CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 11 (Oct 9, 2019): [p-sampling and ly-sampling
Lecturer: Mohammad R. Salavatipour Scribe: Aditya Jayaprakash

In the previous lecture, we discussed various approaches to sampling, namely reservoir sampling and priority
sampling. The lecture ended with the introduction to ly-sampling and an algorithm for lp-sampling. In this
lecture, we will begin by analyzing the ly-sampling algorithm from last lecture.

Let us recall, in the general [,-sampling setting, we are given a non-zero vector a = (as,...,a,) € R" and
we want a random element r € [n] such that

11.1 Analysis of [j-sampling

In the algorithm, we used a hash function h : [n] — [n3] which is k-wise independent and chosen uniformly
at random from a O(s)-universal hash family where s = O (max{log%,log+}). We also defined a[j] by the

P .
ollowing, \
a[ ] - Q;, if h(l) S 7217

Ji = 0, otherwise

We must note the following,

e a[0] is the same as a.
e a[l] is a vector which has approximately half the coordinates of a while the rest are zero.

e a[2] is a vector which has approximately quarter the coordinates of a while the rest are zero.

The algorithm gives the vector a[j] as input to an s-sparse detection and recovery algorithm for s = log (%) We
then choose the first vector for which the recovery succeeds and returns a random coordinate from the smallest
j such that a[j] is s-sparsse. We must also note that

N = lallo
N; = llalf]llo
We would like to have an estimate of the expected value in order to bound the probability using concentration
inequalities later. Let j be such that
< <E[N;] <
We wish to compute the probability of 1 < ||a;|lo < s. Since we have an estimate of the expected value, we can
use the Chernoff bound,

—r2E[N;]
PIIN; — E[N;]| > rE[N;]] < e =
< 2—9(3)
. 1
< ¢ since s = O <log 5)
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Hence, with high probability, a[j] will be s-sparse. Suppose k = O (%) and h is chosen uniformly at random

from a k-universal hash family, then for any non-zero coordinate of j of vector a, we have

. . 1+e€
P[a‘rg ma‘Xi:aqy;éO h(Z) = .]} = N

11.2 [;-sampling

We will now study the algorithm for lo-sampling by A. Andoni, R. Krauthgamer and K. Onak in [AKO18].

Suppose we have a frequency vector f = (fi,..., f,) where F» = >, f? is the second moment. In the Iy
sampling problem, we wish to sample I € [n] based on the following,
f?
PI=i=(1+¢
I=i= (%97

For simplicity, we will assume F; = 1. The algorithm is as follows,

lo-sampling

1. For each i, let u; € (0,1].

2. Let w; = \/%

3. Let gi = wifi = \}?71

. Let g=(g1,---,9n)-

. Suppose there is some large threshold value t:

4
5
6. If there is a unique i such that g2 >t (i.e., for all j # 4, g2 < t),
7 Then return (i, f;).

8

. Fail otherwise.

We will now calculate the probability of some i € [n] being returned. This would happen when

Plg? >t N\ gl <t| =Plg? >t] [[Pls} <]

J#i J#i
12 f?
:P[Ulgg HP u]'>7]
J#i
very large
t

Hence, the probability that some ¢ is returned would be approximately be the sum of probability of each 4

; t t t t

We used the fact that F» = 1 for the above inequality. In order to boost the probability, we use the standard
trick of boosting the probability by running it O (t log %) to have a probability of § for some element to be
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returned.

Next, we will look at another ls-sampling algorithm, called l5-precision sampling.

11.3

We can describe the algorithm as follows,

[s-precision sampling
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lo-precision sampling

1. Let uy,...,u, € [#,1]

3. Given (j,c), we feed (

)

5. Let fj = g]\/m

2. Let D be a CountSketch for g = (g1, ...

2 Gn)-

to our CountSketch D.

4. Let g; be an estimate for g; from D.

~2

e 2 95 4

X, = 1, 1fgj—u—’jzg
0, otherwise

7. If there exists a unique j with X; = 1, then return (g, f7).

Lemma 1 Let Fh =}, f? and Fo(f) = 32, 97 Suppose F» =1, then Fi(g) < O(logn).

Proof.

Suppose we use CountSketch with parameters (k,d) for g; where k = O (%) and d = O(logn).

write QJQ» as the following,

< 5logn = O(logn)

i =i+ 7

We can
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where Z; was the sum of contribution of ¢ # j where their hash functions collide. We showed E[Z;] < FQ,EQ ) and

using Markov’s inequality, we get

3F2(9)] < ;

2
]P’{Zj > =

In this case, with probability greater than %, we have Z]2 < 3eFy(g). We will use the fact 1+ ¢ ~ e*¢ many
times in our analysis.

e Case 1: When |g;| > 2

This would imply
P =(g;+2;)* =92 +2Z;9;,+ 22
—_————

small

The latter term is small because E[Z;] < legg) and k= O (loﬁ)

e Case 2: When |g;| > 2

This would imply

57— 95| = (95 + Z;)* — g}
2
= Zj +2g]ZJ

4
gZJ?(1+>
€

= 6eZJ2

Hence, with probability %, we have that |§]2 — gj2| < %i(g). Suppose we choose k = O (lo%} then with
probability greater than 1 — ({5 + %), we have F5(g) < 50logn and Z; < %@.

Suppose we have
G=0%eg +1 = ff=0%ef +u;

£2
Suppose X; = 1, that means u; << % which implies

fF=0xefi+ :

= [i=01£0(e)f}
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