CMPUT 675: Algorithms for Streaming and Big Data
 Fall 2019

 Lecture 10 (Oct 7, 2019): Weighted and Priority Sampling

 Lecturer: Mohammad R. Salavatipour
 Scribe: Ramin Mousavi

10.1 Introduction

Last lecture we discussed how to sample an item uniformly at random from a stream¹ when all items have a unit weight. For sampling k > 1 elements with replacement we can also run our 1-sampling routine for k times. In this lecture we give an algorithm for sampling $k \ge 1$ elements without replacement in a stream that elements might have different weights. This problem is called *weighted random sampling with a reservoir*. Then, we talk about *priority sampling* which we are given a stream where each item might have different weights and we want to select a representative sample of items so that we can answer subset sum queries. At the end we give a l_0 -sampling and in the next lecture we will analyze it.

10.2 Weighted Sampling with a Reservoir

In the weighted sampling without replacement in the most general case, we have a stream $x_1, ..., x_n$ with positive weights $w_1, ..., w_m$ and we want to sample $k \ge 1$ distinct items such that the probability that the first item that is chosen is x_{i_1} , second item is $x_{i_2} ...$, the k-th item is x_{i_k} is

$$\frac{w_{i_1}}{W} \cdot \frac{w_{i_2}}{W - w_{i_1}} \cdot \dots \cdot \frac{w_{i_k}}{W - w_{i_1} - \dots - w_{i_{k-1}}},\tag{10.1}$$

where W is the total weights of the items, i.e., $W = \sum_{i=1}^{n} w_i$.

Note that for k = 1 we can easily adapt the 1-sampling with replacement's algorithm from the last lecture in the following way: when we see an element x_i , pick x_i with probability $\frac{w_i}{\sum_{j=1}^i w_j}$. The following algorithms is due $\sum_{j=1}^i w_j$

to [ES06].

¹Note that we do not know the number of elements in the stream in advance.

Weighted Random Sampling with a Reservoir
1. Let S[1...k] ← Ø
2. i ← 0
3. While there is a new element in the stream do

i ← i + 1
Pick r_i uniformly at random from (0, 1)
w'_i ← r¹/<sub>w'_i</sup>
If i ≤ k

add (x_i, w'_i) to S

Else

Update S by keeping the largest k values respect to w'_is.

4. Return S in a non-increasing manner, i.e., the item with the largest w'_i in S comes first and so on (this
</sub>

will be helpful in the analysis later).

We show that the above algorithm works correctly for the case that there are two items in the stream x_1 , x_2 and k = 1. The argument for the general case is similar and is left as an exercise.

Lemma 1 Let r_1, r_2 be two numbers drawn independently from uniform distribution over (0, 1). Let $X_1 = r_1^{\frac{1}{w_1}}$ and $X_2 = r_2^{\frac{1}{w_2}}$ for $w_1, w_2 > 0$. Then,

$$\Pr[X_1 \le X_2] = \frac{w_2}{w_1 + w_2}.$$

Proof. Let $X = r^{\frac{1}{w}}$ for any w > 0 where $r \sim (0, 1)$. Then, cumulative distribution function for X is

$$F_X(t) := \Pr[X \le t] = \Pr[r^{\frac{1}{w}} \le t] = \Pr[r \le t^w] = t^w.$$

So the probability density function for X is $f_X(t) = \frac{dF_X(t)}{dt} = wt^{w-1}$.

$$\Pr[X_1 \le X_2] = \int_{t_2=0}^{1} \int_{t_1=0}^{t_2} f_{X_1}(t_1) f_{X_2}(t_2) dt_1 dt_2$$

$$= \int_{t_2=0}^{1} f_{X_2}(t_2) dt_2 \int_{t_1=0}^{t_2} f_{X_1}(t_1) dt_1$$

$$= \int_{t_2=0}^{1} f_{X_2}(t_2) F_{X_2}(t_2) dt_2$$

$$= \int_{0}^{1} w_2 t^{w_2-1} t^{w_1} dt$$

$$= \frac{w_2}{w_1 + w_2}.$$

In the case that the stream is x_1, x_2 and k = 1, Lemma 1 implies that $\Pr[x_i \text{ is } chosen] = \frac{w_i}{w_1 + w_2}$ for i = 1, 2, as desired.

Now we state the more general lemma related to our sampling algorithm.

Lemma 2 Let $r_1, ..., r_n$ be the numbers drawn independently from uniform distribution over (0, 1). Let $X_i = r_i^{\frac{1}{w_i}}$ for $1 \le i \le n$. Then, for any $\alpha \in [0, 1]$ we have

$$\Pr[X_1 \le X_2 \le \dots \le X_n \le \alpha] = \alpha^{w_1 + \dots + w_n} \prod_{i=1}^n \frac{w_i}{w_1 + \dots + w_i}.$$

Proof. Apply induction on n and use Lemma 1 as the based case.

Lemma 2 immediately implies the following fact.

Corollary 1 The probability that X_j is the largest value among $X_1, ..., X_n$ is $\frac{w_j}{w_1+...+w_n}$.

Proof. WLOG, we can assume j = n. Let S_{n-1} be the set of all permutations for 1, ..., n-1. So

$$\begin{aligned} \Pr[X_n \text{ is the largest}] &= \sum_{\sigma \in \mathcal{S}_{n-1}} \Pr[X_{\sigma(1)} \leq \dots \leq X_{\sigma(n-1)} \leq X_n] \\ &= \frac{w_n}{w_1 + \dots + w_n} (\sum_{\sigma \in \mathcal{S}_{n-1}} \Pr[X_{\sigma(1)} \leq \dots \leq X_{\sigma(n-1)}]) \\ &= \frac{w_n}{w_1 + \dots + w_n}, \end{aligned}$$

where the second equality holds by applying Lemma 2 with $\alpha = 1$, and the last equality follows because the sum inside the parenthesis is 1.

Theorem 1 The Weighted Random Sampling with a Reservoir algorithm outputs a set S with k distinct items and the probability of choosing x_{i_1} first, x_{i_2} second and x_{i_k} in the k-th round is equal to (10.1).

Proof. The probability that X_{i_1} is the largest (it should be in order to be output first) by Corollary 1 is $\frac{w_{i_1}}{w_1+\ldots+w_n}$. Then, we can condition on X_{i_1} to be the largest and use the fact that X_i s are independent (since r_i s are independent).

10.3 Priority Sampling

In the priority sampling problem, we are given a stream $\sigma = x_1, ..., x_n$ with non-negative weights $w_1, ..., w_n$. We want to answer the following query: given a subset of indices $I \subseteq [n]$, output $\sum_{i \in I} w_i$. For a given k, we describe an algorithm that finds a sample $S \subseteq [n]$ of size at most k such that for a given $I \subseteq [n]$ it approximates the value of $\sum_{i \in I} w_i$. For a given k, we describe an algorithm that finds a sample $S \subseteq [n]$ of size at most k such that for a given $I \subseteq [n]$ it approximates the value of $\sum_{i \in I} w_i$. For a given k, we describe an algorithm that finds a sample $S \subseteq [n]$ with high probability.

The following is the priority sampling algorithm due to [DLT07].

Priority Sampling

- 1. For each item $i \in [n]$ we see in the stream, pick uniformly at random $u_i \in (0, 1]$.
- 2. Compute priority q_i of item *i* which is $q_i := \frac{w_i}{u_i}$.
- 3. Always keep the items with the largest k priorities and call this set S. Also keep the (k + 1)-th largest priority τ .
- 4. Given a set $I \subseteq [n]$, return $\hat{W}_I = \sum_{j \in I \cap S} \max\{\tau, w_j\}.$

Define \hat{w}_i as follows:

$$\hat{w}_i := \begin{cases} \max\{\tau, w_i\}, & \text{if } i \in S\\ 0, & \text{otherwise,} \end{cases}$$

where τ is the k + 1-th largest priority obtained from the algorithm. In the next lemma, we show that in expectation we get what we wanted.

Lemma 3 $\mathbb{E}[\hat{w}_i] = w_i$.

Proof. Let $A(\tau')$ be the event that the (k+1)-th largest priority is τ' . Then, for all $i \in S$ we have $q_i \geq \tau'$ and $\hat{w}_i = \max\{\tau', w_i\}$. For $i \notin S$, we have $q_i \leq \tau'$ and $\hat{w}_i = 0$.

We consider two cases:

Case 1 (When $w_i \ge \tau'$): $\Pr[i \in S | A(\tau')] = 1$ and $\hat{w}_i = w_i$, since $q_i = \frac{w_i}{u_i} > \tau'$ so it is selected in S. So $\mathbb{E}[\hat{w}_i] = 1 \cdot w_i = w_i$.

Case 2 (When $w_i < \tau'$): $\Pr[i \in S | A(\tau')] = \Pr[\frac{w_i}{u_i} \ge \tau'] = \Pr[u_i \le \frac{w_i}{\tau'}] = \frac{w_i}{\tau'}$, and $\hat{w}_i = \tau'$. So $\mathbb{E}[\hat{w}_i] = \frac{w_i}{\tau'} \cdot \tau' = w_i$.

So we have $\mathbb{E}[\hat{w}_i] = w_i$. Also in expectation we satisfy the subset sum query because of the linearity of expectation.

Next we compute the variance of \hat{w}_i . Let \hat{v}_i be

$$\hat{v}_i := \begin{cases} \tau \max\{0, \tau - w_i\}, & \text{if } i \in S\\ 0, & \text{otherwise} \end{cases}$$

Lemma 4 $\operatorname{Var}[\hat{w}_i] = \mathbb{E}[\hat{v}_i].$

Proof. Omitted!

We can also show that $Cov(\hat{w}_i, \hat{w}_j) = 0$. In fact we can show that

$$\mathbb{E}[\prod_{i \in I} \hat{w}_i] = \begin{cases} \prod_{i \in I} w_i, & \text{if } |I| \in k \\ 0, & \text{otherwise.} \end{cases}$$

This implies the following fact about the variance.

So once we know τ , we can compute the variance of $\sum_{i \in I} \hat{w}_i$. Then, we can apply Chebyshev's inequality to bound the error in the estimation.

10.4 l_0 -Sampling

In l_p -sampling, we are given a non-zero vector $a = (a_1, ..., a_n) \in \mathbb{R}^n$ and we want to sample a random element $r \in [n]$ such that $\Pr[r = i] = \frac{|a|_i^p}{\sum_{j \in [n]} |a_j|^p}$. For example, the reservoir sampling (with replacement) is an l_1 -sampling. For a given error parameters $\epsilon, \delta > 0$, our goal is to sample an item i such that

$$(1+\epsilon)\frac{|a_i|^p}{\sum\limits_{j\in[n]}|a_j|^p}$$

and we want the probability of failure be bounded by δ . Here we give an algorithm for l_0 -sampling due to [CF14]. We first give a non-stream version of the algorithm and then we give the streaming version.

 l_0 -Sampling (non-streaming version) with the error parameters $\epsilon, \delta > 0$

- 1. Let $s = O(\max\{\log \frac{1}{\epsilon}, \log \frac{1}{\delta}\})$.
- 2. Let $m = O(\log n)$.
- 3. Let $h: [n] \to [n^3]$ be a hash function that is chosen uniformly at random from a O(s)-universal hash family.
- 4. For $0 \le j \le m$ define the vectors a[j] as follows:

$$a[j]_i = \begin{cases} a_i, & \text{if } h(i) \le \frac{n^3}{2^j} \\ 0, & \text{otherwise.} \end{cases}$$

- 5. Feed each a[j] as input to an s-sparse recovery algorithm.
- 6. Pick the smallest j such that a[j] is s-sparse. Note that the s-sparse algorithm returns a vector. sample randomly a coordinate of this sparse vector.

Note that a[0] is the same as a and a[1] is a vector that roughly half of the coordinates of a are zeroed and so on so forth.

Now we give the streaming algorithm for l_0 -sampling.

 l_0 -Sampling (streaming version) with the error parameters $\epsilon, \delta > 0$

- 1. Let $s = O(\max\{\log \frac{1}{\epsilon}, \log \frac{1}{\delta}\})$.
- 2. Let $m = O(\log n)$.
- 3. Let $D_1, ..., D_{\log n}$ be independent s-sparse recovery algorithms.
- 4. Let $h : [n] \to [n^3]$ be a hash function that is chosen uniformly at random from a O(s)-universal hash family.
- 5. While there is a token (i, c) do

For all $0 \le j \le m$ do if $h(i) \le \frac{n^3}{2^j}$ Feed (i, c) to D_j

6. Find the smallest j such that D_j returns an s-sparse vector, then sample uniformly at random one of the coordinates of this sparse vector.

We will see the analysis of this algorithm in the next lecture.

References

- ES06 S. EFRAIMIDIS AND PAUL G. SPIRAKIS, Weighted random sampling with a reservoir. *Inf. Process. Lett*, 97, 5 (March 2006), 181-185.
- DLT07 N. DUFFIELD, C. LUND, AND M. THORUP, Priority sampling for estimation of arbitrary subset sums. J. ACM 54, 6, Article 32, 2007.
 - CF14 G. CORMODE, AND D. FIRMANI, A unifying framework for 0-sampling algorithms. *Distributed and Parallel Databases*, 32.3 (2014): 315-335.