
CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 15 (Oct 28, 2019): Sparsification, Connectivity, and Min-Cut
Lecturer: Mohammad R. Salavatipour Scribe: Ramin Mousavi

15.1 Introduction

We continue on the graph streaming algorithms. The material of this lecture is based on a survey by McGregor
[M14]. In this lecture, we talk about cut and spectral sparsifiers. These sparsifiers reduce the number of edges
of the graph while “approximately” preserving the size of all cuts and the spectrum of the Laplacian matrix.
Thus, we can speed up many graph algorithms that their running time depends on the number of edges of the
underlying graph at the cost of 1± ε approximation of the solution. We use sparsification to reduce the time of
answering question like whether a graph is k-edge connected or what is the size of the minimum cut in a graph.

15.2 Graph Sparsification

First, we need some background on spectral graph theory.

Given an n × n matrix A, we say v ∈ Rn is an eigenvector of A if Av = λv for some scalar λ. We call λ an
eigenvalue of A.

Given a graph G = (V,E) where |V | = n and |E| = m. Let w ∈ Rm+ be the vector of weights on the edges. The
adjacency matrix AG is an n× n matrix defined as follows:

(AG)i,j =

{
wij , if (i, j) ∈ E
0, otherwise.

Define the degree matrix DG as follows:

(DG)i,j =


n∑

k:(i,k)∈E
wik, if i = j

0, otherwise.

The Laplacian LG of the graph G is LG = DG −AG. Note that we have

(LG)i,j =


n∑

k:(i,k)∈E
wik, if i = j

−wij , if i 6= j.

Claim 1 For a vector x ∈ Rn, we have xTLGx =
∑

(u,v)∈E
wuv(xu − xv)2.

15-1

15-2 Lecture 15: Sparsification, Connectivity, and Min-Cut

Proof. Consider a graph Gu,v with two vertices u and v and an edge between them. Then,

LGu,v
=

[
1 −1
−1 1

]
.

Let xTu,v = [xu, xv] be the vector in R2. Then, it is easy to see that xTu,vLGu,v
xu,v = (xu− xv)2. Also, it is easy

to check that LG =
∑

(u,v∈E)

wuvLGu,v
. Thus, we can write

xTLGx =
∑

(u,v)∈E

wu,vx
T
u,vLGu,v

xu,v =
∑

(u,v)∈E

wuv(xu − xv)2.

We say that a matrix M is positive semidefinite (psd) if for all vectors x we have xTMx ≥ 0. By Claim 1, LG
is psd for any graph G.

A cut in a graph G = (V,E) is a partition of V into S and S̄ := V \ S. We define the size of a cut (S, S̄) to be
EG(S, S̄) =

∑
i∈S
j∈S̄

(i,j)∈E

wij . Now we are ready to formalize the definition of a cut sparsifier of a graph.

Definition 1 (Cut sparsification) A subgraph H of G, with possibly different edge weights, is a (1 ± ε)-cut
sparsifier if

∀S ⊆ V : (1− ε)EG(S, S̄) ≤ EH(S, S̄) ≤ (1 + ε)EG(S, S̄).

Spielman and Teng [ST11] introduced the more general notion of spectral sparsification than cut sparsification.

Definition 2 (Spectral sparsification) A subgraph H of G, with possibly different edge weights, is a (1± ε)-
spectral sparsifier if

∀x ∈ Rn : (1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx.

Note that (1± ε)-spectral sparsification implies (1± ε)-cut sparsification. Because, for any cut (S, S̄), let χS be
the characteristic vector of S. Then, EG(S, S̄) = χTSLGχS .

In our construction of spectral sparsifier for graphs in the streaming model, we use the following result as a
black box.

Theorem 1 (Batson, Spielman, and Srivastava [BSS12]) Given ε > 0, there is a deterministic algorithm
to find (1± ε)-spectral sparsifier using O(nε2) edges.

We use the following simple facts in our algorithm. These facts can be driven directly from the definition of
spectral sparsifiers.

Claim 2 Let G1 and G2 be two graphs on the same set of vertices, and let H1 and H2 be α-spectral sparsifiers
for G1 and G2, respectively. Then, H1 ∪H2 is an α-spectral sparsifier for G1 ∪G2.

Claim 3 Let H1 be an α-spectral sparsifier for G, and let H2 be a β-spectral sparsifier for H1. Then, H2 is an
α · β-spectral sparsifier for G.

Lecture 15: Sparsification, Connectivity, and Min-Cut 15-3

Here is a “Merge and Reduce” technique for constructing the spectral sparsifier of a graph in the streaming
model where edges only can be inserted and not to be deleted: The algorithm is based on hierarchical partitioning
of the stream. Let G = (V,E) be a graph that the edges coming in a stream. Let n := |V |, m := |E|. We
partition the stream of edges into t = m

l segments of length l := O(nγ2), for γ > 0 which will be determined

later. For simplicity, we assume that t is a power of 2. Let G0
i be the graph corresponding to the i-th segment

of edges. For j ∈ {1, ..., log t} and i ∈ {1, ..., t2j }, we define

Gji := Gj−1
2i−1 ∪G

j−1
2i .

Let A be the (1 ± γ)-spectral sparsification algorithm given in Theorem 1. Let H0
i := G0

i . Then, inductively

define Hj
i as follows:

∀j ≥ 1 : Hj
i := A(Hj−1

2i−1 ∪H
j−1
2i).

Note that by Claim 2 and 3, we conclude that H log t
1 is a (1± γ)log t-spectral sparsifier for G. Also notice that

each time we merge two graphs, we sparsify the merged graph in order to keep the space “small”. Setting γ to
be ε

logn , we get that H log t
1 is a (1± ε)-spectral sparsifier for G.

We can view this procedure as a binary tree. Each node Hj−1
2i−1 (except the root) will be replaced by Hj

i as soon

as its sibling, Hj−1
2i , has been computed. Therefore, in each level of the tree, we only keep two graphs of size

l = O(nγ2) (by Theorem 1). Hence, at any given time, the space we use is at most 2 · l · log t = O(n log3 n
ε2).

15.3 k-edge Connectivity

A graph G is k-edge connected if each cut (S, S̄) has size at least k, i.e., EG(S, S̄) ≥ k. In this section, we
are interested in answering the question that whether a graph is k-edge connected in the dynamic model where
edges might be deleted.

The algorithm relies on a simple fact about connectivity.

Lemma 1 Let G = (V,E) be a graph, and let F1 be a spanning forest of G 1. Inductively, define Fi =

(V,E \
i−1⋃
j=1

E(Fj)) for 2 ≤ i ≤ k be a spanning forest of G that does not have any edges from previous spanning

forests. Then, G is k-edge connected if and only if
k⋃
i=1

Fi is k-edge connected. We call
k⋃
i=1

Fi the skeleton of G.

Proof. Suppose
k⋃
i=1

Fi is k-edge connected. Since the edges of Fis are distinct, that implies that every cut of

G has size at least k and hence G is k-edge connected.

Now suppose G is k-edge connected. Consider a cut δ(S) = {(u, v) ∈ E : u ∈ S, v ∈ S̄}. If each Fi has a cut
edge in δ(S), then since Fis are distinct, we conclude that |δ(S)| ≥ k. So suppose that Fi does not have any

edge in δ(S). This means that δ(S) \
i−1⋃
j=1

E(Fj) = ∅ which implies |
i−1⋃
j=1

E(Fj)| = |δ(S)| ≥ k. Hence,
k⋃
i=1

Fi is

k-edge connected.

Recall that in the algorithm in the last lecture for connectivity, we construct a sketch of a graph which then
a spanning forest can be obtained from. Let A be algorithm to get this sketch. The algorithm for k-edge
connectivity is as follows:

1Here by spanning forest, we mean a subgraph of G that is a forest with minimum number of connected components.

15-4 Lecture 15: Sparsification, Connectivity, and Min-Cut

k-edge connectivity

1. In a single pass compute A1(G), ..., Ak(G), k pair wise independent sketches of G. Note that Ai(G) is
the sketch we construct for the connectivity (spanning forest) problem in the last lecture, i.e., having the
sketch Ai(G), we can construct a spanning forest for G.

2. In the post processing, construct the following k spanning forests: Let F1 be the spanning forest obtained
from A1(G). Then, let Fi be the spanning forest obtained from Ai(G−F1− ...−Fi−1) = Ai(G)−Ai(F1)−
... − Ai(Fi−1). In other words, first remove the edges of F1, ..., Fi−1 from the sketch Ai(G) and then
construct a spanning forest based on the resulting sketch.

3. Return “Yes” if
k⋃
i=1

Fi is k-edge connected and “No” otherwise.

Note that by the way of construction, Fis have distinct edges. The correctness of the algorithm follows from
Lemma 1.

Recall from the last lecture that each Ai(G) requires O(n · polylog n). We are using k many such sketches;
hence, the total space we use is O(k · n · polylog n).

Note that using Karger’s minimum cut algorithm, the running time of computing the minimum cut of
k⋃
i=1

is

O(k ·n·log k · n). If we wanted to compute the minimum cut of G directly, the running time would be O(n2 log n)
in the dense graphs that we have Ω(n2) edges.

15.4 Estimating Min-Cut

In this section, we use the following edge sparsification to estimate the size of the minimum cut in a graph in
the streaming model.

Edge sparsification

1. Sample each edge e with probability pe.

2. Weight each sampled edge e by 1
pe

.

Note that with the above sparsification, the expected value of the size of each cut will be preserved. Let λ be
the size of the minimum cut and let λe be the size of the minimum cut that separates the endpoints of e. For
some constant c1, Karger [K94] showed the following result.

Theorem 2 If pe ≥ min{1, c1λ−1ε−2 log n} in the above algorithm, then the resulting graph is a (1 ± ε)-cut
sparsifier with high probability.

Fung et al. [FHHP11] strengthened Karger’s result by showing that for some constant c2, the sampling proba-
bility could only depend on λe, i.e., pe ≥ min{1, c2λ−1

e ε−2 log n}.

Finally, Spielman and Srivistava [SS11] showed that if pe ≥ min{1, c3reε−2 log n} where re is the effective
resistance of edge e and c3 is a constant, then the resulting graph is (1± ε)-spectral sparsifier.

Lecture 15: Sparsification, Connectivity, and Min-Cut 15-5

Now, we use Theorem 2 to give an estimation on the min-cut.

Min-cut estimator

1. Let k = 3c1ε
−2 log n.

2. Let Gi be the graph obtained from G by including an edge with probability 1
2i , and let Hi be a k-skeleton

of Gi obtained from k-edge connectivity algorithm, see Lemma 1 for the definition of k-skeleton.

3. Let j = min{i : mincut(Hi) < k}.

4. Return 2j ·mincut(Hj).

Let q be the sampling probability in Theorem 2, i.e., q = min{1, c1λ−1ε−2 log n}.

Lemma 2 With high probability, for i ≤ blog 1
q c, we have 2i ·mincut(Hi) is a (1±ε) approximation of minimum

cut of G.

Proof. If the mincut(Gi) < k, then mincut(Hi) = mincut(Gi). By Theorem 2, we know that Gi is 1
2i (1± ε)-

cut sparsifier of G (note that in the sampling Gi of G we did not adjust the weight as in the algorithm Edge
sparsification and that is why we have the factor 1

2i in the estimation); hence, 2i · mincut(Hi) is (1 ± ε)
approximation of G.

It remains to show that with high probability mincut(Gi) < k. Let i = blog 1
q c, then we have

E[mincut(Gi)] ≤
1

2i
λ ≤ 2qλ ≤ 2c1ε

−2 log n.

Using Chernoff bound (note that we sample each edge independently), we get that with high probability
mincut(Gi) ≤ 3c1ε

−2 log n = k, as desired.

By the above lemma, we conclude that the Min-Cut estimator terminates by sampling at most log 1
q many

subgraphs of G. For each subgraph, we are computing a k-skeleton which uses O(k · n · polylog n) = O(n ·
polylog n); hence, we the total space used in the algorithm is O(npolylog n).

Note that we used k-skeleton because the running time of computing the minimum cut on a sparse graph is
much less than a dense graph, please see the discussion at the end of Section 15.3.

References

ST11 D. A. Spielman and S.-H. Teng, Spectral sparsification of graphs. SIAM J. Comput., 40(4):981-1025,
2011.

BSS12 J. D. Batson, D. A. Spielman, and N. Srivastava, Twice-Ramanujan sparsifier. SIAM J. Comput.,
41(6):1704-1721, 2012.

M14 A. McGregor, Graph stream algorithms: a survey. ACM SIGMOD Record, 43.1 (2014): 9-20.

FHHP11 W. S. Fung, R. Hariharan, N. J. A. Harvey, and D. Panigrahi, A general framework for graph
sparsification. In ACM Symposium on Theory of Computing, pages 71-80, 2011.

15-6 Lecture 15: Sparsification, Connectivity, and Min-Cut

K94 D. R. Karger, Random sampling in cut, flow, and network design problems. In ACM Symposium on
Theory of Computing, pages 648-657, 1994.

SS11 D. A. Spielman and N. Srivastava, Graph sparsification by effective resistances. SIAM J. Comput,
40(6):1913-1926, 2011

