
CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 13 (Oct 21, 2019): Graph Stream Algorithms
Lecturer: Mohammad R. Salavatipour Scribe: Brandon Fuller

13.1 Graph Streams

In the graph streaming model, our tokens consist of edges of the graph. We will only be dealing with undirected
and unweighted graphs. The number of vertices of the graph is n = |V | and the number of edges is m = |E|. In
these models, m is generally much larger than n. Most algorithms that we will deal with will use Ω(n) space.
Below is a list of some common problems.

• Connectivity

• Distance Queries or Shortest path

• Triangle Counting

• Bipartite

• Cuts / Partitions of Vertices

13.1.1 Connectivity

We start with an easy graph streaming problem which is connectivity. Precisely we want to know whether the
given graph is connected. Unlike other problems that we have solved, this is just a yes or no answer. The basic
idea is to maintain a collection of trees that form a spanning forest as the edges come, we merge to components
if the end-points of the new edge belong to different components. We use a union-find (or disjoint-set) data
structure which maintains what elements are in the same components. If you ever have one component, then
you know it is a connected graph. This is basically like maintaining a spanning forest at any point in time.

Connectivity

1. UF ← union-find with n elements for each vertex of G

2. c← 0

3. While there is still another token (u, v) do:

• If u not connected to v in UF :

– Connect u and v in UF

– c← c+ 1

4. Return yes if c = n− 1, otherwise return no

Clearly this answers the question exactly as we can add at most n − 1 edges, and once we have done so we
must have connected the whole graph. Since union-find uses O(n) entries (or words) of space we know that this

13-1

13-2 Lecture 13: Graph Stream Algorithms

algorithm uses O(n log n) bits. Depending on which union-find we use, the time complexity can be O(n log n),
or O(nα(n)) (where α is the inverse Ackermann function, which is essentially constant).

13.1.2 Shortest Path Estimation

We now will present an algorithm and analysis to estimate the shortest path from a stream of edges. Let
dG(u, v) denote the length of the shortest u, v path in the graph G. We say a subgraph H, E(H) ⊆ E(G) is a
t-spanner (t ≥ 1) subgraph if ∀u, v ∈ V , dG(u, v) ≤ dH(u, v) ≤ tdG(u, v). Our algorithm is going to maintain
a t-spanner subgraph which we will use to estimate the shortest paths in the original graph.

Shortest Path Estimator

1. V (H)← V , E(H)← ∅

2. While there is still another token (u, v) do:

• If dH(u, v) > t then:

– E(H)← E(H) ∪ {(u, v)}

3. For each u, v return dH(u, v) as an estimate for dG(u, v)

We will first prove that this graph H is indeed a t-spanner and then we will show the space complexity for
maintaining this subgraph.

Lemma 1 The output of the Shortest Path Estimator Algorithm is a t-spanner subgraph of G.

Proof. Suppose that u = u0, u1, . . . , uk = v is a shortest path from u to v in G. When edge (ui, ui+1) is given
from the stream, either dH(ui, ui+1) > t in which case we add it, or dH(ui, ui+1) ≤ t in which case we do not
add it. In either case, after that edge is processed, dH(ui, ui+1) ≤ t. Thus after the algorithm

dH(u, v) ≤
k−1∑
i=0

dH(ui, ui+1) ≤ tk = tdG(u, v)

Also, it is clear that dG(u, v) ≤ dH(u, v) since H is a subgraph.

The girth of a graph G is the size of the shortest cycle in G. We use the following lemma and theorem to prove
the space complexity.

Lemma 2 After the algorithm has finished, the girth of H is at least t+ 2.

Proof. Suppose towards a contradiction that there is a cycle C = v1v2 . . . vk that has size k ≤ t+ 1. Suppose
that the edge (vi, vi+1) was the last edge of C which was added to H. Then at the point before it was added,
dH(vi, vi+1) ≤ k − 1 ≤ t which contradicts adding it.

Theorem 1 A graph with girth 2t+ 1 has at most O(n1+ 1
t) edges.

Proof. Suppose G is a 2t + 1-girth graph and let d = 2m
n be the average degree of vertices. Iteratively delete

vertices with degree strictly less than d
2 . Let F be the resulting graph of this process. We see that if we deleted

Lecture 13: Graph Stream Algorithms 13-3

n vertices, this means we would have to have deleted strictly less than nd2 = n 2m
n = m edges but this would be

a contradiction. Thus, F is non-empty and has min-degree δ ≥ d
2 . If we ran a BFS from a node in F up to t

levels, we must have no cycles and thus (d2 − 1)t ≤ n. Which, after substituting 2m
n in for d and solving for m,

we get m ≤ n1+ 1
t + n.

We now present the following theorem (without proof) which we use to explain our space complexity.

Theorem 2 There are graphs with girth Ω(t) and have Ω(nt+
1
t) edges.

Such a graph would have 2Ω(n1+ 1
t) subgraphs. Our estimator would have to be able to distinguish between them

and thus we need log(2Ω(n1+ 1
t)) = Ω(n1+ 1

t) bits of space for a t-estimator.

13.1.3 Triangle Counting

A triangle in a graph is any three vertices that are all adjacent. In this section, our goal is to estimate T , the
number of triangles in a graph. An example would be, given a friendship network, how often do two friends
have a common friend.

Let x be a vector of dimension
(
n
3

)
where xS is the number of edges among the vertices in the set S, where |S| = 3.

Then T is just the number of coordinates in x with xS = 3. We note that Fp(x) =
∑
S x

p
S = 1pT1 + 2pT2 + 3pT3

where Ti is the number of elements in x with value i.

Claim 1 T = F0 − 1.5F1 + 0.5F2.

Proof. For a set S, if xS = 0 then the amount that it contributes to the RHS is 0. If xS = 1 then the amount
that it contributes is 1 − 1.5 · 1 + 0.5 · 1 = 0. Similarly if xS = 2 then it contributes 1 − 1.5 · 2 + 0.5 · 22 = 0.
Finally, if xS = 3 then it contributes 1− 1.5 · 3 + 0.5 · 32 = 1.

Suppose we have γ-estimators for F0, F1, F2, say F̂0, F̂1, F̂2. Specifically, |Fi − F̂i| ≤ γFi. Then if we have the
estimator T̂ = F̂0 − 1.5F̂1 + 0.5F̂2.

Claim 2 max(F0,
F2

9) ≤ F1 < mn

Proof. Obviously, F0 ≤ F1 so we need to show F2

9 ≤ F1. This can be seen since the largest possible value for
each element in the vector x is 3. F1 < mn since each edge contributes to less than n elements of x.

This finally gives |T̂−T | ≤ γ(F0−1.5F1+0.5F2) ≤ 4γmn. If we want an ε-estimator then we need 4γmn
T ≤ ε which

means γ ≈ Tε
4mn which only really works if T is large. This would also require O(γ−2 log n) = O((mnεt)2 log n)

space where t is a lower bound for the number of triangles.

References

BKS02 Z. Bar-Yossef, R. Kumar, and D. Sivakumar, Reductions in streaming algorithms, with an ap-
plication to counting triangles in graphs. In Proc. of the 2002 Annual ACM-SIAM Symp. on Discrete
Algorithms, 623-632, 2002.

FKMSZ05 J. Feigenbaum, S. Kannan, A. McGregor, S.Suri, and J. Zhang, On graph problems in a semi-
streaming model. Theoretical Computer Science, 348(2-3): 207-216, 2005.

13-4 Lecture 13: Graph Stream Algorithms

M14 A. McGregor, Graph stream algorithms: A survey. SIGMOD Record, 43: 9-20, 2014.

