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This lecture starts with some basic notions. Then we stueitiear programming and polytopes.

1 Linear Programming

A linear programming problem can be formalized as followiseg a set of variables,, ..., x,,, the objective
is to optimze a linear function of these variables subjeet $et of linear contraints. For example,

min Z?:l Cjxj
subject to
Z?:l Qi >b; for i=1,---
z; >0 for j=1,---,n.
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or in other form:

min '
subject to
Ax > b
x> 0.

A feasiblesolution is anyx satisfying Az > b. A linear program (LP) is said to befaasible LPif it has at
least one feasible solution.

Definition 1.1 Alinear program is unbounded (from below) if for amy= R, there exists a feasible solution
x such thate” z < a.

An LP can be stated in many different (equivalnet) forms. fge the objective function is a maximization.
Then:

1. One can transform a maximization problem into a miniriatproblem and vice versa by changing
the sign of variables in the objective fucntion:

maxc! z < min — ¢’z

2. If the linear constraints are equalities then it can besfi@med into two constraints with inequality:

aler =b— al-T:c > bal’ldaiT:c <b

)

3. By introducing slack variables, one can express inetigglks equalities. For example, We can replace

the constraintzfx < b; with a;fx + s; = b; for a new variables; and add the constraint > 0. Itis
easy that any feasible solution satisfying the first oneesponds to a unique solution satisfying the
second one and vice-versa,



4. We can switch between non-positivity and non-negatiedgstraints:
2; <0— —x; > 0n

5. Restrictingz’s sign: if there is no sign restriction anwe can writex; = =7 —

] , and require that
atj,x; > 0and replace alt;’s.

Using these rules, we can transform any LP in the canonicai:fo

min cx
subject to
Ax > b
x>0
to an LP in the standard form:
min L
subject to
Ax =1b
x>0
Example 1: Consider the following LP:
max 2x1 + x3 (1)
st. zi+axo+z3 < 4
I S 2
I3 S 3
31‘2 + I3 § 3
x1,w2,73 > 0

A feasible solution for this LP i$2, 0, 2).

Note that if there are constraints in an LP that are lineaglgashdent on other ones then they are redundant
as they can be obtained from the others. So we can make tbeviiof) assumption:

Assumption 1 The rank of them x n matrix A in the linear program isn (full rank), i.e. we haven
linearly independent columns of (m < n).

Assumption2 any linear program we deal with is feasible.

Definition 1.2 A basis ofA is a linearly independent collection of columns of4, i.e., a non-singular
submatrixB = [A;,, Aj,, ..., A, ], whereB is anm x m matrix. A basic solution corresponding f®is a
vectorz € R™ with the following properties:

0$]:OIfA]€B,

e z;, =the kth componentoB~tbfork =1,--- m.

To find a basic solution, can be found by:



Figure 1: The polytope defined by the constraints of LP(1)
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1. Find a seiB of m linearly independent columns ¢f;
2. All z’s corresponding to columns not I8 are set to zero;

3. Solve the remainingn equations to find remainingy varialbes.

Basic feasible solutions (bfs) are very important in stuéiy®s. It can be proved that if a linear program
is feasible then there is a basic feasible solution. From olowe assume we are talking about LP’s whose
solution set is non-empty (i.e. there is at least one feasiblution and therefore at least one bfs). It can be
proved that for every bfs, there is an objective functionhstiat the bfs is the unique optimum solution to
the LP with that objective function:

Lemma 1.3 Letz be basic feasible solution tdz = b, for z > 0. Then there is a vectar such thatr is
the unique optimal solution to

min Lz

st. Az =10
x> 0.

There is a strong relation between LP’s and polytopes (d#fioemally below). The study of LP’s is
equivalent to study of the corresponding polytopes (or petirons). Consider the vector spaceRih. A
linear subspace d&” is a subset of it closed under vector addition and scalaripfiaktion.

Definition 1.4 A hyperplane iR™ is a set of pointz € R": ajz + - - - + apz, = b}

Every hyperplane defines two half spacels: > b and Ax < b. A body defined as the interesection of a
collection of half-spaces is a polyhedron:

Definition 1.5 A polyhedron is a convex body defined by a collection of halfep. A polytope is a bounded
polyhedron.

Definition 1.6 A set of point§ay,...,a; € R™} are linearly independent Ef’:l Aia; = 0 implies\; = 0
forall 1 < <k.



Definition 1.7 A linear subspace dR” is a setS = {z € R": a;z; + -+ + apx, = 0,1 < i < n}. An
affine subspace is obtained from a linear subspsid®y translating by a vectob: A = {z + b: = € S}.

Definition 1.8 A set of point§ay, . .., a; € R"} are affinely independent ", X\ja; = 0and % | \; =
0 imply \; = 0 for all i.

Dimension of a polyhedro®® is the maximum number of affinely independent point®iminus 1.

Examples:

e A single point has dimension = 0;
e Aline segment has dimension = 1;
e Any set ofk < n + 1 points inR™ has dimension of at mo&t— 1.

e Dimension of a sef’ defined by

with A being anm x n matrix is at most, — m.

Let P be a convex polytope iR™ and HS be a half-space defined by a hyperpldide If f = PN HS
belongs tafH, thenf is a face ofP.

Definition 1.9 A facet is a face of dimension— 1. A vertex is a face of dimension 0 (point). An edge is a
face of dimension 1 (line).

Note that the hyperplane defining a facet corresponds to midgfhalf-space of” but the converse might
not be true.

A vertex can be aslo defined equivalently as:

Definition 1.10 x is a vertex inP if there does not exigt # 0 such thatr + y,x — y € P.

One can bound the number of faces of a polytope using thexfimitptheorem:

Theorem 1.11Let A € R™*™. Then any face o = {z € R" : Ax < b} corresponds to the set of

solutions to
ZCLU.TJ' =b,iel
J
Zaijxj < bi,i ¢ 1
J
for somel C {1,--- ,m}.
Proof: Exercise. m

Corollary 1.12 The number of non-empty facesifs at most™.

Theorem 1.13 Letz* be a vertex of? = {x € R": Az < b}. Then, thereisa set C {1,...,m} such
thatz* is the unique solution t§ _; a;jxz; = b;, Vi€ I.

Proof: Given a vertexc* of P, definel as

I = {Z Zjaijxj = bz} (2)



So for every; ¢ I we must have:

Zaijbj < bi. (3)
J
From the previous theorem we know thédtis uniquely defined by:
Zaijxj = b, Viel
J

Zaijxj S bi, V’L€I
J

If there is another solution’ which is a solution to Eq. (2), thefl — ¢)z* + ez’ for sufficiently smalle,
satisfies all those in eq. (2) and eq. (3). It contradicts #saiaption that* is a vertex solution. [

2 Linear Programs and Polytopes

Polytopes can be defined in 3 different ways:

1. The convex hull of a finite set of points (which will contdhre vertices of the polytope),
2. Asthe intersection of a finite number of half spaces as &sthe intersection is non-empty,

3. Algebraic version:

Ax =
x > 0.

The previous theorem shows that the vertices of the polytopespond to bfs of the corresponding LP.
Consider a polytope” defined byAx = b, x > 0. Let N be the set of non-basic variables and ket

be the set of basic variables. We can partitioand accordinglyA into {zp,zx} and{Ap, Ax}. Then,

a vertexz* can be obtained by setting non-basic variables to zero dmthgdhe remaining equations. In
other words, we havelpzp + Ayzy = b, we setxy = 0. It follows that Agzp = b. We solve this

to obtain values of basic variables (this set of equationstiave unique solution), which means thigs
must have full rank (i.erank(Ap) = | B]|). Since we assumé itself has full rank (i.erank(A) = m), we
have|B| < m andApg is am x m non-singular matrix. Recall that this sBtis a basis and is a bfs. Thus

all vertices are bfs and vice versa. Note however that diffebases may lead to the same vertex as there
are different ways of extending g to am x m matrix.

For example, consider the LP1 from Example 1:

max 2xj + x3

st. x1+xotuws < 4 4)
r < 2 (5)

T3 < 3 (6)

3z +23 < 3 (7
x1,x2,23 = 0 (8)



Then, introducing slack variables, x5, x¢, 27 for equations (4),(5),(6),and (7),respectively, we abthie
following LP in standard formAxz = b where:

O = =

117100
0 0] 010
01001
1

_ o O O

6 0 0 0 00

ThenB = {A;, As, A3, Ag} and B’ = {A4;, Ay, Ay, Ag} are to bases. and both correspond to the bfs
(2,2,0,0,0,3,0). For B if we setzy = x5 = zy = 0 we obtain vertex(2,2,0) and for B’ we set
x3 = x5 = x7 = 0 which again implies the same solution corresponding teexes, 2, 0).

In general, whether in canonical or standard form, when #gualz = b holds we say the constraint is
tight. From the discussion above, we have that a bfs is theuersolution to a set of linearly independent
tight constraints.

Theorem 2.1 If min{c’x : Az =b, x> 0} is finite, then there is an optimal solution that is a vertex.

Proof: Consider an optimal solutianand suppose itis not a vertex. Theém=~ 0 such thate+y, z—y € P.
It follows that A(z + y) = b and A(z — y) = b, which implies thatdy = 0. Without loss of generality,
assume that’y < 0 (if needed, take-y). For the case that'y = 0, sincey # 0 andc’y = ¢ (—y) = 0
there must be an indeksuch thaty; < 0. In that case we chooggfor which this index; exists. Consider
x + ay for somea > 0. Then,c’ (z + ay) = "'z + ¢ (ay) < ¢’z because o'y < 0.

Case 1 Suppose there exists an indgxsuch thaty; < 0. Considerz + ay. Whena — oo, the jth
component ofy — —oo and so does thg'th component ofr + «ay, but we assumed the minimum the
polytop is finite. So letv = max;. ,;<o f—;J and k denote the value satisfying = f—& which is the
largest value ofx such thatr + ay > 0. ThenA(z + ay) = Az + A(ay) = Az = b, which implies
x 4+ ay € P and has one more component zero (which is ke component i.e.(x; + ayg)). Also

'z +ay)=clv+clay <l

Case 2 Supposey; > 0 for all j. Then we must havel'y < 0 (or otherwise we have an indgxwith
y; < 0). Considerz + ay. SinceA(r + ay) = Az + Ay = Az =b,ande +ay >z >0,z + ayis
a feasible solution. On the other harld(z + o) = ¢’z + ac’y which goes to-oo if o grows (because
cl'y < 0), implying that P is unbounded which contradicts the assumption. Thereftiledase cannot
happen.

Case 1 can happen at maestimes. By induction, we eventually find a vertex solution. [
Here is an alternative proof of the above theorem.

Proof: We know that any point € P is a convex combination of its vertices (by definition of aypope).
So if * is an optimum non-vertex solution and, ..., x; are vertices then there arg, 1 < i < k
with 3.0y = 1 andz = 2% a2, Sayz; is the vertex with the smalles z; value. Thenc”z =
Zle aiclz; > cla; Zle a; = cl'zj. Soz; is optimum too. ]

3 Solving LP’s: Simplex Algorithm

Simplex is the first algorithm developed for solving LP. Adtlgh it has exponential running time in worst
case it is the most practical algorithm. Is similar to Gaaislimination for solving systems of equalities
The general idea of the algorithm is to start from a bfs anderfoym one vertex to another one which has
a better objective value. This is called pivoting. Repeit pinocedure until all your neighbours have worse



value (i.e. at a locally optimum vertex). Since the polyteganvex the locally optimum must be globally
optimum as well. There are many ways to select the next vartexfor every variation there is an example
for which the algorithm would take exponential time.

For ease of exposition we present the algorithm through amele. Consider the following LP:

max 3x1 + x9 + 213
1+ a9 +3x3 < 30
21 + 229 +bx3 < 24
dr1 + a9+ 223 < 36
ri1,r9,x3 > 0

We transform the LP into standard form by introducing slaakables.

max Z = 311+ 12+ 213
zy = 30—2x1— a9 — 313
x5 = 24 —2x1 —2x9 — Dy
rg = 36 —4x1 — x9 — 273
T1,...,26 > 0

A basic solution we start with is all non-basic variablesteetero(0, 0, 0, 30, 24, 36). This gives an objec-
tive value ofz = 0 Next we select a non-basic var with positive co-efficienthia bbjective function and
increase it as much as we can. Here, say we selectf z; > 30 thenxy < 0, if 1 > 12 thenzs < 0,
and ifz1 > 9 thenzg < 0; so the maximum amount we can increase is 9 and it will maké&gteonstraint
“tight”. We increaser; by this amount and re-write the constraints by switchingrtie of x; andxg:

Rewriting all constraints we obtain:

7 = 1+ 24226
max 7+4+2 1
_ g T2 T
"o 4 2 4
3:132 51‘3 Te
= 9122 _ 28,0
Ty 1 5 + 1
3%2 Te
= ——Z 4 —
Is 6 B xr3 + 9
Lly--.yT6 > 0

This is a pivoting operation. The new basic solution obtdirs(9,0,0,21,6,0) with z = 27. Next, we
choosers and increase it; the maximum amount we can do is given by @nsfor x5: it can increase to
3/2 without violating any of the constraints. We then re-wrtie tonstraints again:



J = — e 2 770

tax 1 7168 16
p = O3 _ %2, T 5T

! 4 16 ' 8 16

. 3 31’2 xIs L6

T 9T T TR

69+3ZC2 51’5 L6

ry = —+—4 — - —

4 4 16 "8 16

T1y...,T6 > 0

The basic solution become§§4§,0, %, %,0,0) The only way to increase is to increaser,; the tightest
constraint is the second one and it gives a bounehof 4. We obtain the following:

Z = 28— -2 =
max 6 6 3
I3 xIs L6
= {424 2_2
o 576 3
4 8:133 2:135 Te
x = - — — —
? 3 3 '3
T3 xIs
= 18— —= —
Ty 8 2 + 5
Tly.--5T6 > 0

We cannot increasg anymore, so we are at an optimum solution whick8ist, 0, 18,0, 0) with z = 28.

In general form, we start from a bfs. Suppasg, z are the basic and non-basic variables. Then we have

mincprp + cNTN
s.t. ABJJB+AN.TN =
x =z

Note thatrg = A~1b — AglANa:N and the total cost of the solution is

e = CBITB + CNITN

= CB(Aélb — AglAN.TN) +cCcNTN
= CBAglb + (CN — CBAglAN)xN.

Let us considety = ¢y — cBAglAN as the reduced cost. If we can find an ingex N such thatl; < 0
then increasing:; will decrease the total cost. We can increaseuntil a variable ofr 5 becomes zero; we
obtain a new bfs. Daoing this we move (pivot) from one bfs tothaobfs. The running time of the algorithm
is basically the number of moves from bfs to another bfs.

Every known rule for deciding the next non-basic variablehange has a counter-example showing that
the worst case running time can be exponential. One natuestipnis: what is the length of the shortest

vertex-to-vertex path between two vertices of a convextoply in which every two consecutive vertices are

neighbours (by an edge). There is a famous (and wide opefgatare:
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Hirsch Conjecture: If we havem hyperplanes ini-dimensional Euclidean space has diameter no more
thann — d.

This conjecture is known to be true fér< 4. The best known upper bound is sub-exponential as a function
of n andd (so not even a polynomial bound is known let alone linear)erEl this conjecture is true it

does not imply that the Simplex algorithm can find a sequemlg@ivoting operations that corresponds to a
shortest path as such a path may not be monotone (in terme abjkctive value over the vertices of the

path).

Simplex algorithm was developed in 1947 (by Dantzig). InQ%7e first polynomial time algorithm for
solving LP’s was developed by Khachyan, named Ellipsoidriigm. We will talk about that algorithm in
the next week.
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