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Recall that in the previous lecture, we have seen an F2 estimator via the JL lemma that uses the 2-stable
property of the normal distribution. In this lecture, we will extend this idea to construct an Fp estimator by
using a p-stable distribution (for p ∈ (0, 2]).

6.1 Fp estimator

Before we introduce the Fp estimator, we need some definitions.

Definition 1 Let p > 0 be a real number. A probability distribution Dp over reals is called p-stable if it has the
following property: Suppose X1, . . . , Xn ∈ Dp, for any real vector c ∈ Rn, X =

∑
ciXi has the same distribution

as cX, where c = (
∑
cpi )

1/p = ||c||p and X ∈ Dp.

It is known that p-stable distribution exists for all p ∈ (0, 2], for example, the normal distribution is 2-stable
and Cauchy distribution is 1-stable. Cauchy distribution is the distribution of the ratio of two standard normal
distribution. It has density function φ(x) = 1√

2φ
e−x

2/2. However, in general, for any p > 2, the p-stable

distributions do not have an explicit formula. Also, we can use the Chambers-Mallows-Stuck method to sample

from Dp for p ∈ (0, 2]. Sample (θ, r) from [−π2 ,
π
2 ]× [0, 1] and return X = sin(pθ)

(cos θ)1/p

(
cos((1−p)θ)

ln(1/r)

) 1−p
p

. Now if we

replace N(0, 1) in the code given for F2 estimator with Dp where it’s a p-stable distribution we can generate a
variable X that is distributed according to Dp scalled by ||f ||p and this is what we are trying to estimate.

Definition 2 The median of distribution D is µ if for X ∼ D, Pr[X ≤ µ] = 1
2 . If φ(x) is the probability

density function (PDF) of D, then
∫ µ
−∞ φ(x)dx = 1

2 .

Note that the distribution Dp has a unique median and we denote it by median(Dp). For a distribution D, we
let |D| denote the distribution of the absolute value of a random variable drawn from D. One can think of |D|
as the negative part of D being folded to the positive part, so if φ(x) is the density function of D, then the
density function of |D| is given by ψ(x), where ψ(x) = 2φ(x) if x ≥ 0 and ψ(x) = 0 if x < 0. The factor 2 arises
from the symmetry of the distribution. Then we are ready to state the Fp estimator.

Fp Estimator
t← O( 1

ε2 log 1
δ )

x← 0
Let M be a t× n matrix where Mij ∼ Dp

While there is a token (j, aj), do
for i = 0 to t do:
x[i]← x[i] +Miaj

return median(|x1|,...,|xt|)
median(Dp)
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6.1.1 Analysis of the Fp estimator

For any p ∈ (0, 2] and c ∈ R, we use φp,c to denote the density function of distribution of c|X| where X ∼ Dp

and let µp,c be the median of this distribution. Then it’s easy to verify that φp,c = 1
cφ(Xc ) and µp,c = c · µp,1.

Suppose Xi is the value of xi at the end of the algorithm. By using the p-stable property we know that

Xi ∼ ||f ||pX, where X ∼ Dp, so |Xi|
median(|Dp|) has a distribution according to c|Dp| where c =

||f ||p
median(|Dp|) and

the PDF is φp,c. Then the median of the distribution (which we try to estimate) is µp,c = c · µp,1 = ||f ||p.
The algorithm takes t independent samples from the distribution and output the sample median. We use the
following lemma to show the sample median gives us good concentration.

Lemma 1 Let ε > 0 and D be a probability distribution over R with density function φ and a unique median
µ > 0. Suppose φ is absolutely continuous on [(1−ε)µ, (1+ε)µ] and let φ∗ = min{φ(x) : x ∈ [(1−ε)µ, (1+ε)µ]}.
Let Y = median1≤i≤t(Yi) where Yi’s are independently sampled from D. Then

Pr[|Y − µ| ≥ εµ] ≤ 2e−
2
3 ε

2µ2φ∗2t

Proof. We only give the proof to the upper bound Pr[Y ≤ (1 − ε)µ] ≤ e−
2
3 ε

2µ2φ∗2t The other direction is
similar and omitted here. Note that by the definition of median, Pr[Yi ≤ µ] = 1

2 . Let Φ(y) =
∫ y
−∞ dx be the

cumulative density function, then

Pr[Yi ≤ (1− ε)µ] =
1

2
−
∫ µ

(1−ε)µ
φ(x)dx

=
1

2
− (Φ(µ)− Φ((1− ε)µ))

=
1

2
− εµφ(ζ)︸ ︷︷ ︸

γ

for some ζ ∈ [(1− ε)µ, µ]

≤ 1

2
− εµφ∗ by the definition of φ∗

Let Ij be the indicator variable for the event Yj ≤ (1− ε)µ. Then

E[Ij ] = Pr[Yj ≤ (1− ε)µ] ≤ 1
2 − εµφ

∗

Let I =
∑t
j=1 Ij , then E[I] = t · ( 1

2 − γ). Since Y is the median of Y1, . . . , Yt, Y ≤ (1− ε)µ requires at least t
2 of

Ij ’s being true, which is equivalent to Pr[I ≥ (1 +α)E[I]]. If we choose (1 +α) = 1
1−2γ and apply the Chernoff

bounds, then we have

Pr[Y ≤ (1− ε)µ] ≤ e− 2
3 ε

2µ2φ(ζ)2t ≤ e− 2
3 ε

2µ2φ∗2t

as required.

It remains to apply the lemma to show the concentration of our Fp estimator. Let φ be the density function
of the distribution of c|Dp|, and recall that the median of this distribution µ = ||f ||p. The algorithm returns
median of the t independent samples from c|Dp|. Therefore by applying the lemma,
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Pr[|Y − ||f ||p| ≥ ε||f ||p] ≤ 2e−
2
3 ε

2µ2φ∗2t

Observe that µφ∗ only depends on Dp and ε, let µφ∗ = cp,ε (some constant depending on p and ε), given
t = O( 1

ε2 log 1
δ ), thus

Pr[|Y − ||f ||p| ≥ ε||f ||p] ≤ δ

Remarks: As readers might have noticed, there are several issues that make the Fp estimator as described
impractical:

• The algorithm requires space to store the entire matrix M , which is too large for a streaming model.

• The value of t depends on cp,ε, which is not explicitly known due to the lack of knowledge on Dp for p > 2.

• The algorithm involves calculations on reals, which is expensive and would introduce rounding errors.

To obtain an efficient streaming algorithm, we need to use pseudorandom generators to store a compressed
version of M , for more details, see [I06].

6.2 Heavy Hitters

We have seen several algorithms for estimating Fp for p ≥ 0. Recall that F0 corresponds to the number of
distinct items in the stream and we define F∞ to be finding the largest frequency in a stream. An interesting
question that one may ask is that what if we want to find the frequent items (a.k.a heavy hitters) in a stream?

The problem can be described as given a stream σ = a1, a2, . . . , am with frequency vector (f1, f2, . . . , fm), given
k, we want to find all values {j|fj > m

k }. Note that the number of such items is at most k, and the Majority
problem, in which we want to know is there an item that appears more than m

2 times in the stream, is a special
case when k = 2. Misra and Gries [MG82] gave a simple algorithm to solve this problem:

Misra-Gries (82’)

let A be an empty list

while stream is not empty do

let j be the next token

if (j ∈ keys(A)) then

A[j]← A[j] + 1

else if |keys(A)| < k − 1 then

A[j]← 1

else for each l ∈ keys(A) do

A[l]← A[l]− 1

remove keys with A[l] = 0

end while

for each i ∈ keys(A), set f̂i = A[i]

for each i /∈ keys(A), set f̂i = 0
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We maintain A as a balanced BST. We have at most k key/value pairs and each pair needs O(log n) bits, so
the total space is O(k(logm+ log n)).

The following theorem is left as an exercise.

Theorem 1 For each i ∈ [n]: fi − m
k ≤ f̂i ≤ fi.

The theorem implies that every item that occurs more than m
k times in the stream is guaranteed to appear in

the output list, so we can do a second pass to find exact fi values for the at most k keys in A. The drawback
of this algorithm is also obvious, it requires 2 passes on the data instead of 1, and it does not provide a sketch.
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