
CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 7 (Sep 25, 2019): Count Sketches
Lecturer: Mohammad R. Salavatipour Scribe: Aditya Jayaprakash

In the previous lecture, we discussed the Misra-Greis deterministic counting algorithm for finding the k most
frequent elements in a stream. However, it was not a sketching algorithm. Today we see Sketching algorithms
that work in the turnstile model where deletion is allowed in addition to insertion. In this lecture, we discuss
two sketching algorithm to estimate fi, the number of occurrences of ai ∈ σ. In the last section, we will discuss
various application of these algorithms.

7.1 CountSketch

In this section, we will study the CountSketch algorithm for estimating the frequency of an element in the
stream. This was the work of Charikar, Chen and Farach-Colton[CCFC04] from 2004 . The algorithm is as
follows,

CountSketch (Basic)

1. k ← 3
ε2

2. c ∈ Zk and c[1, . . . , k] = 0.

3. h is a a random hash function h : {1, . . . , n} → {1, . . . , k} from a 2-universal hash function family.

4. g is a random hash function g : {1, . . . , n} → {−1,+1} from a 2-universal hash function family.

5. While there is at least one token left:

6. Each token aj = (ij ,∆j) where ij is the element and ∆j ∈ {−1,+1} denotes insert or delete.

7. c [h(ij)]← c [h(ij)] + ∆jg(ij)

8. for each i ∈ [n] set f̂i = g(i)c[h(i)].

7.1.1 Analysis

Consider a fixed a ∈ {1, . . . , n} and let X be a random variables where X = f̂a. Let Y1, . . . , Yn be independent
Bernoulli random variable where

Yi =

{
1, if h(i) = h(a)

0, otherwise

7-1

7-2 Lecture 7: Count Sketches

We will use the fact that any token with value i and Yi = 1 changes the counter c[h(a)] since both h(i) and
h(a) hash to the same value.

X = g(a)

n∑
i=1

fig(i)Yi

= fa g(a)2︸ ︷︷ ︸
1

+
∑
i:i6=a

fig(a)g(i)Yi

= fa +
∑
i:i6=a

fig(a)g(i)Yi

We must also note that since hash functions g and h are independent, E[g(i)Yi] = E[g(i)]︸ ︷︷ ︸
0

E[Yi] = 0

E[X] = E

fa +
∑
i:i 6=a

fig(a)g(i)Yi


= E [fa] + E

∑
i:i 6=a

fig(a)g(i)Yi


= fa +

∑
i:i6=a

E [fig(a)g(i)Yi]

= fa +
∑
i:i6=a

E[fi]E[g(a)] E[g(i)]E[Yi]︸ ︷︷ ︸
0

= fa

For any Bernoulli random variable Yi, E[Y 2
i] = E[Yi]. Combining it with the properties of 2-universal hash

functions, we get that for each i ∈ {1, . . . , n} \ {a} and a 2-universal hash function h,

E[Y 2
i] = E[Yi] = Pr[h(i) = h(a)] =

1

k

Suppose g and h are independent 2-universal hash functions, then

E[g(i)g(j)YiYj] = E[g(i)]︸ ︷︷ ︸
0

E[g(j)]E[YiYj] = 0

Lecture 7: Count Sketches 7-3

We will bound the probability of failure using Chebyshev’s inequality, but we would need to compute the
variance first.

Var[X] = Var

fa +
∑
i:i6=a

fig(a)g(i)Yi


= 0 + g(a)2︸ ︷︷ ︸

1

Var

∑
i:i 6=a

fig(i)Yi


= E


∑
i:i 6=a

fig(i)Yi

2
− E

∑
i 6=a

fig(i)Yi

2

= E

∑
i 6=a

f2i Y
2
i +

∑
i,j∈[n]\{a}

fifjg(i)g(j)YiYj

− E

∑
i6=a

fig(i)Yi

2

= E

∑
i 6=a

f2i Y
2
i

+ E

 ∑
i,j∈[n]\{a}

fifjg(i)g(j)YiYj


︸ ︷︷ ︸

0 since E[g(i)g(j)YiYj]=0

−

∑
i 6=a

fiE [g(i)Yi]

2

︸ ︷︷ ︸
0 since E[g(i)=0]

=
∑
i 6=a

E
[
f2i Y

2
i

]
=
∑
i 6=a

f2i E
[
Y 2
i

]
=
∑
i 6=a

f2i
k

=
||f ||22 − f2a

k
≤ ||f ||

2
2

k

We will now use Chebyshev’s inequality to bound the probability,

Theorem 1 (Chebyshev’s inequality) Let X be a random variable and t > 0. Then Pr[|X − E[X]| > t ≤
Var[X]
t2 . Alternatively Pr[|X − E[X]| > tσX] ≤ 1

t2 .

Pr[|f̂a − fa| ≥ ε||f ||2] = Pr[|X − E[X]| ≥ ε||f ||2]

≤ Var[X]

ε2||f ||2
≤ ||f ||22
ε2k||f ||2

=
1

kε2
=

1

3

Using the median of means trick, we can run t independent copies of it while setting k = 3
ε2 and t = O

(
log 1

δ

)
and running the more improved algorithm,

7-4 Lecture 7: Count Sketches

CountSketch

1. k ← 3
ε2

2. t = O
(
log 1

δ

)
3. c ∈ Zt × Zk and c[1, . . . , t][1, . . . , k] = 0.

4. Choose t 2-universal hash functions h1, . . . , ht such that hi is random hash function hi : {1, . . . , n} →
{1, . . . , k} from a 2-universal hash function family.

5. Choose t 2-universal hash functions g1, . . . , gt such that gi is a random hash function gi : {1, . . . , n} →
{−1,+1} from a 2-universal hash function family.

6. While there is at least one token left:

7. Each token aj = (ij ,∆j) where ij is the element and ∆j ∈ {−1,+1} denotes insert or delete.

8. for i← 1 to t do,

9. c [i, hi(ij)]← c [i, hi(ij)] + ∆jgi(ij)

10. For each a ∈ [n], let f̂a = median
1≤i≤t

gi(a) · c[i, hi(a)].

Just like the previous analysis, suppose we fix l and Xl = gl(a) · c[l, hl(a)] is a random variable, then

E[Xl] = fa

Using the same analysis as before and Chebyshev’s inequality,

Pr[|Xl − fa| ≥ ε||f ||2] ≤ 1

3

Using the median of means trick, we can show

Pr[|median {X1, . . . , Xt} − fa| > ε||f ||2] ≤ e−O(log 1
δ) ≤ δ

The space required to store the hash functions is O(t log n) and each counter might need to store a value up to
m and there are tk counters, taking up O(tk logm) space. Hence, the total space complexity is O(kt(logm +
log n)) = O

(
1
ε2 log 1

δ (logm+ log n)
)
. We will now look at an alternate algorithm called CountMinSketch which

solves the same problem but gives different guarantees.

7.2 CountMinSketch

This algorithm was introduced by Cormode and Muthukrishnan [CM05] in 2005. The ideas of the algorithm
are very close to the algorithm we saw before. We maintain an array of size t× k consisting of counters which
we update using hash functions. We can visualize it as a matrix where for each row, i, there is a 2-universal
hash function hi : {1, . . . , n} → {1, . . . , k} which, like the previous algorithm, we will use to map elements to
counters. The algorithm works as follows,

Lecture 7: Count Sketches 7-5

CountMinSketch

1. Choose t 2-universal hash functions h1, . . . , ht such that hi is random hash function hi : {1, . . . , n} →
{1, . . . , k} from a 2-universal hash function family.

2. c ∈ Zt × Zk and c[1, . . . , t][1, . . . , k] = 0.

3. While there is at least one token left:

4. for i← 1 to t do,

5. c [i, hi(ij)]← c [i, hi(ij)] + ∆j

6. For each a ∈ [n], let f̂a = min
1≤i≤t

c[i, hi(a)].

Suppose for the purpose of this analysis, we assume that ∆j ≥ 0 for all 1 ≤ j ≤ n, then∑
l:hi(il)=j

∆l = c[i, j]

In any case, f̂a will be an over estimation of fa (for ∆j ≥ 1). Let Xi be the random variable denoting the excess
of c[i, hi(a)] compared to fa. We can write Xi = c[i, hi(a)] − fa. Just like before, we will also have a random
variable Yij for j ∈ {1, . . . , n} \ {a} where

Yij =

{
1, if hi(j) = hi(a)

0, otherwise

According to our definition, if Yij = 1, then fj is added to the ith counter for fa.

Xi =
∑

j∈{1,...,n}\{a}

fiYij

Since Yij is a Bernoulli random variable and by the properties of 2-universality, we have

Pr[Yi = 1] =
1

k
= E[Yij]

E[Xi] = E

 ∑
j∈{1,...,n}\{a}

fjYij


=

∑
j∈{1,...,n}\{a}

fjE[Yij]

=
∑

j∈{1,...,n}\{a}

fj
k

=
||f ||1 − fa

k
which we will denote by ||f−a||

We will now use Markov’s inequality to bound the probability of failure.

Theorem 2 (Markov’s inequality) Let X be a non-negative random variable. Then for all a > 0: Pr[X ≥
a] ≤ E[X]

a . Alternatively Pr[X ≥ aE[X]] ≤ 1
a .

7-6 Lecture 7: Count Sketches

Pr[Xi ≥ ε||f−a||1] ≤ ||f−a||1
kε||f−a||1

=
1

2

By our choice of k and using the fact that we have t independent counters, we will show f̂a−fa is the minimum
over all with high probability.

Pr[f̂a − fa ≥ ε||f−a||1] = Pr[min {X1, . . . , Xt} ≥ ε||f−a||1]

= Pr

[
t∧
i=1

(Xi ≥ ε||f−a||1)

]

=

t∏
i=1

Pr[Xi ≥ ε||f−a||1]

≤ 2−t = δ

To make our error as small as delta, we can find a choice of t = O
(
log 1

δ

)
. We have shown that that we can

guarantee the value of fa with additive error with high probability,

fa ≤ f̂a ≤ fa + ε||f−a||1 ≤ fa + ε||f ||1

While both CountSketch and CountMinSketch have the same approach and same goal of estimating the fre-
quency fa of some element a, they both provide different guarantees. For instance, suppose we consider the
problem of estimating frequency moments, CountSketch outputs an estimate f̂a of fa with an additive error
of ε||f ||2 while CountMinSketch provides an error of ε||f ||1 and ||f ||2 ≤ ||f ||1, meaning the additive error of
CountMinSketch is much worse in comparison. One could always pick an algorithm depending on what metric
(L2 or L1) they wish to optimize for. However, CountMinSketch has a one-sided error guarantee when ∆ ≥ 0
which could be useful depending on the application. CountMinSketch is also more preferable when it comes to
space complexity since one would only need O

(
1
ε log 1

δ

)
counters. We can summarize what we described in the

following table,

Algorithm Error Bound Space Complexity

CountSketch |f̂a − fa| ≤ ε||f−a||2 O
(

1
ε2 log 1

δ (logm+ log n)
)

CountMinSketch |f̂a − fa| ≤ ε||f ||1 O
(
1
ε log 1

δ (logm+ log n)
)

7.3 Applications

In this section, we will discuss applications of the algorithms we previously discussed.

1. Point Queries: Given an item i, the point query Q(i) would return an estimate of fi.This query would
require returning the value of a counter in the sketch.

2. Range Queries : Given Q(l, r), we would want to estimate the number of elements of each type from l to
r, so we would like to return

∑
l≤i≤r fi.

3. Inner Product : Given Q(~f,~g), we would to approximate 〈~f,~g〉 =
∑n
i=1 figi.

4. Heavy Hitter: We call an index i an α-HH (for heavy hitter) where α ∈ (0, 1] if fi ≥ α||f ||1. We wish to
identify elements that are α-HH.

We can use CountSketch and CountMinSketch to solve all the problems mentioned above. Next lecture, we will
look at how to solve range queries using dyadic intervals.

Lecture 7: Count Sketches 7-7

References

CCFC04 M. Charikar, K.C. Chen, and M. Farach-Colton, Finding frequent items in data streams. Theo-
retical Computer Science, 312:03–15, 2004.

CM05 G. Cormode and S. Muthukrishnan, An improved data stream summary: the count-min sketch and
its applications. J. Algorithms, 55(1):58–75, 2005.

