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19.1 Introduction

Computing the product of two matrices are appeared in many algorithms implicitly or explicitly. Let A be a
p × n matrix and B be a n × q matrix. Then, the running time of computing AB exactly is p · n · q (basic
3 “For” loops algorithm). We can boost the running time by breaking up these matrices into smaller k × k
block matrices and multiplying these block matrices together using Strassen’s algorithm with O(k2.8) arithmetic
operations [S69].

There are two main approaches using randomized algorithm to estimate AB, namely, the sampling approach
and Johnson-Lindenstrauss (JL) approach. In this lecture we talk about two examples of such approaches.

19.2 Frobenius and Spectral Norms

For a matrix A ∈ Rm×n, The Frobenius norm of A is defined as

‖A‖F =
( m∑
i=1

n∑
j=1

A2
ij

) 1
2 ,

the spectral norm of A defined as

‖A‖2 = sup
x∈Rn:‖x‖=1

‖Ax‖2 .

Let A(i) be the i-th column of A and A(j) be the j-th row of A.

19.3 Sampling Approach

The key observation in this approach is that we can write the product of two matrices as the sum of outer

products. More precisely, let A ∈ Rp×n and B ∈ Rn×q, then AB =
n∑
i=1

A(i)B(i). Then, we can sample columns

of A and rows of B based on a distribution and then outer product of the sampled columns and rows give a
good estimate of AB.

The following algorithm is given by [DKM06]. Let pi’s for 1 ≤ i ≤ n be a probability distribution which will be
determined later.
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Approximate Matrix multiplication (Sampling approach)
Input: A ∈ Rp×n, B ∈ Rn×q, and probability distribution pi’s for 1 ≤ i ≤ n, and t ∈ R+.
Output: Matrix C that its Frobenius distance to AB is “small”.

1. For k = 1 to t do

• Pick index jk ∈ [n] with probability pjk independently and with replacement.

• Set Ck =
A(jk)B(jk)

pk

2. Return C = 1
t

t∑
k=1

Ck.

First we show that in expectation the above algorithm returns AB.

Lemma 1 E[C] = AB.

Proof. In k-th iteration, the algorithm picks the j-th column of A and j-th row of B with probability pj so

E[Ck] =
n∑
j=1

pk(
A(jk)B(jk)

pjk
) =

n∑
j=1

A(j)B(j) = AB. So we have E[C] = 1
t

t∑
k=1

E[Ck] = AB, as desired.

In order to bound the deviation from the expectation, we give an upper bound on E[‖AB − C‖2F ] and then
apply the Markov’s inequality.

Lemma 2 E[‖AB − C‖2F ] = 1
t

( n∑
l=1

1
pl

∥∥A(l)
∥∥2

2

∥∥B(l)

∥∥2

2

)
− 1

t ‖AB‖
2
F .

Proof.

E[‖AB − C‖2F ] =

p∑
i=1

q∑
j=1

E[(AB − C)2
ij ] (19.1)

=

p∑
i=1

q∑
j=1

E
[(

E[C]− C
)2
ij

]
(19.2)

=

p∑
i=1

q∑
j=1

Var[(C)ij ]. (19.3)

Next we compute Var[(C)ij ].

Claim 1 Var[(C)ij ] = 1
t

n∑
l=1

A2
ilB

2
lj

pk
− 1

t (AB)2
ij.

Proof of Claim 1. Let Ck be the matrices defined in the algorithm. Then, E[(Ck)2
ij ] =

n∑
l=1

pl
(AilBlj

pl

)2
=

n∑
l=1

A2
ilB

2
lj

pl
.

Note that from Lemma 1 we conclude that E[(Ck)ij ]
2 = (AB)2

ij , together with the above line, we have

Var[(Ck)ij ] =
n∑
l=1

A2
ilB

2
lj

pl
− (AB)2

ij .
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Since Ck’s are independent, we have Var[(C)ij ] = 1
t2

t∑
k=1

Var[(Ck)ij ], and the claim follows.

Now the lemma follows from (19.3) and the above claim.

Since the smaller E[‖AB − C‖2F ] is the better is the approximation, we have to find a probability distribution
that minimizes this term. In the paper [DKM06], it was shown that the following probability distribution

minimizes E[‖AB − C‖2F ]: For 1 ≤ l ≤ n define

pk =

∥∥A(k)
∥∥

2

∥∥B(k)

∥∥
2

n∑
l=1

∥∥A(l)
∥∥

2

∥∥B(l)

∥∥
2

. (19.4)

So if we plug in (19.4) into Lemma 2, we get that

E[‖AB − C‖2F ] =
1

t

( n∑
l=1

∥∥∥A(l)
∥∥∥

2

∥∥B(l)

∥∥
2

)2 − 1

t
‖AB‖2F

≤ 1

t

n∑
l=1

∥∥∥A(l)
∥∥∥2

2

n∑
l=1

∥∥B(l)

∥∥2

2
− 1

t
‖AB‖2F

=
1

t
‖A‖2F ‖B‖

2
F −

1

t
‖AB‖2F

≤ 1

t
‖A‖2F ‖B‖

2
F ,

where the first inequality follows from Cauchy-Schwarz inequality.

Now we can apply Markov’s inequality to bound the deviation probability.

Pr
[
‖AB − C‖F ≥ ε ‖A‖F ‖B‖F

]
= Pr

[
‖AB − C‖2F ≥ ε

2 ‖A‖2F ‖B‖
2
F

]
≤ E

[
‖AB − C‖2F

]
ε2 ‖A‖2F ‖B‖

2
F

≤ 1

t · ε2
.

So for the input of the algorithm, we pick pj ’s as 19.4 describes and we set t to be O( 1
ε2 ). Then, the algorithm

gives a good estimation of the product of two matrices with high probability.

Some comments:

1. This algorithm runs with two passes over columns and rows of A and B respectively. In the first pass, we
compute the sampling probabilities and in the second pass we construct the matrix C.

2. In O(n) additional space we can keep
∥∥A(l)

∥∥
2

and
∥∥B(l)

∥∥
2

for 1 ≤ l ≤ n. Also with O(n) arithmetic
operations, we can compute pjs. Then, in the second pass, in each iteration we sample an index which takes
O(n) time and computing the outer product of a vector of size p by a vector of size q which takes O(p · q)
arithmetic operations. So in total, in the second pass we require additional O(t(n+ p · q)) time.

3. The algorithm might do poorly in the case of uniform sampling. Similar to the case of sum of bunch of
numbers with big range, then uniform sampling does poorly. The intuition says we have to pick the largest
number with higher probability.
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19.4 JL Approach

Another approach to approximate the product of two matrices is based on Johnson-Lindenstrauss dimensionality
reduction [S06] and [KN14].

Recall the (JL) theorem from Lecture 5. Given n vectors v1, ..., vn in Rd, there is a linear mapping f : Rd → Rk
where k = O( logn

ε2 ) such that for all pairs vi, vj we have

Pr
[
(1− ε) ‖vi − vj‖2 ≤ ‖f(vi)− f(vj)‖2 ≤ (1 + ε) ‖vi − vj‖2

]
≥ 1− δ.

Furthermore, f can be constructed with randomized algorithm in polytime.

Given a matrices A ∈ Rn×p and B ∈ Rn×q, the idea is to using f to reduce the dimensions of A and B to
k × p and k × q, respectively. Then, we show that the product of these projected matrices is close to ATB in
Frobenius norm.

Before we start, we need the following definition:

Definition 1 ((ε, δ, p)-JL moment) Distribution D over Rk×n has (ε, δ, p)-JL moment if for all x ∈ Rn with
‖x‖2 = 1,

E
Π∼D

[∣∣ ‖Πx‖22 − 1
∣∣p] ≤ εp · δ.

The following is an useful property of such distributions with JL moment property.

Lemma 3 If Π comes from an (ε, δ, l)-JL moment distribution D wherer l ≥ 2, then for all unit vectors
x, y ∈ Rn, we have

‖〈Πx,Πy〉 − 〈x, y〉|‖l ≤ 3εδ
1
l ,

where ‖X‖l := (E |X|l)
1
l for l ≥ 1. Note that by Minkowski’s inequality this defines a norm.

Proof. We can write

〈x, y〉 =
1

2

(
‖x‖22 ‖y‖

2
2 − ‖x− y‖

2
2

)
(19.5)

and similarly

〈Πx,Πy〉 =
1

2

(
‖Πx‖22 ‖Πy‖

2
2 − ‖Π(x− y)‖22

)
(19.6)

Subtracting (19.5) from (19.6), we get∣∣〈Πx,Πy〉 − 〈x, y〉∣∣ =
∣∣1
2

(
(‖Πx‖22 − 1) + (‖Πy‖22 − 1)− (‖Π(x− y)‖22 − ‖x− y‖

2
2)
)∣∣ (19.7)

≤ 1

2

∣∣ ‖Πx‖22 − 1
∣∣+

1

2

∣∣ ‖Πy‖22 − 1
∣∣+

1

2

∣∣ ‖Π(x− y)‖22 − ‖x− y‖
2
2

)∣∣, (19.8)

where the equality comes from the fact that x and y are unit norm vectors. Taking ‖.‖l from both sides in
(19.8) yields∥∥∣∣〈Πx,Πy〉 − 〈x, y〉∣∣∥∥

l
≤ 1

2

∥∥∥| ‖Πx‖22 − 1
∣∣∥∥∥
l
+

1

2

∥∥∥∣∣ ‖Πy‖22 − 1
∣∣∥∥∥
l
+

1

2

∥∥∥∣∣ ‖Π(x− y)‖22 − ‖x− y‖
2
2

)∣∣∥∥∥
l

≤ 1

2
(ε · δ 1

l + ε · δ 1
l + ‖x− y‖22 ε · δ

1
l )

≤ 3εδ
1
l ,
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where the second inequality follows from the the definition of (ε, δ, l)-JL moment property of D and definition

of ‖.‖l, and the last inequality follows from the fact that x and y are unit norm vectors so ‖x− y‖22 ≤ 22 = 4.

Now we can prove the main result of this section.

Theorem 1 Given two matrices A ∈ Rn×p, B ∈ Rn×q, and ε, δ ∈ (0, 1
2 ). Let D be any distribution over

matrices with k = O( 1
ε2 ·

1
δ ) rows with (ε, δ, l)-JL moment property for l ≥ 2. Then,

Pr
Π∼D

[ ∥∥(ΠA)T (ΠB)
∥∥
F
> 3ε ‖A‖F ‖B‖F

]
< δ.

Proof. Recall that ‖X‖ l
2

= E[X
l
2 ]

2
l and it is a norm for l ≥ 2. Then, we can write

∥∥∥∥∥(ΠA)T (ΠB)−ATB
∥∥2

F

∥∥∥
l
2

=

∥∥∥∥∥∥
n∑

i,j=1

(
〈ΠA(i),ΠB(j)〉 − 〈A(i), B(j)〉

)2
∥∥∥∥∥∥

l
2

(19.9)

=

∥∥∥∥∥∥
∑
i,j

∥∥∥A(i)
∥∥∥2

2

∥∥∥B(j)
∥∥∥2

2

(
〈Π A(i)∥∥A(i)

∥∥ ,Π B(j)∥∥B(j)
∥∥ 〉 − 〈 A(i)∥∥A(i)

∥∥ , B(j)∥∥B(j)
∥∥ 〉
)2
∥∥∥∥∥∥

l
2

(19.10)

≤
∑
i,j

∥∥∥A(i)
∥∥∥2

2

∥∥∥B(j)
∥∥∥2

2

∥∥∥∥∥
(
〈Π A(i)∥∥A(i)

∥∥ ,Π B(j)∥∥B(j)
∥∥ 〉 − 〈 A(i)∥∥A(i)

∥∥ , B(j)∥∥B(j)
∥∥ 〉
)2
∥∥∥∥∥

l
2

(19.11)

=
∑
i,j

∥∥∥A(i)
∥∥∥2

2

∥∥∥B(j)
∥∥∥2

2

∥∥∥∥∥〈Π A(i)∥∥A(i)
∥∥ ,Π B(j)∥∥B(j)

∥∥ 〉 − 〈 A(i)∥∥A(i)
∥∥ , B(j)∥∥B(j)

∥∥ 〉
∥∥∥∥∥

2

l

(19.12)

≤ (3εδ
1
l )2
∑
i,j

∥∥∥A(i)
∥∥∥2

2

∥∥∥B(j)
∥∥∥2

2
(19.13)

= (3εδ
1
l )2 ‖A‖2F ‖B‖

2
F , (19.14)

where (19.11) follows from Minkowski’s inequality, (19.12) follows from the fact that
∥∥X2

∥∥
l
2

= ‖X‖2l , and

(19.13) follows from Lemma 3.

By definition of ‖.‖l, and (19.14) we get that E[
∥∥(ΠA)T (ΠB)−ATB

∥∥l
F

]
2
l ≤ (3εδ

1
l )2 ‖A‖2F ‖B‖

2
F which implies

E[
∥∥(ΠA)T (ΠB)−ATB

∥∥l
F

] ≤ (3ε)lδ ‖A‖lF ‖B‖
l
F . (19.15)

Now we can apply Markov’s inequality:

Pr
Π∼D

[ ∥∥(ΠA)T (ΠB)−ATB
∥∥
F
> 3ε ‖A‖F ‖B‖F

]
= Pr

Π∼D

[ ∥∥(ΠA)T (ΠB)−ATB
∥∥l
F
> (3ε)l ‖A‖lF ‖B‖

l
F

]
≤

E[
∥∥(ΠA)T (ΠB)−ATB

∥∥l
F

]

(3ε)l ‖A‖lF ‖B‖
l
F

≤
(3ε)lδ ‖A‖lF ‖B‖

l
F

(3ε)l ‖A‖lF ‖B‖
l
F

= δ,
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where the last inequality follows from (19.15).

Some comments:

1. This algorithm only requires one pass over A and B.

2. We can construct distributions with (ε, δ, 2)-JL moment such that matrices in this distribution has k =
O( 1

ε2 ·
1
δ ) rows [TZ12], i.e., Π ∈ Rk×n. So the running time of the algorithm is based on computing ΠA, ΠB,

and (ΠA)T (ΠB) so the running time is O(knp+ knq + kpq).
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