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1 Spanning Tree Polytope

Last lecture we started studying the following LP for the problem of finding minimum spanning tree in a
given graphG = (V,E):

min
∑

wexe

s.t. x(E(S)) ≤ |S| − 1, ∀S ⊂ V
x(E(V )) = |V | − 1
xe ≥ 0.

We call thisLPMST . Our goal is to prove that:

Theorem 1.1 LPMST is integral, i.e. every bfs of this LP is integral.

We know that any bfs is uniquely determined byn linearly independent tight constraints (wheren is number
of variables of the LP ). Since we have exponentially many constraints in this LP, a bfs may be satisfying
many of them with equality (i.e. being tight). We want a “good” set of linearly independent tight constraints
defining it. The notion of “good” here will be clear soon. First, observe that in any bfs, we can safely delete
any edgee ∈ E with xe = 0 from the graph. So we can assume that every edge ofG hasxe > 0. Our goal
is to show that there are at most|v| − 1 linearly independent tight constraints which implies thatthere are at
most|v| − 1 non-zero variables. Since for any setS with size|S| = 2, the conditionx(E(S)) ≤ |S| − 1
implies the value of that edge must be at most 1 and becausex(E(v)) = |v| − 1 we get that all the|v| − 1
non-zero variables must have value exactly 1, i.e. the bfs isintegral.

1.1 Uncrossing Technique and Laminar Families of Tight Sets

Here we introduce a technique by which we can prove the existence of a special structure for bfs.

Definition 1.2 Two setsX,Y over a ground setU are called crossing ifX ∩ Y 6= ∅, X − Y 6= ∅, and
Y −X 6= ∅. A family of sets is called laminar if no two sets in the familycross.

From this definition, it is easy to see that if two sets in a laminar family have non-empty intersection then
one is a subset of the other. If we define a graphT associated with a laminar familyF of sets, in which
we have a nodeuS in T for every setsS ∈ F , uS is called parent ofvS′ if S is the smallest set ofF that
containsS′ then it is easy to see thatT is a forest (doesn’t have any cycles).

The next lemma shows that if every set of a laminar family has size at least 2 then there are at mostn − 1
sets in the laminar family.

Lemma 1.3 LetU be a ground set of sizen andL be a laminar family of non-crossing sets without sets of
size 1 (singletons ). Then|L| ≤ n− 1.
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Proof: We can prove this by induction. We sayS ∈ L is maximal if there is no setS′ ∈ L with S ⊂ S′.
Let S1, S2, . . . , Sm be maximal sets inL. Since they don’t cross, this gives a partitioning ofU . As for
the base case, if|U | = 2, since we don’t have singletons, we have only one setSi. For the induction
step, using induction hypothesis, the number of sets ofL contained inSi is at most|Si| − 1. Therefore,
|L| ≤

∑

m

i=1
(|Si| − 1) = (

∑

m

i=1
|Si|)−m = n−m ≤ n− 1.

Uncrossing, is a powerful technique in combinatorial optimization. The following observation can be proved
by noting that every type of edge (as in Figure ??) contributes the same amount to each side of the equation
below:

Observation 1.4 For any two sets of verticesX,Y ⊆ V . Then

x(E(X)) + x(E(Y )) = x(E(X ∪ Y )) + x(E(X ∩ Y ))− x(δ(X,Y ))

whereδ(X,Y ) denotes the edges betweenX andY .

An immediate corollary is:

Corollary 1.5 For any two setsX,Y ⊆ V : x(E(X)) + x(E(Y )) ≤ x(E(X ∪ Y )) + x(E(X ∩ Y )).

Let x be a bfs of theLPMST with xe > 0 for all edgese ∈ E. LetF = {S|x(E(S)) = |S| − 1} be the
family of all tight constraints of the LP. For each setS we useχ(E(S)) to denote the characteristic vector
of E(S) of size|E|:

χ(E(S)) =

{

1 if e ∈ E(S)

0 o.w.

Lemma 1.6 If S, T ∈ F andS ∩ T 6= ∅, then bothS ∩ T andS ∪ T are inF . Furthermore,χ(E(S)) +
χ(E(T )) = χ(E(S ∪ T )) + χ(E(S ∩ T )).

Proof:

|S| − 1 + |T | − 1 = x(E(S)) + x(E(T )) sinceS, T ∈ F
≤ x(E(S ∪ T )) + x(E(S ∩ T )) by Corollary 1.5
≤ |S ∩ T | − 1 + |S ∪ T | − 1 since these are constraints in the LP
= |S| − 1 + |T | − 1

So all inequalities must hold with equality, and in particular

x(E(S ∩ T )) + x(E(S ∪ T )) = |S ∩ T | − 1 + |S ∪ T | − 1.

Thus, we must have bothS ∩ T andS ∪ T be tight constraints. Therefore,S ∩ T andS ∪ T are inF . Also
we must havex(δ(S, T )) = 0 which impliesχ(E(S)) + χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )).

We usespan(F) to denote the vector space of those setsS ∈ F i.e. the vector space of{χ(E(S)) : S ∈ F}.

Lemma 1.7 If L is a maximal laminar subfamily ofF , thenspan(L) = span(F).

Proof: SupposeL is a maximal laminar family ofF , but span(L) ⊂ span(F). For eachS 6∈ L define
intersect(S,L) = |{T ∈ L| S andT intersect}|. There must be a setS ∈ F with χ(E(S)) 6∈ span(L).
Choose such a setS with smallest value ofintersect(S,L). Observe thatintersect(S,L) ≥ 1 or else
L ∪ {S} is a larger laminar family. LetT be one of the sets inL that S intersects. We will prove the
following Proposition shortly.
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Proposition 1.8
intersection(S ∩ T, L) < intersection(S, L)

intersection(S ∪ T, L) < intersection(S, L)

For now assume this proposition is true. Applying Lemma 1.6 to S andT , we get bothS ∩ T andS ∪ T
are inF . So using this proposition and by minimality ofintersect(S,L), bothS ∩ T andS ∪ T are in
span(L). On the other hand,χ(E(S)) + χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )). Sinceχ(E(S ∩ T ))
andχ(E(S ∪ T )) are inspan(L) andT ∈ L, we must haveχ(E(S)) ∈ span(L), a contradiction.

So it only remains to prove the above proposition.
For a setR ∈ L with R 6= T , R does not intersectT (sinceL is a laminar family). So wheneverR intersects
S ∩ T or S ∪ T , R also intersectsS.

Thus, we obtain the following:

Lemma 1.9 Letx be a bfs of theLPMST with xe > 0 for all e ∈ E and letF = {S|x(E(S)) = |S| − 1}.
Then there is a laminar familyL ⊆ F such that:

1. vectors of{χ(E(S))|S ∈ L} are linearly independent, and

2. span(L) = span(F)

3. |L| = |E|

1.2 Iterative Algorithm

Here we describe an iterative algorithm to obtain a treeT from a bfs of theLPMST ; this is done by picking
edges with value 1 in the LP iteratively:

Iterative MST algorithm

F ← ∅
while V (G) 6= ∅ do

Find a bfsx of LPMST and remove any edgee with xe = 0
Find a vertexv with degree 1, saye = uv; thenG← G− {v} andF ← F ∪ {e}

Lemma 1.10 For any bfsx with xe > 0 for all edges, there is a vertexv with deg(v) = 1.

Proof: Suppose all nodes haved(v) ≥ 2 in supportE (i.e. edges that are left). Then|E| = 1

2

∑

v∈G
deg(v) ≥

|V |. Since there is no edges withxe = 0, each tight constraint is of the formx(E(S)) = |S|−1. By Lemma
1.9, there is a laminar familyL with |L| = |E| ≥ |V |; but by Lemma 1.3,|L| ≤ |V | − 1, this is a contradic-
tion.

We can also modify the last step in the following way:

“Find an edgee with xe = 1 and thenG← G/e andF ← F ∪ {e}”

whereG/e means the graph obtained contracting edgee. Then we can prove the following lemma instead
of Lemma 1.10:

Lemma 1.11 For any bfsx with xe > 0 for all edges, there is an edgee with xe = 1.
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Proof: By Lemma 1.9, there are|L| linearly independent tight constraints of the formx(E(S)) = |S| − 1,
and |L| = |E|. We derive a contradiction by a counting argument. Assign one token for each edgee to
the smallest set inL that contains both endpoints ofe. So there are a total of|E| tokens. We show we can
collect 1 token for each set and still have some extra tokens,which is a clear contradiction.

Let S ∈ L be a set have childrenR1, . . . , Rk (in the laminar family). Since these are all tight sets, we have:

x(E(S)) = |S| − 1

x(E(Ri)) = |Ri| − 1 for all 1 ≤ i ≤ k

Subtracting the sides we get:

x(E(S)) −
∑

i

x(E(Ri)) = |S| −
∑

i

|Ri|+ k − 1

Let A = E(S)\
⋃

i
E(Ri). Thenx(E(A)) = |S| −

∑

i
|Ri| + k − 1. SetS gets exactly one token for

each edge inA. If A = ∅ thenχ(E(S)) =
∑

i
χ(E(Ri)) which contradicts linear independence ofL. Also

we cannot have|A| = 1 sincex(E(A)) is an integer (as the right-hand side is sum/difference of sizes of a
number of sets) and eachxe is assumed to be fractional. Therefore,S gets at least two tokens!

Using Lemma 1.10 or 1.11 it is easy to show that the iterative algorithms find a MST.

Theorem 1.12 The iterative algorithm (and its alternate form) find a MST.

Proof: It only remains to show that the result is a spanning tree and this is done by induction on the number
of iterations. Consider the first form of the algorithm. If wefind a vertex of degree 1, saydeg(v) = 1 then
the edge incident to it must havexe = 1 (sincex(δ(v)) ≥ 1 is a constraint). Thus each edge added toF
in either form of the algorithm has value 1. Whene is added toF andv is removed fromG note that for
any spanning treeT ′ of G − {v}, we can build a spanning treeT of G by definingT = T ′ ∪ {e}. So it is
sufficient that we find a spanning tree inG′ = G− {v}. Note that the restriction ofx to E(G′), call it xres,
is a feasible solution to the LP forG′. So by induction, we find a treeF ′ for G′ of cost at most optimum
value of the LP forG′. Thusc(F ′) ≤ c · xres andC(F ) = C(F ′) + ce. Thus

c(F ) ≤ c · xres + ce = c · x

sincexe = 1.

2 Min-cost Arborescence

We can use the same technique to show that the standard LP for the minimum costr-arborescence problem
is integral. Here we are given a digraphD = (V,A) and with rootr, a cost functionc : A→ R≥0. Our goal
is to find a minimum costr-arborescence. It is easy to see that the following is an LP relaxation:
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min
∑

caxa

s.t. x(δin(S)) ≥ 1 ∀S ⊂ V − r
x(δin(v)) = 1 ∀v ∈ V − r
x(δin(r)) = 0
xa ≥ 0.

We leave it as an exercise to prove the following lemma:

Lemma 2.1 Letx be a bfs of the above LP, and assume all edgesa havexa > 0. There is a laminar family
L such that:

1. x is the unique solution to the linear system{x(δin(S)) = 1 : S ∈ L}

2. The vectors{χ(δin(S)) : S ∈ L} are linearly independent, and

3. |L| = |A|

Then an algorithm similar to the algorithm of MST in which in each rounds picks an edge withxa = 1 finds
a minimum costr-arborescence (details are an exercise).

3 Minimum Cost Bounded Degree Spanning Tree

In this section we show how iterative algorithms can solve even more general problems (although approxi-
mately). Here we consider the problem of bounded degree spanning trees. Given a graphG = (V,E) and
a boundk, suppose we want to find a spanning tree with maximum degree atmostk. This is NP-complete
since withk = 2, it is the Hamiltonian path problem.

Theorem 3.1 (Furer & Raghavarchi ’90) There is a polynomial time algorithm that finds a spanning tree
of maximum degree a mostk + 1 (if there is one of with maximum degree at mostk).

As a more general case, suppose each edge of the graph has somegiven costce. Also, each vertexv has a
given boundBv and our goal is to find a minimum cost spanning tree with degreebounded byBv ’s.

Theorem 3.2 (Singh & Lan ’07) There is a polynomial time algorithm that finds a spanning tree of cost at
mostopt and degree in which every vertexv has degree at mostBv + 1.

In this lecture and the next lecture, we prove this theorem. For that end, we first formulate the problem as
an integer program and consider the LP relaxation. The following LP is the relaxation for an even more
general form of the problem in which we have degree boundsBv for a subsetW ⊆ V of vertices. We call
the following LP,LPBDMST .

min
∑

cexe

∀S ⊆ V X(E(S)) ≤ |S| − 1

X(E(V )) = |V | − 1

v ∈W X(δ(v)) ≤ Bv

Xe ≥ 0
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For ease of exposition, we first prove a weaker version of the above theorem. We show that the following
algorithm finds a tree whose cost is at most optimum and degreeof every vertexv is bounded by at most
Bv + 2.

Additive +2 approximation for BDMST

F ← ∅
while V (G) 6= ∅ do

Find a bfsx of LPBDMST and remove any edgee with xe = 0
If there is a vertexv ∈ V with at most one edgee = uv incident tov then

F ← F ∪ {e}
G← G− {v}
W ←W − {v}
Bu ← Bu − 1

If there is a vertexv ∈W with degE(v) ≤ 3 then
W ←W − {v}

ReturnF

So at each iteration, if there is an edgee that is the only edge incident tov, and we show that we must have
xe ≥ 1 and we pick this edge. Thus the cost we pay for an edge is not more than what the optimum pays. We
argue that if there is no such vertexv with an edge of value 1 then there is a vertexv ∈ W with d(v) ≤ 3;
so at each iteration we make progress in one of the two steps. Note that if there is a vertexv with d(v) ≤ 3
and we remove this constraint sinceBv ≥ 1 in the worst case we will have picked all the at most 3 edges
incident withv in our final solution, so the degree bound will be at most 3 which is at mostBv + 2.

LetF = {S ⊆ V : x(E(S)) = |S| − 1} be the set of tight set constraints. Then the following lemmacan
be proved similar to lemma 1.9 by applying uncrossing to setsin F :

Lemma 3.3 Letx be a bfs ofLPBDMSP with xe > 0 for all edges. There is aT ⊆ W with x(δ(v)) = Bv

for eachv ∈ T , and a laminar familyL ⊆ F such that

1. vectors{χ(E(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ T} are linearly independent

2. vector space ofspan(L) ∪ {χ(δ(v)) : v ∈ T} = span(F)

3. |L|+ |T | = |E|

By the argument given earlier, it is thus sufficient to prove the following lemma:

Lemma 3.4 (Main lemma) Letx be a bfs ofLPBDMSP with xe > 0 for all edges. There is a vertexv with
degree(v) = 1 or there is a vertexv ∈W with degree(v) ≤ 3.

Proof: By way of contradiction, suppose that none of these holds, i.e. each vertexv ∈ V hasdegree(v) ≥ 2
and eachv ∈W hasdegree(v) ≥ 4. Thus, with|V | = n:

|E| =
1

2

∑

v∈V

degree(v) ≥
1

2
(4|W |+ 2(n − |W |)) = n + |W |. (1)

By the previous lemma, there is a laminar familyL ⊆ F and setT ⊆W with |L|+ |T | = |E|. SinceL has
sets of size at least 2,|L| ≤ n− 1. Thus|E| = |L|+ |T | ≤ n− 1 + |T | ≤ n− 1 + |W | which contradicts
inequality (1).
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Theorem 3.5 The iterative algorithm given above returns a treeT with cost at most optimum andd(v) ≤
Bv + 2 for eachv ∈W .

Proof: If there is a nodev with degree(v) = 1 then sincex(δ(v)) ≥ 1 is a valid constraint (obtained by
subtractingx(E(V − v)) ≤ |V | − 2 from x(E(V )) = |V | − 1), we must havexe ≥ 1. So we pay no more
than what the LP pays at each step we pick an edge. Also, the remaining variables define a feasible solution
for the residual LP, so inductively, the cost ofT is at most the cost of the LP solution. As for the degree
bounds, letB′

v be the current residual degree bound for a vertexv. It is easy to see that since we always pick
full edges and update the degree bounds, ifv ∈W thendegF (v)+B′

v = Bv. Now whenv is removed from
W (because it hasdeg(v) ≤ 3) thendegT (v) ≤ degF (v) + 3 ≤ Bv −B′

v + 3 ≤ Bv + 2, sinceB′
v ≥ 1.

3.1 Additive +1 approximation algorithm

In this Section we prove Theorem 3.2. We start from a bfs and show that at each iteration we can either find
an edgee with xe = 1 ( and so pick it) or there is a vertexv ∈ W with deg(v) ≤ Bv + 1 and we relax the
constraint. The following equivalent algorithm is easier to analyze. We start from a bfsx with xe > 0, for
all e ∈ E. We iteratively find a vertexv ∈ W with deg(v) ≤ Bv + 1 and removev from W . At the end we
have the LP without any degree constraints, so it is the same LP as for MST and is thus integral.

Additive +1 approximation for BDMST

while V (G) 6= ∅ do
Find a bfsx of LPBDMST and remove any edgee with xe = 0
Let v ∈W be a node withdeg(v) ≤ Bv + 1.
W ← W − {v}

Return all edges withxe = 1.

It is easy to see that if at each iteration we find a vertexv ∈ W with deg(v) ≤ Bv + 1 then the degree of
v at the final solution is no more thanBv + 1 once we remove that constraint from the LP. Also,x as it is,
is feasible for the more relaxed LP. Therefore, the value of the solution for the residual (relaxed) LP is no
more than opt. This implies that at the end we have a tree with cost at most optimum and degree bounds are
violated by no more than +1. Thus we only have to show that at each iteration of the algorithm we can find
such a vertexv ∈W to remove fromW . Note that from Lemma 3.3 we can find the laminar familyL ⊆ F
and tight degree nodesT ⊆ W such that|L| + |T | = |E| and the corresponding constraints are linearly
independent. We prove the following Lemma:

Lemma 3.6 Let x be a bfs of theLPBDMST with xe > 0 for all edges andL andT be as in Lemma 3.3.
Then ifT 6= ∅ then there is a nodev ∈W such thatdegree(v) ≤ Bv + 1.

We will see the proof of this lemma next lecture and that completes the proof of Theorem 3.2.
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