Lecture 6 (Sep 23, 2019): F_{p} Estimator and Heavy Hitters

Lecturer: Mohammad R. Salavatipour

Scribe: Haozhou Pang

Recall that in the previous lecture, we have seen an F_{2} estimator via the JL lemma that uses the 2-stable property of the normal distribution. In this lecture, we will extend this idea to construct an F_{p} estimator by using a p-stable distribution (for $p \in(0,2])$.

6.1 $\quad F_{p}$ estimator

Before we introduce the F_{p} estimator, we need some definitions.

Definition 1 Let $p>0$ be a real number. A probability distribution D_{p} over reals is called p-stable if it has the following property: Suppose $X_{1}, \ldots, X_{n} \in D_{p}$, for any real vector $c \in \mathbb{R}^{n}, X=\sum c_{i} X_{i}$ has the same distribution as $\bar{c} X$, where $\bar{c}=\left(\sum c_{i}^{p}\right)^{1 / p}=\|c\|_{p}$ and $X \in D_{p}$.

It is known that p-stable distribution exists for all $p \in(0,2]$, for example, the normal distribution is 2 -stable and Cauchy distribution is 1 -stable. Cauchy distribution is the distribution of the ratio of two standard normal distribution. It has density function $\phi(x)=\frac{1}{\sqrt{2 \phi}} e^{-x^{2} / 2}$. However, in general, for any $p>2$, the p-stable distributions do not have an explicit formula. Also, we can use the Chambers-Mallows-Stuck method to sample from D_{p} for $p \in(0,2]$. Sample (θ, r) from $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times[0,1]$ and return $X=\frac{\sin (p \theta)}{(\cos \theta)^{1 / p}}\left(\frac{\cos ((1-p) \theta)}{\ln (1 / r)}\right)^{\frac{1-p}{p}}$. Now if we replace $N(0,1)$ in the code given for F_{2} estimator with D_{p} where it's a p-stable distribution we can generate a variable X that is distributed according to D_{p} scalled by $\|f\|_{p}$ and this is what we are trying to estimate.

Definition 2 The median of distribution D is μ if for $X \sim D, \operatorname{Pr}[X \leq \mu]=\frac{1}{2}$. If $\phi(x)$ is the probability density function (PDF) of D, then $\int_{-\infty}^{\mu} \phi(x) d x=\frac{1}{2}$.

Note that the distribution D_{p} has a unique median and we denote it by median $\left(D_{p}\right)$. For a distribution D, we let $|D|$ denote the distribution of the absolute value of a random variable drawn from D. One can think of $|D|$ as the negative part of D being folded to the positive part, so if $\phi(x)$ is the density function of D, then the density function of $|D|$ is given by $\psi(x)$, where $\psi(x)=2 \phi(x)$ if $x \geq 0$ and $\psi(x)=0$ if $x<0$. The factor 2 arises from the symmetry of the distribution. Then we are ready to state the F_{p} estimator.

```
\(F_{p}\) Estimator
    \(t \leftarrow O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)\)
    \(x \leftarrow \mathbf{0}\)
    Let \(M\) be a \(t \times n\) matrix where \(M_{i j} \sim D_{p}\)
    While there is a token \(\left(j, a_{j}\right)\), do
        for \(i=0\) to \(t\) do:
        \(x[i] \leftarrow x[i]+M_{i a_{j}}\)
    return \(\frac{\operatorname{median}\left(\left|x_{1}\right|, \ldots,\left|x_{t}\right|\right)}{\operatorname{median}\left(D_{p}\right)}\)
```


6.1.1 Analysis of the F_{p} estimator

For any $p \in(0,2]$ and $c \in \mathbb{R}$, we use $\phi_{p, c}$ to denote the density function of distribution of $c|X|$ where $X \sim D_{p}$ and let $\mu_{p, c}$ be the median of this distribution. Then it's easy to verify that $\phi_{p, c}=\frac{1}{c} \phi\left(\frac{X}{c}\right)$ and $\mu_{p, c}=c \cdot \mu_{p, 1}$.
Suppose X_{i} is the value of x_{i} at the end of the algorithm. By using the p-stable property we know that $X_{i} \sim\|f\|_{p} X$, where $X \sim D_{p}$, so $\frac{\left|X_{i}\right|}{\text { median }\left(\left|D_{p}\right|\right)}$ has a distribution according to $c\left|D_{p}\right|$ where $c=\frac{\|f\|_{p}}{\left.\text { median(}\left|D_{p}\right|\right)}$ and the PDF is $\phi_{p, c}$. Then the median of the distribution (which we try to estimate) is $\mu_{p, c}=c \cdot \mu_{p, 1}=\|f\|_{p}$. The algorithm takes t independent samples from the distribution and output the sample median. We use the following lemma to show the sample median gives us good concentration.

Lemma 1 Let $\epsilon>0$ and D be a probability distribution over \mathbb{R} with density function ϕ and a unique median $\mu>0$. Suppose ϕ is absolutely continuous on $[(1-\epsilon) \mu,(1+\epsilon) \mu]$ and $\operatorname{let} \phi^{*}=\min \{\phi(x): x \in[(1-\epsilon) \mu,(1+\epsilon) \mu]\}$. Let $Y=$ median $_{1 \leq i \leq t}\left(Y_{i}\right)$ where Y_{i} 's are independently sampled from D. Then

$$
\operatorname{Pr}[|Y-\mu| \geq \epsilon \mu] \leq 2 e^{-\frac{2}{3} \epsilon^{2} \mu^{2} \phi^{* 2} t}
$$

Proof. We only give the proof to the upper bound $\operatorname{Pr}[Y \leq(1-\epsilon) \mu] \leq e^{-\frac{2}{3} \epsilon^{2} \mu^{2} \phi^{* 2} t}$ The other direction is similar and omitted here. Note that by the definition of median, $\operatorname{Pr}\left[Y_{i} \leq \mu\right]=\frac{1}{2}$. Let $\Phi(y)=\int_{-\infty}^{y} d x$ be the cumulative density function, then

$$
\begin{array}{rlrl}
\operatorname{Pr}\left[Y_{i} \leq(1-\epsilon) \mu\right] & =\frac{1}{2}-\int_{(1-\epsilon) \mu}^{\mu} \phi(x) d x & \\
& =\frac{1}{2}-(\Phi(\mu)-\Phi((1-\epsilon) \mu)) & \\
& =\frac{1}{2}-\underbrace{\epsilon \mu \phi(\zeta)}_{\gamma} & & \\
& \leq \frac{1}{2}-\epsilon \mu \phi^{*} & \text { for some } \zeta \in[(1-\epsilon) \mu, \mu]
\end{array}
$$

Let I_{j} be the indicator variable for the event $Y_{j} \leq(1-\epsilon) \mu$. Then

$$
E\left[I_{j}\right]=\operatorname{Pr}\left[Y_{j} \leq(1-\epsilon) \mu\right] \leq \frac{1}{2}-\epsilon \mu \phi^{*}
$$

Let $I=\sum_{j=1}^{t} I_{j}$, then $E[I]=t \cdot\left(\frac{1}{2}-\gamma\right)$. Since Y is the median of $Y_{1}, \ldots, Y_{t}, Y \leq(1-\epsilon) \mu$ requires at least $\frac{t}{2}$ of I_{j} 's being true, which is equivalent to $\operatorname{Pr}[I \geq(1+\alpha) E[I]]$. If we choose $(1+\alpha)=\frac{1}{1-2 \gamma}$ and apply the Chernoff bounds, then we have

$$
\operatorname{Pr}[Y \leq(1-\epsilon) \mu] \leq e^{-\frac{2}{3} \epsilon^{2} \mu^{2} \phi(\zeta)^{2} t} \leq e^{-\frac{2}{3} \epsilon^{2} \mu^{2} \phi^{* 2} t}
$$

as required.
It remains to apply the lemma to show the concentration of our F_{p} estimator. Let ϕ be the density function of the distribution of $c\left|D_{p}\right|$, and recall that the median of this distribution $\mu=\|f\|_{p}$. The algorithm returns median of the t independent samples from $c\left|D_{p}\right|$. Therefore by applying the lemma,

$$
\operatorname{Pr}\left[\left|Y-\|f\|_{p}\right| \geq \epsilon\|f\|_{p}\right] \leq 2 e^{-\frac{2}{3} \epsilon^{2} \mu^{2} \phi^{* 2} t}
$$

Observe that $\mu \phi^{*}$ only depends on D_{p} and ϵ, let $\mu \phi^{*}=c_{p, \epsilon}$ (some constant depending on p and ϵ), given $t=O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$, thus

$$
\operatorname{Pr}\left[\left|Y-\|f\|_{p}\right| \geq \epsilon| | f \|_{p}\right] \leq \delta
$$

Remarks: As readers might have noticed, there are several issues that make the F_{p} estimator as described impractical:

- The algorithm requires space to store the entire matrix M, which is too large for a streaming model.
- The value of t depends on $c_{p, \epsilon}$, which is not explicitly known due to the lack of knowledge on D_{p} for $p>2$.
- The algorithm involves calculations on reals, which is expensive and would introduce rounding errors.

To obtain an efficient streaming algorithm, we need to use pseudorandom generators to store a compressed version of M, for more details, see [I06].

6.2 Heavy Hitters

We have seen several algorithms for estimating F_{p} for $p \geq 0$. Recall that F_{0} corresponds to the number of distinct items in the stream and we define F_{∞} to be finding the largest frequency in a stream. An interesting question that one may ask is that what if we want to find the frequent items (a.k.a heavy hitters) in a stream?

The problem can be described as given a stream $\sigma=a_{1}, a_{2}, \ldots, a_{m}$ with frequency vector $\left(f_{1}, f_{2}, \ldots, f_{m}\right)$, given k, we want to find all values $\left\{j \left\lvert\, f_{j}>\frac{m}{k}\right.\right\}$. Note that the number of such items is at most k , and the Majority problem, in which we want to know is there an item that appears more than $\frac{m}{2}$ times in the stream, is a special case when $k=2$. Misra and Gries [MG82] gave a simple algorithm to solve this problem:

Misra-Gries (82')
let A be an empty list
while stream is not empty do
let j be the next token
if $(j \in \operatorname{keys}(A))$ then $A[j] \leftarrow A[j]+1$
else if $|k e y s(A)|<k-1$ then $A[j] \leftarrow 1$
else for each $l \in \operatorname{keys}(A)$ do $A[l] \leftarrow A[l]-1$ remove keys with $A[l]=0$
end while
for each $i \in \operatorname{keys}(A)$, set $\hat{f}_{i}=A[i]$
for each $i \notin \operatorname{keys}(A)$, set $\hat{f}_{i}=0$

We maintain A as a balanced BST. We have at most k key/value pairs and each pair needs $O(\log n)$ bits, so the total space is $O(k(\log m+\log n))$.

The following theorem is left as an exercise.

Theorem 1 For each $i \in[n]: f_{i}-\frac{m}{k} \leq \hat{f}_{i} \leq f_{i}$.

The theorem implies that every item that occurs more than $\frac{m}{k}$ times in the stream is guaranteed to appear in the output list, so we can do a second pass to find exact f_{i} values for the at most k keys in A. The drawback of this algorithm is also obvious, it requires 2 passes on the data instead of 1 , and it does not provide a sketch.

References

I06 P. Indyk, Stable distributions, pseudorandom generators, embeddings, and data stream computation. Journal of the ACM (JACM), 21(10):53(3):307323, 2006.

MG82 J. Misra, D. Gries, Finding repeated elements. Science of Computer Programming,143-152, 1982.

