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5.1 Introduction

Recall the AMS sketching algorithm for estimating the second frequency moment F2 of a stream from last
lecture. We can represent the algorithm by a matrix Mt×n

1 where Mij = hi(j), i.e., the ij-th entry is the value
of the hash function chosen in the i-th copy of the basic algorithm with input j ∈ [n]. Let x ∈ Nn be the

frequency vector of the stream σ, then the output of the algorithm equals to
‖Mx‖22

t .

In this lecture we will see another sketching algorithm known as Johnson-Lindenstrauss algorithm for dimen-
sionality reduction [JL84]. This algorithm inspires another F2-estimator. However, this algorithm is not space
efficient in reality, please see Section 5.3. In the last section, we start the discussion on how to estimate Fp for
p ∈ (0, 2].

5.2 Johnson-Lindenstrauss Dimensionality Reduction

5.2.1 Normal Distribution

Definition 1 We say X is a normal random variable denoted by N(µ, σ) with mean µ and variance σ2. The
density function of X is defined as follows:

φ(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

Let X be a normal random variable with density function φ, then we have Pr[a ≤ X ≤ b] =
∫ b
a
φ(x)dx. The

standard normal distribution is denoted by N(0, 1) and its density function is φ(x) = 1√
2π
e−

x2

2 . We need the

following two facts about standard normal distributions in the analysis of our algorithms.

Lemma 1 (Theorem 9.2 from [MU18]) Let X1, ..., Xk be k independent standard normal random variables
and let Y = a1X1 + ...+ akXk, then Y has a normal distribution with mean 0 and variance a21 + ...+ a2k, i.e.,

Y has the same distribution as N(0,

√
k∑
i=1

a2i ).

Lemma 2 Let X1, ..., Xk be k independent standard normal random variables and let Y = 1
k

k∑
i=1

X2
i . Then, for

any 0 < ε < 1
2 we have

Pr[(1− ε)2 ≤ Y ≤ (1 + ε)2] ≥ 1− e−cε
2k,

1M is implicit and the algorithm does not need to store the matrix as it will be too expensive to store, please see the last lecture
for more details.
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where c is a constant.

Proof. We give a sketch of the proof, after all we are talking about sketching algorithms!

First we need to compute the moment generating function of X2 where X ∼ N(0, 1).

MX2(t) := E[etX
2

] =

∫ ∞
−∞

etx
2

e−
x2

2 dx =
1√

1− 2t
.

Then, following the same proof for Chernoff bounds we get

Pr[Y ≥ 1 + ε] = Pr[etkY ≥ etk(1+ε)] (5.1)

≤ E[etkY ]

etk(1+ε)
(5.2)

=

∏k
i=1 E[etkX

2
i ]

etk(1+ε)
(5.3)

=

∏k
i=1MX2

i
(tk)

etk(1+ε)
(5.4)

=

∏k
i=1

1√
1−2kt

etk(1+ε)
, (5.5)

where the inequality follows from Markov inequality. The lemma follows by optimizing (5.5), i.e., find t such
that (5.5) is minimized. Similarly, we can upper bound Pr[Y ≤ 1− ε].

5.2.2 Johnson-Lindenstrauss Algorithm

Theorem 1 (Johnson-Lindenstrauss) Let v1, ..., vn be any set of n points in Rd. For any 0 < ε < 1
2 , there

is a linear mapping f : Rd → Rk for k = O(α logn
ε2 ), where α is the precision parameter, such that for all

1 ≤ i, j ≤ n we have

Pr
[
(1− ε) ‖vi − vj‖2 ≤ ‖f(vi)− f(vj)‖2 ≤ (1 + ε) ‖vi − vj‖2

]
≥ 1− 1

nα
.

Furthermore, f can be computed in polytime.

Proof. Let M be a k × d matrix where Mij ∼ N(0, 1), i.e., each entry is drawn from standard normal random
variable. We define f in the theorem’s statement to be f(v) := 1√

k
Mv.

The next lemma shows that we only need to work with unit vectors in Rd.

Lemma 3 To prove Theorem 1 it is enough to show that for an arbitrary unit vector v ∈ Rd we have

Pr[1− ε ≤ ‖f(v)‖2 ≤ 1 + ε] ≥ 1− 1

nα+2
. (5.6)

Proof of Lemma 3. Let v :=
vi−vj
‖vi−vj‖ 2

. Since v is a unit vector by (5.6) we have

Pr[1− ε ≤
∥∥∥∥f( vi − vj
‖vi − vj‖2

)∥∥∥∥
2

≤ 1 + ε] ≥ 1− 1

nα+2
.
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Since f is linear we get that

Pr
[
(1− ε) ‖vi − vj‖2 ≤ ‖f(vi)− f(vj)‖2 ≤ (1 + ε) ‖vi − vj‖2

]
≥ 1− 1

nα+2
,

in other words, the probability of failure for one pair (vi, vj) is at most 1
nα+2 . By the union bound the total

probability of failure is at most n2 · 1
nα+2 = 1

nα and thus Theorem 1 follows.

Let us first show that in expectation the square of the norm of v will be preserved under f .

Lemma 4 E
[
‖f(v)‖22

]
= ‖v‖22 = 1.

Proof of Lemma 4. Define δjk to be 1 if j = k and 0 otherwise. Then, we can write

E
[
‖f(v)‖22

]
= E

[ ∥∥∥∥ 1√
k
Mv

∥∥∥∥2
2

]
(5.7)

=

k∑
i=1

1

k
E
[
(

d∑
j=1

Mijvj)
2
]

(5.8)

=

k∑
i=1

1

k

∑
1≤j,k≤d

vjvk E[MijMik] (5.9)

=

k∑
i=1

1

k

∑
1≤j,k≤d

vjvkδjk (5.10)

=

k∑
i=1

1

k

d∑
j=1

v2j (5.11)

= ‖v‖22 (5.12)

= 1, (5.13)

where (5.10) follows from the fact that Mij and Mik are drawn independently from N(0, 1).

To prove Theorem 1, by Lemma 3 it is enough to prove (5.6) for an arbitrary unit vector v ∈ Rd. From now on
we fix a unit vector v ∈ Rd.

Lemma 5 Let 0 < ε < 1
2 and let k := (α+2) logn

cε2 , where c is the constant in Lemma 2. Then, we have

Pr[1− ε ≤ ‖f(v)‖2 ≤ 1 + ε] ≥ 1− 1

nα+2
.

Proof of Lemma 5. We know that (Mv)i =
d∑
j=1

Mijvj . Since Mij for 1 ≤ j ≤ d are independently drawn

from N(0, 1), by Lemma 1 we know that (Mv)i = N(0,

√
d∑
j=1

v2j ) = N(0, 1) since ‖v‖22 = 1. Therefore, we can

apply Lemma 2 to 1
k

k∑
i=1

(Mv)2i = 1
k ‖Mv‖22 and conclude that

Pr[(1− ε)2 ≤
‖Mv‖22
k

≤ (1 + ε)2] ≥ 1− e−cε
2k = 1− e−(α+2) logn = 1− 1

nα+2
, (5.14)
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where the first equality follows from substituting the value of k. From (5.14), we get that

Pr[1− ε ≤ ‖f(v)‖2 ≤ 1 + ε] ≥ 1− 1

nα+2
,

as desired.

By putting together Lemma 3 and Lemma 5, we get Theorem 1.

5.3 Estimating Fp

Indyk [I06] gave a sketching algorithm for estimating Fp for p ∈ (0, 2]. This algorithm also directly translates
into dimensionality reduction for lp norm for p ∈ (0, 2].

Before we present the sketching algorithm for Fp, we need some definition.

Definition 2 (Stable Distributions) Let p be a positive real number. A probability distribution Dp is called
p-stable if for n independently random variables X1, ..., Xn that are drawn from Dp and c ∈ Rn, the random

variable
n∑
i=1

ciXi has the same distribution as ‖c‖p ·X where X ∼ Dp.

For example, N(0, 1) is a 2-stable distribution. Another example is Cauchy distribution DC defined by the
density function c(x) = 1

π ·
1

1+x2 , is 1-stable.

We have the following method for generating a random variable from Dp.

Theorem 2 (Chambers-Mallows-Stuck’76 [CMS76]) Given a p-stable probability distribution Dp, we can
generate a random variable X from Dp as follows:

• sample (θ, r) from [−π2 ,
π
2 ]× [0, 1] uniformly at random,

• return X = sin (pθ)

(cos θ)
1
p

( cos((1−p)θ)
− ln 1

r

)
1−p
p .

Now we can present a JL based F2-estimator.

JL based F2-estimator

1. Let Y1, ..., Yn be independent random variables drawn from N(0, 1)

2. x← 0

3. While there is a new element aj = i ∈ [n] in the stream do

x← x+ Yi

4. Return x2

First note that we need to generate all n random numbers Y1, ..., Yn and store them (because we have to apply
the same random number to the same value in the stream). Hence, this algorithm is not efficient, however by
using pseudorandom generators we can address this issue.

The analysis of the above algorithm is like before.
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Theorem 3 The JL based F2-estimator is an (ε, δ)-estimator.

Proof. Let x̄ be the value of x at the end of the algorithm. Thus, x̄ =
n∑
i=1

fiYi. Since Yi ∼ N(0, 1) for

1 ≤ i ≤ n and N(0, 1) is a 2-stable distribution, we know that x̄ = ‖f‖2 ·X =
√
F2 ·X where X ∼ N(0, 1). So

E[x̄2] = ‖f‖22 = F2. Also note that Var[x̄2] = F 2
2 · Var[X2] = 2F 2

2 since Var[X2] = 2. Then, we can apply the
Chebyshev’s bound and using the median of mean trick we can reduce the error probability.

The idea of the Fp-estimator is the same as the JL based F2-estimator with this difference that instead of N(0, 1)
we sample from a p-stable distribution Dp. Before presenting the algorithm we need two more definitions.

Definition 3 The median of a probability distribution D is µ if for X ∼ D, we have Pr[X ≤ µ] = 1
2 . In other

words, if φ(x) is the density function of D, then we have
∫ µ
−∞ φ(x)dx = 1

2 .

Definition 4 Let D be a probability distribution with density function φ(x) such that φ(x) = φ(−x). Then, |D|
is a probability distribution with the following density function ψ(x):

ψ(x) =

{
2φ(x), if x ≥ 0

0, otherwise.

Finally, we can present the Fp-estimator.

An (ε, δ) Fp-estimator

1. t← O( 1
ε2 log 1

δ )

2. x← 0

3. Let M be a t× n matrix where Mij ∼ Dp

4. While there are new element aj = i ∈ [n] in the stream do

For i = 1 to t do

xi ← xi +Miaj

5. Return median (|x1|,...,|xt|)
median (|Dp|)

We will analyze the above algorithm in the next lecture.
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