 1

Base case: T (0) = 0, T (1) = 0

• Notice that when both subarrays are non-empty, we will be
having

(n1 − 1) + (n− 1− n1 − 1) = (n− 3)
KC next level ...

• Worst case: one of the subarray is empty !!! needs (n − 2)
KC next level

• WC recurrence:

T (n) = T (0) + T (n− 1) + (n− 1) = T (n− 1) + (n− 1),

• Solving the recurrence — Master Theorem does NOT apply

T (n) = T (n− 1) + (n− 1) = T (n− 2) + (n− 2) + (n− 1)
= . . .
= T (1) + 1 + 2 + . . . + (n− 1)
= (n−1)n

2

So, T (n) ∈ Θ(n2)

• Therefore, quicksort is bad in terms of WC running time !

6



Lecture 13: Quicksort

Quicksort BC running time:

• Notice that when both subarrays are non-empty, we will be
saving 1 KC ...

• Best case: each partition is a bipartition !!!

Saving as many KC as possible every level ...

The recursion tree is as short as possible ...

• Recurrence:

T (n) = 2× T (
n− 1

2
) + (n− 1),

• Solving the recurrence — apply Master Theorem? not exactly

T (n) ∈ Θ(n logn)

• Question:

– What is the best case array? for n = 7?

• Conclusion:

– In order to save time, A[n] better BI-partitions the array
...

— usually it might not bipartition ... we will push it by a
technique called randomization (future lectures)

7



Lecture 13: Quicksort

Quicksort BC running time (cont’d):

• In the recursion tree, what is the number of KC at each level?

Answer:

– n− 1 at the top level

– at most 2 nodes at the 2nd level, at least

(n1 − 1) + (n− 1− n1 − 1) = n− 3 KC

– at most 4 nodes at the 3rd level, at least

(n1 − 3) + (n− 1− n1 − 3) = n− 7 KC

– . . .

– at kth level, at most 2k−1 nodes, at least

n− 2k + 1 KC

• How many levels are there?

Answer:

– At least lgn levels — binary tree

• So, at least we need∑lgn−1

i=1
(n− 2i + 1) KC, and

lgn−1∑
i=1

(n− 2i + 1) = (n + 1)(lgn− 1)− (n− 2) ∈ Θ(n logn)

• Try n = 2k − 1 to get the closed form for the following recur-
rence

T (n) =
{

0, if n = 1
(n− 1) + T (bn−1

2
c) + T (dn−1

2
e), if n ≥ 2

8



Lecture 13: Quicksort

Have you understood the lecture contents?

well ok not-at-all topic

� � � quicksort idea

� � � quicksort pseudocode(s), execution

� � � correctness of quicksort

� � � quicksort WC running time

� � � worst case

� � � quicksort BC running time

� � � best case

9


