
CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 16 (Oct 30, 2019): Selection
Lecturer: Mohammad R. Salavatipour Scribe: Aditya Jayaprakash

The topic in todays lecture will be about the process of selection. Suppose we are given a stream a1, . . . , an
where elements ai are from a domain D with a total order. Our goal is to find the ≈ n

2 element in the stream
i.e., finding the median. In the offline setting, there is an O(n) deterministic algorithm to find the median. For
simplicity, we will assume that all the elements are distinct.

Definition 1 Given a stream or set S over a domain D, we can define the rank of an element x ∈ D with
respect to s to be

rank(x, S) = |{y ∈ S : y ≤ x}|

rank(x, S) is the number of elements in S that are less than or equal to x. An element with rank |S|2 would be
the median element.

Munro and Patterson were the first to initiate the study of what we today call streaming algorithms in their
paper [MP80] where they studied selection and sorting problems in a stream fashion. In their model, the only
operation that is allowed on the underlying elements is a pairwise comparison. They also considered multi-pass
algorithms where we could go through the stream multiple times. They proved the following lower bound,

Theorem 1 (MP80) Any p-pass comparison-based algorithm to solve the selection problem on a stream of n
elements requires Ω(n1/p) space.

They also presented an algorithm would require Õ(n1/p) space for a multipass algorithm for p-passes.

Our goal is to show given space s and a stream of n elements, one one pass, we can reduce the problem

to an instance for selection over O
(
n log2 n

s

)
items. Suppose we choose s = n1/p log1−2/p n, then after i passes,

it reduces the instance to one having n1−i/p log2i/p n items. Hence, after p passes, we get O(s) items.

16.1 i-sample

Suppose we wish to find the element with rank k in a stream. During each pass through the stream, we wish
to filter the elements while still preserving some information. At the start of the ith pass, we have filters ai, bi
such that

ai ≤ rank-k element ≤ bi
Initially, we set a1 = −∞ and b1 = ∞. After the each pass, we wish to shrink the gap between ai and bi and
eventually arrive at finding the element with rank k. We will denote mi to be the number of elements between
ai and bi.

Definition 2 An i-sample of a set of size 2i · s is a sorted sequence of length s defined recursively as follows
where A ◦B is stream A followed by stream B:

• For i = 0, the 0-sample(A) = sort(A)

16-1

16-2 Lecture 16: Selection

• For i > 0, the i-sample(A ◦B) = sort(evens((i− 1)-sample(A)
⋃

evens((i− 1)-sample(B)))

For i = 0 the entire set S is sorted. For i+ 1, take 2i+1 · s elements, divide it into two different halves and take
an i-sample of each half, thin each one by taking even index items and merge the two thinned samples into a
sorted one of size s.

16.2 Selection

In this selection, we will introduce the more general version of selection. We are given a parameter 0 < φ ≤ 1
and we would like to return an element of rank φn.

The problem of ε-approximate quantile involves finding an element whose rank is (φ ± ε)n. In this case,
we want to find an element that is approximately close to the rank.

Suppose we select elements of rank in
k where k = 1

ε . We can think of a quantile summary Q as a set of
elements {q1, . . . , ql} along with an interval [rminQ(qi), rmaxQ(qi)] for each value of qi where rminQ(qi) is a
lower bound for the rank of qi in S and rmaxQ(qi) is an upper bound for the rank of qi in S.

Suppose q1 ≤ . . . ≤ ql where q1 is the minimum element in S and ql is the maximum element in S and
max
i

(rmaxQ(qi) − rminQ(qi)) ≤ 2ε|S|, Q can be used to give an ε-quantile summary. We will state this as a

lemma,

Lemma 1 Suppose Q is a quantile summary for S such that max
1≤i≤l

(rmaxQ(qi) − rminQ(qi)) ≤ 2ε|S|, then Q

is an ε-approximate quantile summary.

Proof. This proof is from [GK16]. Let r = dφ|S|e. We will identify an index i such that r − ε|S| ≤ rminQ(qi)
and rmaxQ(qi) ≤ r + ε|S|. Clearly, such a value qi approximates the φ-quantile to within the claimed error
bounds. We will now argue that such an index i must always exist.

Let e = max
i

(rmaxQ(qi+1) − rmaxQ(qi)/2. Consider the case r ≥ |S| − e. We have rminQ(ql) ≥ (1 − ε)|S|,
and therefore i = l has the desired propertt. We now focus on the case r < |S| − e, and start by choos-
ing the smallest index j such that rmaxQ(qj) > r + e. If j = 1, then j is the desired index since r + e <
rmaxQ(q1) ≤ ε|S|. Otherwise, j ≥ 2, and it follows that r − e ≤ rminQ(qj−1). If r − e > rminQ(qj−1), then
rmaxQ(qj) − rminQ(qj − 1) > 2e which is a contradiction since e = max

i
(rmaxQ(qi+1) − rmaxQ(qi)/2. By

our choice of j, we have rmaxQ(qj−1) ≤ r + e. Thus i = j − 1 is an index i with the above described property.

We know that we can take the union of two quantile summaries is also a quantile summary. Suppose we
are given a quantile Q′ = {x1, . . . , xa} and Q′′ = {y1, . . . , yb} are two quantile summaries for sets S′ and S′′.
We want to combine Q′ and Q′′ to be one quantile summary for S′∪S′′. We can view S = S′∪S′′ as a multiset.
We would like to keep the approximation of the resulting summary similar to those of Q′ and Q′′.

Suppose we combine Q′ and Q′′ i.e., let Q = Q′ ∪ Q′′ = {z1, . . . , za+b}. We will sort the union of sum-
maries and define new estimates. Choose some zi ∈ Q and suppose zi = xr for 1 ≤ r ≤ a and let ys be the

Lecture 16: Selection 16-3

largest element in Q′′ not larger than xr.

rminQ(zi) =

{
rminQ′(xr), if no such ys

rminQ′(xr) + rminQ′′(ys), otherwise

rmaxQ(zi) =

{
rmaxQ′(xr) + rmaxQ′′(ys), if yt is undefined

rmaxQ′(xr) + rmaxQ′′(yt)− 1, otherwise

We can state this as a lemma,

Lemma 2 Let Q′ be an ε′-approximate quantile summary for S′ and Q′′ be an ε′′-approximate quantile summary
for S′′, then Q = Q′∪Q′′ i.e., combining Q′ and Q′′ produces an ε-approximate quantile summary for S = S′∪S′′
where ε = ε′n′+ε′′n′′

n′+n′′ ≤ max{ε′, ε′′} where n′ = |S′| and n′′ = |S′′|.

Proof. This proof is from [GK16].Let n′ and n′′ denote the number of observations covered by Q′ and Q′′.
Consider any two consecutive elements zi, zi+1 in Q. From the last lemma we proved, it is sufficient to show
that rmaxQ(zi+1)− rminQ(zi) ≤ 2ε(n′ + n′′). We will analyze two cases. First, zi, zi+1 are both from a single
summary, say elements xr, xr+1 in Q′. Let ys be the largest element in Q′′ that is smaller than xr and let yt
be the smallest element in Q′′ that is larger than xr+1. Observe that if ys and yt are both defined, then they
must have consecutive elements in Q′′.

rmaxQ(zi+1)− rminQ(zi) ≤ (rmaxQ′(xr+1) + rmaxQ′′(yt)− 1)− (rminQ′(xr) + rminQ′′(ys))

≤ (rmaxQ′(xr+1) + rminQ′(xr)) + (rmaxQ′′(yt)− rminQ′′(ys)− 1)

≤ 2(2n′ε′ + n′′ε′′) = 2ε(n′ + n′′)

Otherwise, if only ys is defined, then it must be the largest element in Q′′; or if only yt is defined, it must be
the smallest element in Q′′. We can use the same analysis for these cases.

Next, we consider the case when zi and zi+1 come from different summaries, say, zi corresponds to xr in
Q′ and zi+1 corresponds to yt in Q′′. Then observe that xr is the largest element smaller than yr in Q′ and yt
is the smallest element larger than xr in Q′′. Moreover, xr+1 is the smallest element in Q′ that is larger than
yt, and yt−1 is the largest element in Q′′ that is smaller than xr. Using these observations, we get

rmaxQ(zi+1)− rminQ(zi) ≤ (rmaxQ′′(yt) + rmaxQ′(xr+1)− 1)− (rminQ′(xr) + rminQ′′(yt−1))

≤ (rmaxQ′′(yt)− rminQ′′(yt−1))− (rmaxQ′(xr+1) + rminQ′(xr)− 1)

≤ 2(2n′ε′ + n′′ε′′) = 2ε(n′ + n′′)

We will now discuss the Prune operation which takes two parameters, an ε-approximate quantile summary
Q′ and parameter B and produces a new quantile summary Q′ of size B + 1 with accuracy

(
ε′ + 1

2B

)
. We can

generate the output Q by by querying the element of Q′ with rank 1, |S|B ,
2|S|
B , . . . , |S|. For each qi ∈ Q , we

define

rminQ(qi) = rminQ′(qi) and rmaxQ(qi) = rmaxQ′(qi)

For any consecutive pairs qi, qi+1 ∈ Q, we have that

rmaxQ(qi+1)− rminQ(qi) ≤
i|S|
B

+ ε′|S| −
(

(i− 1)|S|
B

− ε′|S|
)
≤ |S|

B
+ 2ε′|S| =

(
2ε′ +

1

B

)
|S|

16-4 Lecture 16: Selection

16.3 An O
(

1
ε log

2(εn)
)
space algorithm

We will use ideas from a paper by Manku, Rajagopalan and Lindsey [MRL98] which was inspired by the

Munro-Paterson algorithm. Their algorithm was deterministic and used O
(

log2(εn)
ε

)
space. There are two new

operations we will introduce, New and Collapse.

Suppose we have l summaries of size k when a buffer summarizes k′ observations, then the weight of the

buffer is
⌈
k′

k

⌉
. The New operation will build a buffer with k new elements from the input. We will need to

reuse the buffer when we encounter new elements in the stream. We will combine the buffer and/or Prune
it. The Collapse operation makes it into a single suffer of the same size k. From the last section, we know
Prune produces some error.

Let b be the total number of buffers and let k be the size of the buffers. For simplicity, we will also as-
sume n

k is a power of 2. Consider a full binary tree with n
k leaves, each corresponding to k elements in a stream.

If we assign one buffer to k elements, we have a 0-error quantile summary for them.

We could assign a buffer of size k to an internal node to maintain an approximate quantile summary for
the elements of the stream in the subtree. That node would in turn use the buffers of it children and Prune it
to get a buffer. Suppose we have a node v with children u and w. The buffer of v can be produced by combining
the sum of u and w and Prune it back to size k to obtain v at an additional error of 1

2k . We build the buffer
at each node in a bottom-up fashion. Our output would be the quantile summary at the root of size k. The
total error of the algorithm can be evaluated by looking at the error at the root of the tree.

The height of the tree would be h = O
(
log n

k

)
and we need O(h) buffers. The quantile summaries at the

leaves have zero error since we store all the elements in the buffer, but at each level, the error increases by 1
2k .

Hence, after h levels, the error at the root is O
(
h
2k

)
. Suppose we want to obtain an ε-approximate quantile

summary, then we require h
2k ≤ ε. We would need to choose k ≥ log(2εn)

2ε in order to obtain an ε-approximate
quantile summary.

The total space usage is O(hk) and since h = log n
k , we have the total space complexity to be O

(
1
ε log2(εn)

)
.

[GK16] is a very useful and detailed survey on this topic.

References

MP80 J Ian Munro and Mike S Paterson,. Selection and sorting with limited storage. Theoretical Computer
Science, 12(3):315323, 1980.

MRL98 Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Approximate medians andother
quantiles in one pass and with limited memory. ACM SIGMOD Record, volume 27, pages 426435. ACM,
1998.

GK16 Michael Greenwalk and Sanjeev Khanna Quantiles and equidepth histograms over streams https://www.
cis.upenn.edu/~sanjeev/papers/quantiles-chapter.pdf In Data Stream Management: Processing
High-Speed Data Streams, ed. M. Garofalakis, J. Gehrke, and R. Rastogi, Springer, 2016

https://www.cis.upenn.edu/~sanjeev/papers/quantiles-chapter.pdf
https://www.cis.upenn.edu/~sanjeev/papers/quantiles-chapter.pdf

	i-sample
	Selection
	An O(1log2(n)) space algorithm

