
CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 10 (Oct 7, 2019): Weighted and Priority Sampling
Lecturer: Mohammad R. Salavatipour Scribe: Ramin Mousavi

10.1 Introduction

Last lecture we discussed how to sample an item uniformly at random from a stream1 when all items have a
unit weight. For sampling k > 1 elements with replacement we can also run our 1-sampling routine for k times.
In this lecture we give an algorithm for sampling k ≥ 1 elements without replacement in a stream that elements
might have different weights. This problem is called weighted random sampling with a reservoir. Then, we talk
about priority sampling which we are given a stream where each item might have different weights and we want
to select a representative sample of items so that we can answer subset sum queries. At the end we give a
l0-sampling and in the next lecture we will analyze it.

10.2 Weighted Sampling with a Reservoir

In the weighted sampling without replacement in the most general case, we have a stream x1, ..., xn with positive
weights w1, ..., wm and we want to sample k ≥ 1 distinct items such that the probability that the first item that
is chosen is xi1 , second item is xi2 ... , the k-th item is xik is

wi1
W
· wi2
W − wi1

· ... · wik
W − wi1 − ...− wik−1

, (10.1)

where W is the total weights of the items, i.e., W =
n∑
i=1

wi.

Note that for k = 1 we can easily adapt the 1-sampling with replacement’s algorithm from the last lecture in
the following way: when we see an element xi, pick xi with probability wi

i∑
j=1

wj

. The following algorithms is due

to [ES06].

1Note that we do not know the number of elements in the stream in advance.

10-1

10-2 Lecture 10: Weighted and Priority Sampling

Weighted Random Sampling with a Reservoir

1. Let S[1...k]← ∅

2. i← 0

3. While there is a new element in the stream do

i← i+ 1

Pick ri uniformly at random from (0, 1)

w′i ← r
1
wi
i

If i ≤ k
add (xi, w

′
i) to S

Else

Update S by keeping the largest k values respect to w′is.

4. Return S in a non-increasing manner, i.e., the item with the largest w′i in S comes first and so on (this
will be helpful in the analysis later).

We show that the above algorithm works correctly for the case that there are two items in the stream x1, x2
and k = 1. The argument for the general case is similar and is left as an exercise.

Lemma 1 Let r1, r2 be two numbers drawn independently from uniform distribution over (0, 1). Let X1 = r
1

w1
1

and X2 = r
1

w2
2 for w1, w2 > 0. Then,

Pr[X1 ≤ X2] =
w2

w1 + w2
.

Proof. Let X = r
1
w for any w > 0 where r ∼ (0, 1). Then, cumulative distribution function for X is

FX(t) := Pr[X ≤ t] = Pr[r
1
w ≤ t] = Pr[r ≤ tw] = tw.

So the probability density function for X is fX(t) = dFX(t)
dt = wtw−1.

Pr[X1 ≤ X2] =

∫ 1

t2=0

∫ t2

t1=0

fX1(t1)fX2(t2)dt1dt2

=

∫ 1

t2=0

fX2
(t2)dt2

∫ t2

t1=0

fX1
(t1)dt1

=

∫ 1

t2=0

fX2
(t2)FX2

(t2)dt2

=

∫ 1

0

w2t
w2−1tw1dt

=
w2

w1 + w2
.

In the case that the stream is x1, x2 and k = 1, Lemma 1 implies that Pr[xi is chosen] = wi

w1+w2
for i = 1, 2, as

desired.

Lecture 10: Weighted and Priority Sampling 10-3

Now we state the more general lemma related to our sampling algorithm.

Lemma 2 Let r1, ..., rn be the numbers drawn independently from uniform distribution over (0, 1). Let Xi = r
1
wi
i

for 1 ≤ i ≤ n. Then, for any α ∈ [0, 1] we have

Pr[X1 ≤ X2 ≤ ... ≤ Xn ≤ α] = αw1+...+wn

n∏
i=1

wi
w1 + ...+ wi

.

Proof. Apply induction on n and use Lemma 1 as the based case.

Lemma 2 immediately implies the following fact.

Corollary 1 The probability that Xj is the largest value among X1, ..., Xn is
wj

w1+...+wn
.

Proof. WLOG, we can assume j = n. Let Sn−1 be the set of all permutations for 1, ..., n− 1. So

Pr[Xn is the largest] =
∑

σ∈Sn−1

Pr[Xσ(1) ≤ ... ≤ Xσ(n−1) ≤ Xn]

=
wn

w1 + ...+ wn
(

∑
σ∈Sn−1

Pr[Xσ(1) ≤ ... ≤ Xσ(n−1)])

=
wn

w1 + ...+ wn
,

where the second equality holds by applying Lemma 2 with α = 1, and the last equality follows because the
sum inside the parenthesis is 1.

Theorem 1 The Weighted Random Sampling with a Reservoir algorithm outputs a set S with k distinct items
and the probability of choosing xi1 first, xi2 second and xik in the k-th round is equal to (10.1).

Proof. The probability that Xi1 is the largest (it should be in order to be output first) by Corollary 1 is
wi1

w1+...+wn
. Then, we can condition on Xi1 to be the largest and use the fact that Xis are independent (since

ris are independent).

10.3 Priority Sampling

In the priority sampling problem, we are given a stream σ = x1, ..., xn with non-negative weights w1, ..., wn. We
want to answer the following query: given a subset of indices I ⊆ [n], output

∑
i∈I

wi. For a given k, we describe

an algorithm that finds a sample S ⊆ [n] of size at most k such that for a given I ⊆ [n] it approximates the
value of

∑
i∈I

wi. For a given k, we describe an algorithm that finds a sample S ⊆ [n] with high probability.

The following is the priority sampling algorithm due to [DLT07].

10-4 Lecture 10: Weighted and Priority Sampling

Priority Sampling

1. For each item i ∈ [n] we see in the stream, pick uniformly at random ui ∈ (0, 1].

2. Compute priority qi of item i which is qi := wi

ui
.

3. Always keep the items with the largest k priorities and call this set S. Also keep the (k + 1)-th largest
priority τ .

4. Given a set I ⊆ [n], return ŴI =
∑

j∈I∩S
max{τ, wj}.

Define ŵi as follows:

ŵi :=

{
max{τ, wi}, if i ∈ S
0, otherwise,

where τ is the k + 1-th largest priority obtained from the algorithm. In the next lemma, we show that in
expectation we get what we wanted.

Lemma 3 E[ŵi] = wi.

Proof. Let A(τ ′) be the event that the (k+ 1)-th largest priority is τ ′. Then, for all i ∈ S we have qi ≥ τ ′ and
ŵi = max{τ ′, wi}. For i /∈ S, we have qi ≤ τ ′ and ŵi = 0.

We consider two cases:

Case 1 (When wi ≥ τ ′): Pr[i ∈ S| A(τ ′)] = 1 and ŵi = wi, since qi = wi

ui
> τ ′ so it is selected in S. So

E[ŵi] = 1 · wi = wi.

Case 2 (When wi < τ ′): Pr[i ∈ S| A(τ ′)] = Pr[wi

ui
≥ τ ′] = Pr[ui ≤ wi

τ ′] = wi

τ ′ , and ŵi = τ ′. So

E[ŵi] = wi

τ ′ · τ
′ = wi.

So we have E[ŵi] = wi. Also in expectation we satisfy the subset sum query because of the linearity of
expectation.

Next we compute the variance of ŵi. Let v̂i be

v̂i :=

{
τ max{0, τ − wi}, if i ∈ S
0, otherwise.

Lemma 4 Var[ŵi] = E[v̂i].

Proof. Omitted!

We can also show that Cov(ŵi, ŵj) = 0. In fact we can show that

E[
∏
i∈I

ŵi] =

∏
i∈I

wi, if |I| ∈ k

0, otherwise.

This implies the following fact about the variance.

Lecture 10: Weighted and Priority Sampling 10-5

Lemma 5 Var[
∑
i∈I

ŵi] =
∑
i∈I

Var[ŵi].

So once we know τ , we can compute the variance of
∑
i∈I

ŵi. Then, we can apply Chebyshev’s inequality to bound

the error in the estimation.

10.4 l0-Sampling

In lp-sampling, we are given a non-zero vector a = (a1, ..., an) ∈ Rn and we want to sample a random element

r ∈ [n] such that Pr[r = i] =
|a|pi∑

j∈[n]

|aj |p . For example, the reservoir sampling (with replacement) is an l1-sampling.

For a given error parameters ε, δ > 0, our goal is to sample an item i such that

(1 + ε)
|ai|p∑

j∈[n]
|aj |p

,

and we want the probability of failure be bounded by δ. Here we give an algorithm for l0-sampling due to
[CF14]. We first give a non-stream version of the algorithm and then we give the streaming version.

l0-Sampling (non-streaming version) with the error parameters ε, δ > 0

1. Let s = O(max{log 1
ε , log 1

δ }.

2. Let m = O(log n).

3. Let h : [n] → [n3] be a hash function that is chosen uniformly at random from a O(s)-universal hash
family.

4. For 0 ≤ j ≤ m define the vectors a[j] as follows:

a[j]i =

{
ai, if h(i) ≤ n3

2j

0, otherwise.

5. Feed each a[j] as input to an s-sparse recovery algorithm.

6. Pick the smallest j such that a[j] is s-sparse. Note that the s-sparse algorithm returns a vector. sample
randomly a coordinate of this sparse vector.

Note that a[0] is the same as a and a[1] is a vector that roughly half of the coordinates of a are zeroed and so
on so forth.

Now we give the streaming algorithm for l0-sampling.

10-6 Lecture 10: Weighted and Priority Sampling

l0-Sampling (streaming version) with the error parameters ε, δ > 0

1. Let s = O(max{log 1
ε , log 1

δ }.

2. Let m = O(log n).

3. Let D1, ..., Dlogn be independent s-sparse recovery algorithms.

4. Let h : [n] → [n3] be a hash function that is chosen uniformly at random from a O(s)-universal hash
family.

5. While there is a token (i, c) do

For all 0 ≤ j ≤ m do

if h(i) ≤ n3

2j

Feed (i, c) to Dj

6. Find the smallest j such that Dj returns an s-sparse vector, then sample uniformly at random one of the
coordinates of this sparse vector.

We will see the analysis of this algorithm in the next lecture.

References

ES06 S. Efraimidis and Paul G. Spirakis, Weighted random sampling with a reservoir. Inf. Process. Lett,
97, 5 (March 2006), 181-185.

DLT07 N. Duffield, C. Lund, and M. Thorup, Priority sampling for estimation of arbitrary subset sums. J.
ACM 54, 6, Article 32, 2007.

CF14 G. Cormode, and D. Firmani, A unifying framework for 0-sampling algorithms. Distributed and
Parallel Databases, 32.3 (2014): 315-335.

