
CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 11 (Oct 9, 2019): l0-sampling and l2-sampling
Lecturer: Mohammad R. Salavatipour Scribe: Aditya Jayaprakash

In the previous lecture, we discussed various approaches to sampling, namely reservoir sampling and priority
sampling. The lecture ended with the introduction to l0-sampling and an algorithm for l0-sampling. In this
lecture, we will begin by analyzing the l0-sampling algorithm from last lecture.

Let us recall, in the general lp-sampling setting, we are given a non-zero vector a = (a1, . . . , an) ∈ Rn and
we want a random element r ∈ [n] such that

P[r = i] =
|ai|p∑
i |ai|p

11.1 Analysis of l0-sampling

In the algorithm, we used a hash function h : [n] → [n3] which is k-wise independent and chosen uniformly
at random from a O(s)-universal hash family where s = O

(
max{log 1

ε , log 1
δ }
)
. We also defined a[j] by the

following,

a[j]i =

{
ai, if h(i) ≤ n3

2j

0, otherwise

We must note the following,

• a[0] is the same as a.

• a[1] is a vector which has approximately half the coordinates of a while the rest are zero.

• a[2] is a vector which has approximately quarter the coordinates of a while the rest are zero.

The algorithm gives the vector a[j] as input to an s-sparse detection and recovery algorithm for s = log
(

1
δ

)
. We

then choose the first vector for which the recovery succeeds and returns a random coordinate from the smallest
j such that a[j] is s-sparsse. We must also note that

N = ||a||0
Nj = ||a[j]||0

We would like to have an estimate of the expected value in order to bound the probability using concentration
inequalities later. Let j be such that

s

4
≤ E[Nj] ≤

s

2
We wish to compute the probability of 1 ≤ ||aj ||0 ≤ s. Since we have an estimate of the expected value, we can
use the Chernoff bound,

P[|Nj − E[Nj]| ≥ rE[Nj]] ≤ e
−r2E[Nj]

3

≤ 2−Ω(s)

≤ δ since s = O

(
log

1

δ

)

11-1

11-2 Lecture 11: l0-sampling and l2-sampling

Hence, with high probability, a[j] will be s-sparse. Suppose k = O
(

1
ε

)
and h is chosen uniformly at random

from a k-universal hash family, then for any non-zero coordinate of j of vector a, we have

P
[
arg maxi:ai 6=0 h(i) = j

]
=

1± ε
N

11.2 l2-sampling

We will now study the algorithm for l2-sampling by A. Andoni, R. Krauthgamer and K. Onak in [AKO18].
Suppose we have a frequency vector f = (f1, . . . , fn) where F2 =

∑
i f

2
i is the second moment. In the l2

sampling problem, we wish to sample I ∈ [n] based on the following,

P[I = i] = (1± ε)f
2
i

F2

For simplicity, we will assume F2 = 1. The algorithm is as follows,

l2-sampling

1. For each i, let ui ∈ (0, 1].

2. Let wi = 1√
ui

3. Let gi = wifi = fi√
ui

4. Let g = (g1, . . . , gn).

5. Suppose there is some large threshold value t:

6. If there is a unique i such that g2
i ≥ t (i.e., for all j 6= i, g2

i < t),

7. Then return (i, fi).

8. Fail otherwise.

We will now calculate the probability of some i ∈ [n] being returned. This would happen when

P

g2
i ≥ t

∧
j 6=i

g2
j < t

 = P
[
g2
i ≥ t

]∏
j 6=i

P
[
g2
j < t

]
= P

[
ui ≤

f2
i

t

]∏
j 6=i

P

[
uj >

f2
j

t

]
︸ ︷︷ ︸

very large

≈ f2
i

t

Hence, the probability that some i is returned would be approximately be the sum of probability of each i∑
i

f2
i

t
=

∑
i f

2
i

t
=
F2

t
=

1

t

We used the fact that F2 = 1 for the above inequality. In order to boost the probability, we use the standard
trick of boosting the probability by running it O

(
t log 1

δ

)
to have a probability of δ for some element to be

Lecture 11: l0-sampling and l2-sampling 11-3

returned.

Next, we will look at another l2-sampling algorithm, called l2-precision sampling.

11.3 l2-precision sampling

We can describe the algorithm as follows,

l2-precision sampling

1. Let u1, . . . , un ∈
[

1
n2 , 1

]
2. Let D be a CountSketch for g = (g1, . . . , gn).

3. Given (j, c), we feed
(
j, c√

uj

)
to our CountSketch D.

4. Let ĝj be an estimate for gj from D.

5. Let f̂j = ĝj
√
uj .

6.

Xj =

{
1, if ĝ2

j =
ĝ2j
uj
≥ 4

e

0, otherwise

7. If there exists a unique j with Xj = 1, then return (j, f2
j).

Lemma 1 Let F2 =
∑
j f

2
j and F2(f) =

∑
i g

2
i . Suppose F2 = 1, then F2(g) ≤ O(log n).

Proof.

F2(g) =
∑
i

g2
i

=
∑
i

f2
i

ui

≤ F2

∫ 1

1
n2

1

u
· du

= F2
lnn2

1− 1
n2

≤ 5 log n = O(log n)

Suppose we use CountSketch with parameters (k, d) for gi where k = O
(

1
ε

)
and d = O(log n). We can

write ĝ2
j as the following,

ĝ2
j = g2

j + Z2
j

11-4 Lecture 11: l0-sampling and l2-sampling

where Zj was the sum of contribution of i 6= j where their hash functions collide. We showed E[Zj] ≤ F2(g)
k and

using Markov’s inequality, we get

P
[
Z2
j >

3F2(g)

k

]
<

1

3

In this case, with probability greater than 2
3 , we have Z2

j < 3εF2(g). We will use the fact 1 ± ε ≈ e±ε many
times in our analysis.

• Case 1: When |gj | ≥ 2
ε

This would imply
ĝ2
j = (gj + Zj)

2 = g2
j + 2Zjgj + Z2

j︸ ︷︷ ︸
small

The latter term is small because E[Zj] ≤ F2(g)
k and k = O

(
logn
ε

)
.

• Case 2: When |gj | > 2
3

This would imply

|ĝ2
j − g2

j | = (gj + Zj)
2 − g2

j

= Z2
j + 2gjZj

≤ Z2
j

(
1 +

4

ε

)
= 6εZ2

j

Hence, with probability 2
3 , we have that |ĝ2

j − g2
j | <

18F2(g)
εk . Suppose we choose k = O

(
logn
ε

)
, then with

probability greater than 1−
(

1
10 + 1

3

)
, we have F2(g) ≤ 50 log n and Zj ≤ 3F2(g)

k .

Suppose we have
ĝ2
j = (1± ε)g2

j ± 1 =⇒ f2
j = (1± ε)f2

j ± uj

Suppose Xj = 1, that means uj <<
εf̂2

j

4 which implies

f̂2
j = (1± ε)f2

j ±
εf̂2
j

4

=⇒ f̂2
j = (1±O(ε))f2

j

References

AKO18 A. Andoni, R. Krauthgamer and K. Onak, Streaming Algorithms via Precision Sampling. IEEE
52nd Annual Symposium on Foundations of Computer Science , Pages 363-372 , 2011.

