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13.1 st-Connectivity

Consider the following problem. We are given an undirected graph, G(V, E) with vertices s,t € V. The
question: is there a path from s to ¢ in graph G? This problem can be easily solved in O(n +m) using Depth
First Search or Breadth First Search. The question is, can we solve this in O(logn)-space? Note that the
each of the simple traversal algorithms require O(log2 n) space.

Definition 13.1 The class of languages A such that there is a deterministic Turing Machine (TM), M,
determining A using only log-space is denoted by L.

Class RL is the randomized version of L, which has the same relation to L as RP does to P.

Definition 13.2 RL is the set of languages A such that there is a probabilistic log-space TM, M such that
on input x:

1 .
> 5 ifr €A,

Pr{Macceptse] = { 0  otherwise

One of the big problems in computational complexity: is RL = L?
Theorem 13.3 st-connectivity € RL.

Proof: Simulate a simple random walk from s for 2n3 steps. Since Cy = 2m - Ry < 2mn < n?, using
Markov’s inequality: Pr[failure] < 1/2. |

The natural question is, can we do this deterministically? i.e. is there a deterministic log-space TM to decide
st-connectivity? Here is one approach to derandomize this algorithm (but it gives non-uniform TM’s, i.e.
one TM for each input size n).

On a d-regular graph, for each vertex, label the end of each connecting edge with a random number from
[1..d]. The labels assigned to an edge from its two end-points may or may not be the same. Consider a
sequence S = 51,59, ..., S;, ... with each S; € 1,...,d and a starting vertex v. This defines a walk in the graph
as follows: start at v and at each step i, take the edge out of the current vertex with label s; and follow that
edge to get to the next vertex.

Definition 13.4 A sequence S is a traversal if the walk corresponding to S wisits all the vertices.

Definition 13.5 A sequence S is a universal traversal for a class of labeled graphs if it is a traversal for all
of them.
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Given n, if we have a universal traversal sequence with size poly(n), we can embed it into the states of a
TM. Then for any given instance of st-connectivity of size n, we can run this TM (with a fixed labeling for
every vertex). However, as we said earlier, since we have a different TM for each input size, we only get
non-uniform class of TM’.s

Let G, be a family of d-regular labeled n-vertex graphs, U(G,,) be the length of the shortest traversal for all
graphs in G,,, and R(G,) be the maximum resistance between any pair of vertices in any graph in G,,.

Theorem 13.6 U(G,) < O(mR(G,) log(n|G,|)).

Proof: We use the probabilistic method. Consider a random walk of length 8m - R(G,,) log(n|G,|) on a graph
G € G, from some vertex u € G. Break the walk into sections of length 8m - R(G,,) each. Recall that for
any two vertices u and v: Cy, = 2mRpuv. The probability that we do not visit vertex v is < 1/4 for any
window of size 8m - R(G,,). It follows that:

1 1
Pr[v is not visited at all] < (=)l8(l9=)) = __—
[ =@ G
Summing over all possible graphs and all possible choices of v: the probability that the walk does not visit
all vertices is j 1. Thus, there is a universal traversal of this length. ]
O(nd)

Lemma 13.7 The number of d-regular labeled graphs of size n is (nd)
The proof of this lemma is left as an exercise.
Corollary 13.8 The length of shortest traversal sequence for an n-vertex d-regular graph is O(n3dlogn).
Proof: Any d-regular graph has diameter O(%). Therefore: R(G) < Z. Since m = nd/2,

dn

UG) < %TIOgndO("d) € O(n®logn)

Very recently, Reingold (STOC’05) showed that st-connectivity is indeed in L.

13.2 Markov chain terminology
Definition 13.9 A discrete stochastic process Xg, X1, ... i1s a Markov chain if:
PI‘[Xt = at|X0 = ao...Xt,q = at,l] = PI‘[Xt = at|Xt,q = at,l]
= Pat—lyat

The matriz P;; =1 is called the transition matriz.

Y pj=1 Where 0 < Py; < 1. (13.1)
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A Markov chain is memoryless, the probability that we are in state j in the next step only depends on our
current state and not on the history of the chain. Let ¢¢ be the probability that we are at state ¢ at time ¢.
Then ¢' = (¢§,qt,...,q},) is the probability vector for time ¢. It is easy to see that ¢¢ = >4t = Dpji —
¢' = ¢!~ 'p by induction — ¢* = gop’ where qq is the initial distribution of states.

Definition 13.10 The stationary distribution of a Markov chain is the probability distribution II such that:
II = IIP, i.e. if a Markov chain is in stationary distribution at step t then it remains in the stationary
distribution ot step t + 1.

Stationary distribution is a steady state or equilibrium of Markov chain.

Definition 13.11 State i is accessible from j if for some time t > 0, P{’j > 0.

If both are accessible, then i ++ j and we say they communicate. This function is an equivalence relation
because the function is reflexive, symmetric, and transitive.

Definition 13.12 A Markov Chain MC, is irreducible if all states belong to the same communication class
(i.e. the nodes corresponding to those states in the graph representation of the M.C. belong to one strongly
connected component).

Let rfj be the probability that starting from 4 the first transition to j happens in time ¢. Then:

rfj:Pr[Xt:jandXs#jwhereigsgt—qu:i]

Definition 13.13 A state is persistent if 3,5, ri, = 1. A state is transient if 35,5, ri, <1.

Let h;; be the expected number of steps to reach j from 4.

hz'j = Z tT’,fj .

t>1

Note that, if a state ¢ is transient, then h; = oo
Definition 13.14 A persistent state with hy;; = 0o is a null-persistent state.

Example: Consider the following M.C. Each state corresponds to an integer. Starting from 1, the probability
of going to i from i+ 11s4/(i + 1) and with probability 1/(i + 1) we go back to 1. That is: P; ;41 = 57 and

o, — 1
Py = .

Pr[ not returning to zero after ¢ steps] = H§:1 Hil = H%
Therefore, the probability that this walk never goes back to 0 is 0. In other words zero is a persistent state.
However:
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And

oo
1
hl,lzg t"f'i,]_: E H—l—)oo
t>1 t>1

So state 0 is null-persistent. Note that this is not the case with finite MC’s, i.e. having infinite number of
states is necessary for null-persistent states.

Lemma 13.15 if M is a finite M.C. then

o M has at least one persistent state,
o All persistent states are non-null
Definition 13.16 A state j is periodic if there is a T > 1 such that Pr[X = j|X; = j] = 0 unless S is a

factor of T. If a state is not periodic, it is aperiodic. A M.C. is aperiodic if all the states of the MC are
aperiodic.

Definition 13.17 FErgodic means aperiodic and non-null persistent.

Theorem 13.18 (Fundamental Theorem of Markov Chains) Any finite, irreducible, ergodic MC sat-
isfies

e H has a unique stationary distribution P;

e Ve, j: lim;_,o P!

ii exists and 1s independent of j

—1i t — 1
° H = limy o Pj,i ~ hij
i



