CMPUT 675: Randomized Algorithms Fall 2005
Lecture 18: Nov 8

Lecturer: Mohammad R. Salavatipour Seribe: Jun Ma

18.1 Perfect Mathings

Recall Schwartz-Zippel Theorem:

Theorem 18.1 Let Q(z1,...,%,) be a multivariate polynomial of total degree d. Fix S C F and supppose
that r1, ...,r,, are chosen uniformly at random and independetly from S. Then

Pr[Q(r1, .-, ™) = 0|Q(x1, ..., zp) Z 0] < |i|

We can use this theorem for computing perfect matchings in a graph. Let G(U |JV, E) be a bipartite graph
with |[U| = |V| =n. M C E is a perfect matching if in the subgraph of G induced by M every vertex has
degree exactly one.

Definition 18.2 The Tutte matriz of a bipartite graph G(U UV, E) is an n by n matrix M, such that:

M = 0 z'fuivj ¢ E,
“I | wi; otherwise

Lemma 18.3 det(M) # 0 <= G has a perfect matching.

Proof: By definition det(M) = > . Pﬂ(—l)””(n) 171 M; n), where P, is the set of all permutation of
[n]. Each term in the above summation corresponds to a potential perfect matching and the term is non-zero
if and only if all the entries of the matrix corresponding to the edges of that potential perfect matching are
non-zero. Since no two terms cancel each other out, the sum is non-zero iff G has a perfect matching.]

So, using this lemma and Schwartz Zippel Theorem we can easily check for the existence of a perfect matching.
We check if det(M) = 0 or not:

e If G has no perfect matching then Pr[accept] = 0.

e If G has a perfect matching then Prlaccept] > %

This suggests the following simple algorithm for finding a perfect matching:
Let F be Z, for a prime p > 2n.
Algoirhtm for finding perfect matching:

e Pick uv; € E

18-1

18-2 Lecture 18: Nov 8

e Check if G — u;v; has a perfect matching

— If yes then output w;v; and recursive on G — u;v;

— If no then recursive on G — u;v;

Can we make this algorithm parallel? First we define some basic notaion for parallel algorithms.

Definition 18.4 PRAM: is a model for computation in which we have P Synchronous processors running
in parallel that have random access to a global memory.

Once we have several processor accessing a shared memory we always have the problem of conflict. For
example, if two processers want to write to a single memory location at the same time, or if one wants to
write there and another one wants to read. There are some standard models for resolving conflict:

e EREW: exclusive read/exclusive write

o CREW: concurrent read/exclusive write

e CRCW: concurrent read/concurrent write
A common model that we also use here is CREW.
Definition 18.5 NC is the set of languages that have a PRAM algorithm A s.t. x € 3"

e z € L — A accepts x

o z ¢ L — A rejects x

o p (the number of proc’s) is polynomial in |z|
o time is polylogarithmic in |x|

RNC is the randomized version of NC, i.e. if © € L then A accepts with probability at least 1/2 and if
x ¢ L then A rejects x.

Definition 18.6 Given a matrix M, a minor of M is the submatrix obtained from M by deleting a row and
a column.

It is known that computing det(M), a minor, and taking inverse of M can be computed in RNC.

Let’s go back to the perfect matching problem and see if we can turn our sequential algorithm into a parallel
version.

First idea: take a processor for every edge and check if u;v; is in a perfect matching in parallel. The problem
with this idea is that there may be several perfect matchings and so the result is not a perfect matching (e.g.
if G is a complete bipartite graph then all the edges are returned).

Second idea: Check for a specific perfect matching in G. How to do this? put weights on the edges such
that the minimum perfect matching is unique. Then look for a minimum weight perfect matching To achieve
this we put some random weights on the edges and show that with good probability, the minimum weight
perfect matching is unique. Then we show how to modify the algorithm to look for a minimum weight
perfect matching in parallel.

Lecture 18: Nov 8 18-3

Lemma 18.7 (Isolation Lemma) Let X = {z1,...,m} be a set of elements and F = {s1,...,sx} is a
family of subsets of X (all distinct). Let w : X — {1..2m} be a positive integer function chosen uniformly
at random and independet for each element, then Pr[min weight set in F' is unique] > %

Remark: This may seem impossible at first glance. Note that k£ can be as big as 2™. Since the weights of
sets are in the range {1,...,2m?}, we expect to see 7— sets of each value in {1...2m?}!. Proof: Fix an
item z; and let:

e Y;: is the set of all sets that contain x;

e Z;: is the set of all sets that don’t contain x;

Suppose that w(z;) = —oo —. Then all min-value sets are among those in Y;. Similarly, if w(z;) = +00 —
then all min-value sets are among those in Z;.

If we increase w(z;) from —oo to +o0o there is exactly one value for which the min-value of ¥; becomes equal
to min-value of Z;. For that value of w(z;) we say z; is ambiguous (we don’t know if the min-value set has z;
or not). Other than that, we know exactly if x; is in the min-value set or not. So Pr[z; is ambiguous] < ﬁ,
which implies Pr[3 an ambiguous z;] < m - ﬁ = % Thus:

Pr[no z; is ambiguous] >

DN =

Let x = E and F be the set of perfect matchings. The isolation lemma implies that if we set the weights
randomly from {1,...,2m}, then with probability > % the minimum weight perfect matching is unique. Let
x5 = 2%, wy; is the weight of u;v; and let B be the modified Tutte matrix with entries z;; defined above.

Lemma 18.8 If there is a unique minimum weight perfect matching in G and W is its weight then (i)det(B) #
0 and (ii) the largest power of 2 dividing det(B) is 2%V

Proof: Other than the unique minimum weight perfect matching, all others have weights in {W + 1,W +
2,...}. So the terms in Det(B) are of the form {£2W +2W+1 1. Take a factor 2V out from all the terms.
Since there is a unique term with value 2" we will get a sum of of the form 2" (1 +a; - 2! +as-22+..))
where each a; is an integer (possibly negative or zero). Since the sum of the terms in the paranthesis is odd
it is non-zero and therefore Det(B) # 0, also 2% is the largest power of 2 that divides it. |

This suggests the following RNC algorithm for perfect matching. Let B;; be the minor of B obtained by
deleting row ¢ and column j.

An RNC algorithm for perfect matching in bipartite graphs:

Pick w;; uniformly at random from {1...2m}, with m = |E|.

Compute Tutte matrix B from w;;’s and det(B) in parallel and compute the largest W s.t. 2W divides
det(B).

If det(B) = 0 — no perfect matching

For each u;v; € E do in parallel

— compute det(B;;) where B;; is the minor of B by deleting row i and column j.
— if det(B;;) # 0 find the largest power of 2, say 2Wii that divides det(B;;)
— if Wi + w;; = W then output w;v;.

