Last lecture we introduced the AMS algorithm for estimating F_{k}. Today we continue the proof and analysis of that algorithm.
Lemma 3 (3.2.1 Continuation) $F_{1} F_{2 k-1} \leq n^{1-\frac{1}{k}}\left(F_{k}\right)^{2}$

Proof.

We recall $F_{k}=\sum_{i=1}^{m} f_{i}^{k}=\ell_{k}^{k}=\|f\|_{k}^{k}$. Also, if X is the output of the algorithm we showed

$$
\begin{gathered}
E[X]=F_{k} \\
\operatorname{Var}[X] \leq k\left(F_{1} F_{2 k-1}\right)
\end{gathered}
$$

Recall that we define $\max _{i} f_{i}=F_{\infty}$ and that $F_{\infty}^{k-1}=\left(F_{\infty}^{k}\right)^{\frac{k-1}{k}}$. Also due to convexity, for all $k \geq 1: \frac{\sum x_{i}}{n} \leq\left(\frac{\sum x_{i}^{k}}{n}\right)^{\frac{1}{k}}$.

$$
\begin{aligned}
F_{1} F_{2 k-1} & =\left(\sum_{i=1}^{n} f_{i}\right)\left(\sum_{i} f_{i}{ }^{2 k-1}\right) \\
& \leq\left(\sum_{i} f_{i}\right) F_{\infty}^{k-1}\left(\sum_{i} f_{i}{ }^{k}\right) \\
& \leq\left(\sum_{i} f_{i}\right)\left(\sum_{i} f_{i}^{k}\right)^{\frac{k-1}{k}}\left(\sum_{i} f_{i}^{k}\right) \\
& \leq n^{1-\frac{1}{k}}\left(\sum_{i} f_{i}\right)^{\frac{1}{k}}\left(\sum_{i} f_{i}^{k}\right)^{\frac{k-1}{k}}\left(\sum_{i} f_{i}^{k}\right) \\
& =n^{1-\frac{1}{k}}\left(\sum f_{i}^{k}\right)^{2}
\end{aligned}
$$

So $\operatorname{Var}[X] \leq k F_{1} F_{2 k-1} \leq k n^{1-\frac{1}{k}} F_{k}^{2}$.
Note: A good explanation about frequency moments can be found in [MM13].
Now we use the median of means trick. Suppose that we run $h=\frac{e}{\epsilon^{2}} k n^{1-\frac{1}{k}}$ copies of the basic algorithm. Let X^{\prime} be the average of the estimator:

$$
\begin{gathered}
E\left[X^{\prime}\right]=F_{k} \\
\operatorname{Var}\left[X^{\prime}\right] \leq \frac{\operatorname{Var}[X]}{h} \leq \frac{\epsilon^{2}}{c} F_{k}^{2}
\end{gathered}
$$

Using Chebyshev we have:

$$
\operatorname{Pr}\left[\left|X^{\prime}-E\left[X^{\prime}\right]\right| \geq \epsilon E\left[X^{\prime}\right]\right] \leq \frac{\operatorname{Var}\left[X^{\prime}\right]}{\epsilon^{2} E\left[X^{\prime}\right]^{2}} \leq \frac{1}{c}
$$

We can get a $\left(\epsilon, \frac{1}{3}\right)$-estimator by choosing $c=3$, call this an intermediate estimator. If we use $t=c^{\prime} \log \frac{1}{\delta}$ for parallel copies of this and return the median \rightarrow hence we get a (ϵ, δ)-estimator. The space for the overall use is $O\left(\log \frac{1}{\epsilon} \cdot \frac{k}{\epsilon^{2}} \cdot n^{1-\frac{1}{k}}\right)$. And the space for each of the copies of the basic estimator is $O(\log m+\log n)$.

4.1 Linear - Sketching

The algorithm of AMS we saw last time for estimating F_{k} works for all $k \geq 2$ with space $\tilde{O}\left(n^{1-\frac{1}{k}}\right)$, but we prefer to have polylog space. AMS also gave an amazingly simple algorithm for estimating F_{2}. This is a sketching algorithm in the following sense. Suppose we have two streams: σ_{1} and σ_{2}, and an algorithm that computes a structure $z\left(\sigma_{1}\right)$ and $z\left(\sigma_{2}\right)$. We call these structures sketch if \exists an efficient (space) combining algorithm A such that for any two streams σ_{1} and σ_{2} if $\sigma_{1} \sigma_{2}$ is the stream obtained by concatinating the two then then $A\left(z\left(\sigma_{1}\right), z\left(\sigma_{2}\right)\right)=z\left(\sigma_{1} \sigma_{2}\right)$.

Suppose the values of a stream $\sigma_{1} \ldots \sigma_{m}$ where from $[n]$, and we start with a n-dimensional vector $x=(0, \ldots, 0)$ and each time a new token comes, we update x. So, each token i corresponds to an updated (i, a) where $x_{i} \leftarrow x_{i}+a$. Typically $a=1$ but it could be different.

- If a is allowed to be negative, we have a turnstile stream model.
- If we require x_{i} 's be always non-negative, we have a strict turnstile model.
- If a is required to be positive, we have a cash register model.

Linear Sketch: Corresponds to a $k \times n$ matrix M and the sketch for a vector x becomes $M x$. So composing two linear sketches $M x+M x^{\prime}=M\left(x+x^{\prime}\right)$.

4.2 Estimating F_{2} by Sketching

Estimating $\|x\|_{2}$ (ℓ_{2} norm) of a data vector x has lots of applications. So estimating $\|x\|_{2}^{2}$ is probably the most important of all other frequency moments. AMS algorithm for $k=2$ is an amazingly simple algorithm that produces a sketch.

Through the use of the generic algorithm in the Lecture 2.1 to estimate the F_{k}, we can develope an algorithm for F_{2}, which is useful in case, for example, we require to gather analytical meaning of the data that is being streamed.

```
AMS F2 Estimator[AMS99]
Let h be a random hash function from a 4 universal family }\mathcal{H},\mp@subsup{h}{i}{}[n]->{-1,+1
x\leftarrow0
While the stream is non empty do
    let }\mp@subsup{a}{j}{}\mathrm{ be next element
    x\leftarrowx+h(aj)
return x
```


4.2.1 Analysis

The previous algorithm can be described in the following way as well: one can think of $Y_{1} \ldots Y_{n}$ as 4 -wise independent random variables $\{-1,+1\}$ and in each round $x \leftarrow x+Y_{a j}$. Therefore, we can get $Y_{i}=h(i)$. Let $X=\sum f_{i} Y_{i}$ be value of x at the end of the stream. For all $E\left[Y_{i}\right]=0$ and $E\left[Y_{i}^{2}\right]=1$. Since the Y_{i}^{\prime} 's are also 2-wise independent $E\left[Y_{i} Y_{i}^{\prime}\right]=0$. Thus:

$$
\begin{aligned}
E\left[X^{2}\right] & =E\left[\sum_{i} \sum_{i^{\prime}} f_{i} f_{i}^{\prime} E\left[Y_{i} Y_{i}^{\prime}\right]\right] \\
& =\sum_{i} f_{i}{ }^{2} E\left[Y_{i}^{2}\right]+\sum_{i \neq i^{\prime}} f_{i} f_{i^{\prime}} E\left[Y_{i} Y_{i}^{\prime}\right] \\
& =\sum_{i} f_{i}^{2}=F_{2}
\end{aligned}
$$

To compute the variance:

$$
\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-E\left[X^{2}\right]^{2}=E\left[X^{4}\right]-F_{2}^{2} .
$$

Also $E\left[X^{4}\right]=\sum_{i} \sum_{j} \sum_{k} \sum_{\ell} f_{i} f_{j} f_{k} f_{\ell} E\left[Y_{i} Y_{j} Y_{k} Y_{\ell}\right]$. Suppose one of i, j, k, ℓ appears exactly once in the 4 -tuple, say $i \notin\{j, k, \ell\}$. Then by by 4 -wise independent $E\left[Y_{i} Y_{j} Y_{k} Y_{\ell}\right]=E\left[Y_{i}\right] E\left[Y_{j} Y_{k} Y_{\ell}\right]=0$, so, the only non zero terms in $E\left[X^{4}\right]$ is when all 4 indices are the same or when we have two pairs:

$$
\begin{aligned}
E\left[X^{4}\right] & =\sum_{i} \sum_{j} \sum_{k} \sum_{\ell} f_{i} f_{j} f_{k} f_{\ell} E\left[Y_{i} Y_{j} Y_{k} Y_{\ell}\right] \\
& =\sum_{i} f_{i}^{4} E\left[Y_{i}^{4}\right]+6 \sum_{i=1} \sum_{j=i+1} f_{i}^{2} f_{j}^{2} E\left[Y_{i}^{2} Y_{j}^{2}\right] \\
& =F_{4}+6 \sum_{i} \sum_{j=i+1} f_{i}^{2} f_{j}^{2}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\operatorname{Var}\left[X^{2}\right] & =E\left[X^{4}\right]-E\left[X^{2}\right]^{2} \\
& =E\left[X^{4}\right]-F_{2}^{2} \\
& =F_{4}+6 \sum_{i} \sum_{j=i+1} f_{i}^{2} f_{j}^{2}-F_{2}^{2} \\
& =F_{4}+6 \sum_{i} \sum_{j=i+1} f_{i}^{2} f_{j}^{2}-(\underbrace{\sum_{i} f_{i}^{4}}_{F_{4}}+2 \sum_{i} \sum_{j=i+1} f_{i}^{2} f_{j}^{2}) \\
& =4 \sum_{i} \sum_{j=i+1} f_{i}^{2} f_{j}^{2} \\
& \leq 2 F_{2}^{2}
\end{aligned}
$$

Using the (now standard) method of median of the means, we first use $O\left(1 / \epsilon^{2}\right)$ estimators and apply Chebyshev's inequality to obtain an $\left(\epsilon, \frac{1}{3}\right)$-estimator. Then use the median trick and $O\left(\log \frac{1}{\delta}\right)$ independent average estimators we obtain an (ϵ, δ)-estimator using $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ parallel copies.

4.2.2 Space Usage

We have $E\left[X^{2}\right]=F_{2}$, where each average estimator uses $\mathrm{O}\left(\underset{\substack{\epsilon^{2} \\ \text { basic }}}{\frac{1}{2}}\right)$, later we apply Chebyshev to obtain an $\left(\epsilon, \frac{1}{2}\right)$ estimator (intermediate estimator to reduce variance). Then, we use the $\mathrm{O}\left(\log \frac{1}{3}\right)$ of intermediate estimator to take the median and obtain an (ϵ, δ)-estimator using $\mathrm{O}\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ for the parallel copies. The overall space is $\mathrm{O}\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}(\log m+\log n)\right)$.

4.2.3 Geometric intuition

Suppose we have t independent copies of the basic sketch. Let $M \in \mathbb{R}^{t \times n}$ matrix for the final sketch, which transforms the frequency vector into t dimensional vector $x . M$ is a matrix with ± 1 entries, $M_{i j}=h_{i}(j)$ where h_{i} is for the $i^{\prime} t h$ copy using $t=\frac{6}{\epsilon^{2}}$ copies (and applying Chebyshev):

$$
\operatorname{Pr}\left[\left|\frac{1}{t} \sum_{i=1} X_{i}{ }^{2}-F_{2}\right| \geq \epsilon F_{2}\right] \leq \frac{1}{3}
$$

Recall that

$$
\mathrm{F}_{k}=\sum_{i}{f_{i}}^{k}=\|F\|_{k}^{k}
$$

So, with probability $\geq \frac{2}{3}:\left\|\frac{1}{\sqrt{t}} M x\right\|_{2}=\frac{1}{\sqrt{t}}\|x\|_{2} \in\left[\sqrt{1-\epsilon}\|x\|_{2}, \sqrt{1+\epsilon}\|x\|_{2}\right]$. We can think of M / \sqrt{t} as a random matrix that "reduces dimension" of an n-dimensional vector x to a t-dimenstion sketch while preserving the ℓ_{2}-norm approximately. We can use the AMS sketch (a linear sketch) that gives us an estimate of the ℓ_{2}-norm and use it to estimate ℓ_{2}-difference between two streams σ and $\sigma^{\prime}:\left\|f(\sigma)-f\left(\sigma^{\prime}\right)\right\|_{2}$.

References

AMS99 N. Alon, Y. Matias, and M. Szegedy, The Space Complexity of Approximating the Frequency Moments. J. Comput. Syst. Sci, 31(2):137-147, 1999.

MM13 A. McGregor and S. Muthukrishnan, Data Stream Algorithms for Vectors: Draft Chapter*. October 27, 2013.

