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This lecture starts with some basic notions. Then we study the linear programming and polytopes.

1 Linear Programming

A linear programming problem can be formalized as follows: given a set of variablesx1, ..., xn, the objective
is to optimze a linear function of these variables subject toa set of linear contraints. For example,

min
∑n

j=1
cjxj

subject to
∑n

j=1
aijxj ≥ bi for i = 1, · · · ,m

xj ≥ 0 for j = 1, · · · , n.

or in other form:

min cT x
subject to

Ax ≥ b
x ≥ 0.

A feasiblesolution is anyx satisfyingAx ≥ b. A linear program (LP) is said to be afeasible LPif it has at
least one feasible solution.

Definition 1.1 A linear program is unbounded (from below) if for anyα ∈ R, there exists a feasible solution
x such thatcT x < α.

An LP can be stated in many different (equivalnet) forms. Suppose the objective function is a maximization.
Then:

1. One can transform a maximization problem into a minimiation problem and vice versa by changing
the sign of variables in the objective fucntion:

maxcT x ↔ min − cT x

2. If the linear constraints are equalities then it can be transformed into two constraints with inequality:

aT
i x = b → aT

i x ≥ b andaT
i x ≤ b

3. By introducing slack variables, one can express inequalities as equalities. For example, We can replace
the constraintaT

i x ≤ bi with aT
i x + si = bi for a new variablesi and add the constraintsi ≥ 0. It is

easy that any feasible solution satisfying the first one corresponds to a unique solution satisfying the
second one and vice-versa,
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4. We can switch between non-positivity and non-negativityconstraints:

xj ≤ 0 → −xj ≥ 0n

5. Restrictingx’s sign: if there is no sign restriction onx we can writexj = x+

j − x−

j and require that

x+j, x−

j ≥ 0 and replace allxj ’s.

Using these rules, we can transform any LP in the canonical form:

min cT x
subject to

Ax ≥ b
x ≥ 0.

to an LP in the standard form:

min cT x
subject to

Ax = b
x ≥ 0.

Example 1: Consider the following LP:

max 2x1 + x3 (1)

s.t. x1 + x2 + x3 ≤ 4

x1 ≤ 2

x3 ≤ 3

3x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

A feasible solution for this LP is(2, 0, 2).

Note that if there are constraints in an LP that are linearly dependent on other ones then they are redundant
as they can be obtained from the others. So we can make the following assumption:

Assumption 1: The rank of them × n matrix A in the linear program ism (full rank), i.e. we havem
linearly independent columns ofA (m ≤ n).

Assumption2: any linear program we deal with is feasible.

Definition 1.2 A basis ofA is a linearly independent collection ofm columns ofA, i.e., a non-singular
submatrixB = [Aj1, Aj2 , ..., Ajm ], whereB is anm × m matrix. A basic solution corresponding toB is a
vectorx ∈ R

n with the following properties:

• xj = 0 if Aj 6∈ B;

• xjk
= the kth component ofB−1b for k = 1, · · · ,m.

To find a basic solution, can be found by:
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Figure 1: The polytope defined by the constraints of LP(1)

(1,0,3)(0,0,3)

(0,1,3)
(2,0,2)

(2,0,0)

(2,2,0)
(0,2,0)

1. Find a setB of m linearly independent columns ofA;

2. All x’s corresponding to columns not inB are set to zero;

3. Solve the remainingm equations to find remainingm varialbes.

Basic feasible solutions (bfs) are very important in study of LPs. It can be proved that if a linear program
is feasible then there is a basic feasible solution. From nowon we assume we are talking about LP’s whose
solution set is non-empty (i.e. there is at least one feasible solution and therefore at least one bfs). It can be
proved that for every bfs, there is an objective function such that the bfs is the unique optimum solution to
the LP with that objective function:

Lemma 1.3 Let x be basic feasible solution toAx = b, for x ≥ 0. Then there is a vectorc such thatx is
the unique optimal solution to

min cT x
s.t. Ax = b

x ≥ 0.

There is a strong relation between LP’s and polytopes (defined formally below). The study of LP’s is
equivalent to study of the corresponding polytopes (or polyhedrons). Consider the vector space inR

n. A
linear subspace ofRn is a subset of it closed under vector addition and scalar multiplication.

Definition 1.4 A hyperplane inRn is a set of points{x ∈ R
n : a1x1 + · · · + anxn = b}

Every hyperplane defines two half spaces:Ax ≥ b andAx ≤ b. A body defined as the interesection of a
collection of half-spaces is a polyhedron:

Definition 1.5 A polyhedron is a convex body defined by a collection of half spaces. A polytope is a bounded
polyhedron.

Definition 1.6 A set of points{a1, . . . , ak ∈ R
n} are linearly independent if

∑k
i=1

λiai = 0 impliesλi = 0
for all 1 ≤ i ≤ k.
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Definition 1.7 A linear subspace ofRn is a setS = {x ∈ R
n : aixi + · · · + anxn = 0, 1 ≤ i ≤ n}. An

affine subspace is obtained from a linear subspaceS by translating by a vectorb: A = {x + b : x ∈ S}.

Definition 1.8 A set of points{a1, . . . , ak ∈ R
n} are affinely independent if

∑k
i=1

λiai = 0 and
∑k

i=1
λi =

0 implyλi = 0 for all i.

Dimension of a polyhedronP is the maximum number of affinely independent points inP minus 1.

Examples:

• A single point has dimension = 0;

• A line segment has dimension = 1;

• Any set ofk ≤ n + 1 points inR
n has dimension of at mostk − 1.

• Dimension of a setF defined by

Ax = b

x ≥ 0.

with A being anm × n matrix is at mostn − m.

Let P be a convex polytope inRn andHS be a half-space defined by a hyperplaneH. If f = P ∩ HS
belongs toH, thenf is a face ofP .

Definition 1.9 A facet is a face of dimensionn − 1. A vertex is a face of dimension 0 (point). An edge is a
face of dimension 1 (line).

Note that the hyperplane defining a facet corresponds to a defining half-space ofP but the converse might
not be true.

A vertex can be aslo defined equivalently as:

Definition 1.10 x is a vertex inP if there does not existy 6= 0 such thatx + y, x − y ∈ P .

One can bound the number of faces of a polytope using the following theorem:

Theorem 1.11 Let A ∈ R
m×n. Then any face ofP = {x ∈ R

n : Ax ≤ b} corresponds to the set of
solutions to

∑

j

aijxj = bi, i ∈ I

∑

j

aijxj ≤ bi, i 6∈ I

for someI ⊆ {1, · · · ,m}.

Proof: Exercise.

Corollary 1.12 The number of non-empty faces ofP is at most2m.

Theorem 1.13 Let x∗ be a vertex ofP = {x ∈ R
n : Ax ≤ b}. Then, there is a setI ⊆ {1, . . . ,m} such

thatx∗ is the unique solution to
∑

j aijxj = bj, ∀i ∈ I.

Proof: Given a vertexx∗ of P , defineI as

I = {i :
∑

jaijxj = bi}. (2)
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So for everyi 6∈ I we must have:
∑

j

aijbj < bi. (3)

From the previous theorem we know thatx∗ is uniquely defined by:

∑

j

aijxj = bi, ∀i ∈ I

∑

j

aijxj ≤ bi, ∀i 6∈ I

If there is another solutionx′ which is a solution to Eq. (2), then(1 − ǫ)x∗ + ǫx′ for sufficiently smallǫ,
satisfies all those in eq. (2) and eq. (3). It contradicts the assumption thatx∗ is a vertex solution.

2 Linear Programs and Polytopes

Polytopes can be defined in 3 different ways:

1. The convex hull of a finite set of points (which will containthe vertices of the polytope),

2. As the intersection of a finite number of half spaces as longas the intersection is non-empty,

3. Algebraic version:

Ax = b

x ≥ 0.

The previous theorem shows that the vertices of the polytop correspond to bfs of the corresponding LP.
Consider a polytopeP defined byAx = b, x ≥ 0. Let N be the set of non-basic variables and letB
be the set of basic variables. We can partitionx and accordinglyA into {xB , xN} and{AB , AN}. Then,
a vertexx∗ can be obtained by setting non-basic variables to zero and solving the remaining equations. In
other words, we haveABxB + ANxN = b; we setxN = 0. It follows thatABxB = b. We solve this
to obtain values of basic variables (this set of equations must have unique solution), which means thatAB

must have full rank (i.e.rank(AB) = |B|). Since we assumeA itself has full rank (i.e.rank(A) = m), we
have|B| ≤ m andAB is am× m non-singular matrix. Recall that this setB is a basis andx is a bfs. Thus
all vertices are bfs and vice versa. Note however that different bases may lead to the same vertex as there
are different ways of extendingAB to am × m matrix.

For example, consider the LP1 from Example 1:

max 2x1 + x3

s.t. x1 + x2 + x3 ≤ 4 (4)

x1 ≤ 2 (5)

x3 ≤ 3 (6)

3x2 + x3 ≤ 3 (7)

x1, x2, x3 ≥ 0 (8)
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Then, introducing slack variablesx4, x5, x6, x7 for equations (4),(5),(6),and (7),respectively, we obtain the
following LP in standard form:Ax = b where:

b =









4
2
3
6









, A =









1 1 1
1 0 0
0 0 1
0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

ThenB = {A1, A2, A3, A6} andB′ = {A1, A2, A4, A6} are to bases. and both correspond to the bfs
(2, 2, 0, 0, 0, 3, 0). For B if we set x4 = x5 = x7 = 0 we obtain vertex(2, 2, 0) and for B′ we set
x3 = x5 = x7 = 0 which again implies the same solution corresponding to vertex (2, 2, 0).

In general, whether in canonical or standard form, when equation Ax = b holds we say the constraint is
tight. From the discussion above, we have that a bfs is the unique solution to a set ofn linearly independent
tight constraints.

Theorem 2.1 If min{cT x : Ax = b, x ≥ 0} is finite, then there is an optimal solution that is a vertex.

Proof: Consider an optimal solutionx and suppose it is not a vertex. Then∃y 6= 0 such thatx+y, x−y ∈ P .
It follows thatA(x + y) = b andA(x − y) = b, which implies thatAy = 0. Without loss of generality,
assume thatcT y ≤ 0 (if needed, take−y). For the case thatcT y = 0, sincey 6= 0 andcT y = cT (−y) = 0
there must be an indexj such thatyj < 0. In that case we choosey for which this indexj exists. Consider
x + αy for someα > 0. Then,cT (x + αy) = cT x + cT (αy) ≤ cT x because ofcT y ≤ 0.

Case 1: Suppose there exists an indexj such thatyj < 0. Considerx + αy. Whenα → ∞, the jth
component ofy → −∞ and so does thej’th component ofx + αy, but we assumed the minimum the
polytop is finite. So letα = maxj : yj<0

xj

−yj
andk denote the value satisfyingα = xk

−yk
, which is the

largest value ofα such thatx + αy ≥ 0. ThenA(x + αy) = Ax + A(αy) = Ax = b, which implies
x + αy ∈ P and has one more component zero (which is thek’th component i.e.(xk + αyk)). Also
cT (x + αy) = cT x + cT αy ≤ cT x.

Case 2: Supposeyj ≥ 0 for all j. Then we must havecT y < 0 (or otherwise we have an indexj with
yj < 0). Considerx + αy. SinceA(x + αy) = Ax + αAy = Ax = b, andx + αy ≥ x ≥ 0, x + αy is
a feasible solution. On the other handcT (x + αy) = cT x + αcT y which goes to−∞ if α grows (because
cT y < 0), implying thatP is unbounded which contradicts the assumption. Therefore this case cannot
happen.

Case 1 can happen at mostn times. By induction, we eventually find a vertex solution.

Here is an alternative proof of the above theorem.

Proof: We know that any pointx ∈ P is a convex combination of its vertices (by definition of a polytope).
So if x∗ is an optimum non-vertex solution andx1, . . . , xk are vertices then there areαi, 1 ≤ i ≤ k
with

∑

i αi = 1 andx =
∑k

i=1
αixi. Sayxj is the vertex with the smallestcT xi value. ThencT x =

∑k
i=1

αic
T xi ≥ cT xj

∑k
i=1

αi = cT xj. Soxj is optimum too.

3 Solving LP’s: Simplex Algorithm

Simplex is the first algorithm developed for solving LP. Although it has exponential running time in worst
case it is the most practical algorithm. Is similar to Gaussian elimination for solving systems of equalities
The general idea of the algorithm is to start from a bfs and move from one vertex to another one which has
a better objective value. This is called pivoting. Repeat this procedure until all your neighbours have worse
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value (i.e. at a locally optimum vertex). Since the polytop is convex the locally optimum must be globally
optimum as well. There are many ways to select the next vertexand for every variation there is an example
for which the algorithm would take exponential time.

For ease of exposition we present the algorithm through an example. Consider the following LP:

max 3x1 + x2 + 2x3

x1 + x2 + 3x3 ≤ 30

2x1 + 2x2 + 5x3 ≤ 24

4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

We transform the LP into standard form by introducing slack variables.

max Z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

x1, . . . , x6 ≥ 0

A basic solution we start with is all non-basic variables setto zero(0, 0, 0, 30, 24, 36). This gives an objec-
tive value ofz = 0 Next we select a non-basic var with positive co-efficient in the objective function and
increase it as much as we can. Here, say we selectx1. If x1 ≥ 30 thenx4 ≤ 0, if x1 ≥ 12 thenx5 ≤ 0,
and ifx1 ≥ 9 thenx6 ≤ 0; so the maximum amount we can increase is 9 and it will make thelast constraint
“tight”. We increasex1 by this amount and re-write the constraints by switching therole ofx1 andx6:

x1 = 9 − x2

4
− x3

2
− x6

4

Rewriting all constraints we obtain:

max Z = 27 +
x2

4
+

x3

2
−

3x6

4

x1 = 9 −
x2

4
−

x3

2
−

x6

4

x4 = 21 −
3x2

4
−

5x3

2
+

x6

4

x5 = 6 −
3x2

2
− 4x3 +

x6

2
x1, . . . , x6 ≥ 0

This is a pivoting operation. The new basic solution obtained is (9, 0, 0, 21, 6, 0) with z = 27. Next, we
choosex3 and increase it; the maximum amount we can do is given by constraint for x5: it can increase to
3/2 without violating any of the constraints. We then re-write the constraints again:
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max Z =
111

4
+

x2

16
−

x5

8
−

11x6

16

x1 =
33

4
−

x2

16
+

x5

8
−

5x6

16

x3 =
3

2
−

3x2

8
−

x5

4
+

x6

8

x4 =
69

4
+

3x2

16
+

5x5

8
−

x6

16
x1, . . . , x6 ≥ 0

The basic solution becomes(33

4
, 0, 3

2
, 69

4
, 0, 0) The only way to increaseZ is to increasex2; the tightest

constraint is the second one and it gives a bound ofx2 ≤ 4. We obtain the following:

max Z = 28 −
x3

6
−

x5

6
−

2x6

3

x1 = 8 +
x3

6
+

x5

6
−

x6

3

x2 = 4 −
8x3

3
−

2x5

3
+

x6

3

x4 = 18 −
x3

2
+

x5

2
x1, . . . , x6 ≥ 0

We cannot increaseZ anymore, so we are at an optimum solution which is(8, 4, 0, 18, 0, 0) with z = 28.

In general form, we start from a bfs. SupposexB , xN are the basic and non-basic variables. Then we have

min cBxB + cNxN

s.t. ABxB + ANxN = b

x ≥ 0

Note thatxB = A−1b − A−1

B ANxN and the total cost of the solution is

cT x = cBxB + cNxN

= cB(A−1

B b − A−1

B ANxN ) + cNxN

= cBA−1

B b + (cN − cBA−1

B AN )xN .

Let us considerdN = cN − cBA−1

B AN as the reduced cost. If we can find an indexj ∈ N such thatdj < 0
then increasingxj will decrease the total cost. We can increasexj until a variable ofxB becomes zero; we
obtain a new bfs. Doing this we move (pivot) from one bfs to another bfs. The running time of the algorithm
is basically the number of moves from bfs to another bfs.

Every known rule for deciding the next non-basic variable tochange has a counter-example showing that
the worst case running time can be exponential. One natural questionis: what is the length of the shortest
vertex-to-vertex path between two vertices of a convex polytope in which every two consecutive vertices are
neighbours (by an edge). There is a famous (and wide open) conjecture:
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Hirsch Conjecture: If we havem hyperplanes ind-dimensional Euclidean space has diameter no more
thann − d.

This conjecture is known to be true ford < 4. The best known upper bound is sub-exponential as a function
of n andd (so not even a polynomial bound is known let alone linear). Even if this conjecture is true it
does not imply that the Simplex algorithm can find a sequence of pivoting operations that corresponds to a
shortest path as such a path may not be monotone (in terms of the objective value over the vertices of the
path).

Simplex algorithm was developed in 1947 (by Dantzig). In 1979 the first polynomial time algorithm for
solving LP’s was developed by Khachyan, named Ellipsoid algorithm. We will talk about that algorithm in
the next week.
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