
CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 2 (Sep 9, 2019): Frequency Moments and the AMS Algorithm
Lecturer: Mohammad R. Salavatipour Scribe: Aditya Jayaprakash

2.1 Frequency Moments

Suppose we have a stream of data σ = a1, a2, a3, . . . , am where each ai ∈ {1, . . . , n}. We also define a frequency
vector f = (f1, . . . , fn) for our stream σ. Each fi denotes the number of occurences of ai in σ.

Example 1 Suppose we have a stream σ where ai ∈ {1, 2, 3, 4, 5} and let our stream be the following,

σ = 3, 2, 1, 2, 3, 4, 5, 3, 5, 3, 2, 4, 5, 3, 2, 2

In this case, our frequency vector f = (1, 5, 5, 2, 3).

Definition 1 Given a stream σ, we will define the kth moment σ, denoted by Fk(σ) to be

Fk(σ) =

n∑
i=1

fki

We shall also assume 00 = 0. Let us look at what we can say about Fk(σ) from different values of k,

• For k = 0, Fk(σ) =
∑n
i=1 f

0
i =

∑
1≤i≤n:fi>0 1, which is the number of distinct elements in the stream σ.

In this case, we use the assumption that 00 = 0.

• For k = 1, Fk(σ) =
∑n
i=1 fi = m is the length of the stream.

• As k gets bigger and k →∞, we define F∞(σ) to denote the most frequency element in our stream. More
formally,

F∞(σ) = max
i
fi

Let d denote the number of distinct elements in the stream, d = |{i : fi > 0}|. It is possible to prove no deter-
ministic algorithm can solve this problem in sublinear space. Hence, our goal is to estimate the value of d with
high probability using a randomized approximation algorithm.

We will first present a simple algorithm by Flajolet and Martin [FM85], then study a modified version for
it, popularly known as the AMS algorithm [AMS99], named after its authors, Alon, Matias, and Szegedy.
[AMS99] won the Gödel Prize 2005 for laying the foundations of the analysis of data streams using limited
memory. Before studying the algorithms, we will first introduce hash functions and study their properties.

2.2 Hash Functions

Suppose we have a universe U where |U | = m. We call h : U → T a hash function if it maps U to a table
T = {0, . . . , n− 1} where n << m. We want the hash function to satisfy a few properties,

2-1

2-2 Lecture 2: Frequency Moments and the AMS Algorithm

• It should be easy to compute the value of h(x) for any x ∈ U .

• h maps elements to tables uniformly at random (or close to it).

Definition 2 A family H of hash functions h : U → T is 2-universal if ∀x, y ∈ U where x 6= y and h ∈ H
selected randomly from H satisfies the property that

Pr[h(x) = h(y)] ≤ 1

n

Definition 3 A family H of hash functions h : U → T is strongly 2-universal if ∀x, y ∈ U where x 6= y and all
n1, n2 ∈ {1, . . . , n}, it satisfies

Pr[h(x) = n1 ∧ h(y) = n2] ≤ 1

n2

Definition 4 A collection of random variables X1, . . . , Xn are generally k-wise independent if for any subset
of size at most k,

Pr[X1 = a1 ∧ . . . ∧Xt = at] =

t∏
j=1

Pr[Xj = Aj] where 1 ≤ t ≤ k

Example 2 Pairwise independence does not necessarily imply k-wise independence. Suppose X1, X2, X3 are
0-1 random variables (Bernoulli) where X1, X2 are chosen uniformly at random and X3 = X1

⊕
X2.

In this case, all three variables are pairwise independent since it is possible to pick any two distinct variables,
Xi and Xj and assign it any value (0 or 1) with probability

Pr[Xi = ai ∧Xj = aj] = Pr[Xi = ai] · Pr[Xj = aj]

However, X1, X2, X3 are not 3-wise independent since the assignment of any two variables dictates the value of
the third variable.

Lemma 1 If X1, . . . , Xn are pairwise independent and Y =
∑n
i=1Xi, then

1. Var[Y] =
∑n
i=1 Var[Xi]

2. Suppose X1, . . . , Xn are 0-1 random variables (Bernoulli), then Var[Y] ≤
∑n
i=1 E[X2

i] =
∑n
i=1 E[Xi] =

E[Y]

Proof.

Var[Y] = Var

[
n∑
i=1

Xi

]
=

n∑
i=1

Var[Xi] + 2

n∑
i=1

∑
j>i

Cov(Xi, Xj)

Xi and Xj are pairwise independent for any i, j ∈ {1, . . . , n} and i 6= j which implies Cov(Xi, Xj) = 0.

Var[Y] = Var

[
n∑
i=1

Xi

]

=

n∑
i=1

Var [Xi] + 2

n∑
i=1

∑
j>i

Cov(Xi, Xj)︸ ︷︷ ︸
0

=

n∑
i=1

Var [Xi]

Lecture 2: Frequency Moments and the AMS Algorithm 2-3

This proves the first part. To prove the second part, we will first show that E[X2
i] = E[Xi] when Xi is a

Bernoulli random variable.

E[X2
i] = 12 · Pr[Xi = 1] + 02 · Pr[Xi = 0]

= 1 · Pr[Xi = 1] + 0 · Pr[Xi = 0]

= E[Xi]

We will start to second prove part by using first part,

Var[Y] =

n∑
i=1

Var[Xi]

=

n∑
i=1

E[X2
i]− E[Xi]

2

≤
n∑
i=1

E[X2
i]

=

n∑
i=1

E[Xi] using the fact that E[X2
i] = E[Xi]

= E[Y] using linearity of expectations

Suppose we have a strongly 2-universal hash family, then ∀x, y ∈ U , h(x) and h(y) are pairwise indepen-
dent. A k-universal hash function can be defined similarly where each h(x) is uniformly distributed in the range
and they are k-wise independent. There are constructions of k-universal hash families that can be stored in
O(k log |U |) space.

2.3 The Flajolet-Martin Counter

We will first discuss a simple algorithm to estimate the number of distinct elements. The big picture idea of the
algorithm is to put each distinct element between 0 and 1 uniformly at random. On expectation, if there are t
distinct elements, then the interval [0, 1] is divided into parts of size approximately 1

t+1 . We use a 2-universal
hash function in order to place it uniformly at random between 0 and 1. The algorithm is the following,

1. Pick a random hash function h ∈ H where h : {1, . . . , n} → [0, 1] and H is a family of 2-universal hash
functions.

2. Maintain a counter X where X = min
i
h(xi)

The algorithm works on the fact that E[X] = 1
t+1 .

2.4 The AMS Algorithm

Before we state and analyze the algorithm, we will first introduce the zeroes function. zeroes(t) for any
t ∈ {1, . . . , n} represents the largest power of 2 it is divisible by and it is also the number of leading 0’s
(counting from the right) of the binary representation of t. Let us look at a few examples,

2-4 Lecture 2: Frequency Moments and the AMS Algorithm

• Suppose t = 1024. We can write 1024 = 210 and 1024 = (10000000000)2 showing that zeroes(t) = 10.

• Suppose t = 23. The largest power of 2 which divides t is zero and t = (10111)2 showing that zeroes(t) =
0. In general, for any prime p except 2, zeroes(p) = 0.

• Suppose t = 48. The largest power of 2 which divides t is 24 and t = (110000)2 showing that zeroes(t) = 4.

We will first explain the big picture idea of the algorithm. We will assume we have seen sufficiently many num-
bers and these numbers are distributed uniformly. We will look at zeroes(x) for each number in the stream
and we expect one of the element, we will call it x (out of d distinct elements) to have value zeroes(x) ≥ log d
i.e., have log d zeroes from the right in its binary representation.

However, this relies on the idea that our stream has elements that are uniformly distributed, but this might not
be the case. To ensure our elements are uniformly distributed, we first use a 2-universal hash function picked
at random, h ∈ H and we check zeroes(h(x)) for x ∈ σ. We expect that on average, one out of the d distinct
elements have zeroes(h(x)) ≥ log d. Using this idea, max

x∈σ
zeroes(h(x)) would give us a good estimate of the

number of distinct elements in the stream. The AMS algorithm is as follows,

1. Let h ∈ H be chosen uniformly at random from a 2-universal hash family H.

2. Initialize z to 0.

3. While there are elements in the stream, do:

4. Pick the next element ai

5. z ← max {z, zeroes(h(ai))}

6. return 2z+
1
2

2.4.1 Analysis of the AMS algorithm

For each j ∈ {1, . . . , n} and r ≥ 0, we will define a Bernoulli random variable Xr,j as follows,

Xr,j =

{
1, if zeroes(h(j)) ≥ r
0, otherwise

Let S be the set of all distinct elements in the stream.

Yr =
∑
j∈S

Xr,j = |{x ∈ σ : zeroes(h(x)) ≥ r}|

Yr is the random variable which represents the number of distinct elements with at least r zeroes from the right
in the binary representation of their hashed value using h ∈ H. We must note that h(x) is uniformly random
in {1, . . . , n}.

E [Xr,j] = Pr[zeroes(h(j)) ≥ r] = Pr[2r divides h(j)] =
n
2r

n
=

1

2r

E [Yr] =
∑
j∈S

E [Xr,j] =
d

2r
using linearity of expectations

We must note that if d is a power of 2, then E [Ylog d] = d
2log d = 1. Since our family of hash functions H are

2-universal, we get that Xr,j and Xr,j′ are pairwise independent. Since they are also 0-1 random variables,
using the lemma we showed in this lecture, we obtain

Lecture 2: Frequency Moments and the AMS Algorithm 2-5

Var[Yr] =
∑
j∈S

Var[Xr,j] ≤
∑
j∈S

E [Xr,j] =
d

2r

We will bound the probability that Yr = 0 and Yr > 0 using concentration inequalities we defined in the previous
lecture.

Theorem 1 (Markov’s inequality) Let X be a non-negative random variable. Then for all a > 0: Pr[X ≥
a] ≤ E[X]

a . Alternatively Pr[X ≥ aE[X]] ≤ 1
a .

Theorem 2 (Chebyshev’s inequality) Let X be a random variable and t > 0. Then Pr[|X − E[X]| > t ≤
Var[X]
t2 . Alternatively Pr[|X − E[X]| > tσX] ≤ 1

t2 .

Pr[Yr > 0] = Pr[Yr ≥ 1]

≤ E[Yr]

1
using Markov’s Inequality

≤ d

2r

Pr [Yr = 0] ≤ Pr

[
|Yr − E[Yr]| ≥

d

2r

]
≤ Var[Yr](

d
2r

)2 using Chebyshev’s inequality

≤ 2r

d

Let t be the final value of z in the algorithm, so we return d̃ = 2t+
1
2 . Let a be the smallest integer such that

2a+
1
2 ≥ 3d where 3 is some constant factor. We want to know the probability that our output is more than

thrice the the number of distinct elements,

Pr[d̃ ≥ 3d] ≤ Pr[t ≥ a] = Pr [Ya > 0] ≤ d

2a
≤
√

2

3

Similarly, let b be the largest integer such that 2b+
1
2 ≤ d

3 . Then

Pr

[
d̃ ≤ d

3

]
= Pr[t ≤ b] = Pr [Yb+1 = 0] ≤ 2b+1

d
≤
√

2

3

We will now show the probability of d̃ being in between d
3 and d is at least 1− 2

√
2

3 .

Pr

[
d

3
< d̃ < 3d

]
≥ 1− Pr

[
d̃ ≥ 3d ∨ d̃ ≤ d

3

]
≥ 1−

(
Pr
[
d̃ ≥ 3d

]
+ Pr

[
d̃ ≤ d

3

])
using union bound

≥ 1−

(√
2

3
+

√
2

3

)

= 1− 2
√

2

3
≈ 0.057

We now have a (3, 0.057) approximator which we can boost to (3, 1 − δ) by repeating the above algorithm
O
(
log
(
1
δ

))
times and picking the median of averages. Each iteration of this algorithm requires O(log n) space.

If we run it O
(
log
(
1
δ

))
times, the total space complexity is O

(
log n log

(
1
δ

))
. The constant 3 can be decreased

close to 1, which will be the topic of the next lecture.

2-6 Lecture 2: Frequency Moments and the AMS Algorithm

References

FM85 P. Flajolet and G.N. Martin, Probabilistic Counting Algorithms for Data Base Applications. J.
Comput. Syst. Sci., 31(2):182–209, 1985.

AMS99 N. Alon, Y. Matias, and M. Szegedy, The Space Complexity of Approximating the Frequency
Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

