CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009)
Lecture 18&19: Iterative relaxation

Lecturer: Mohammad R. Salavatipour Scriber: Zhong Li
Date: Nov 5, 2009

1 Spanning Tree Polytope

Last lecture we started studying the following LP for thelgem of finding minimum spanning tree in a
given graphGG = (V, E):

min) weke

st z(E(S)) <|S|-1,VScCV
2(B(V)) = [V|—1
T > 0.

We call thisL Py;s7. Our goal is to prove that:
Theorem 1.1 LPy;¢7 is integral, i.e. every bfs of this LP is integral.

We know that any bfs is uniquely determinedsbiinearly independent tight constraints (wherés number

of variables of the LP). Since we have exponentially manystramts in this LP, a bfs may be satisfying
many of them with equality (i.e. being tight). We want a “gbsét of linearly independent tight constraints
defining it. The notion of “good” here will be clear soon. Ejrsbserve that in any bfs, we can safely delete
any edge: € E with z. = 0 from the graph. So we can assume that every edde lohsz. > 0. Our goal

is to show that there are at mast — 1 linearly independent tight constraints which implies ttiegre are at
most|v| — 1 non-zero variables. Since for any sewith size|S| = 2, the conditionz(E(S)) < |S| — 1
implies the value of that edge must be at most 1 and becaus@)) = |v| — 1 we get that all thev| — 1
non-zero variables must have value exactly 1, i.e. the hifgégral.

1.1 Uncrossing Technique and Laminar Families of Tight Sets

Here we introduce a technique by which we can prove the exstef a special structure for bfs.

Definition 1.2 Two setsX,Y over a ground set/ are called crossing iX NY # 0, X — Y # (), and
Y — X # (). Afamily of sets is called laminar if no two sets in the faroityss.

From this definition, it is easy to see that if two sets in a lemifamily have non-empty intersection then
one is a subset of the other. If we define a grdphssociated with a laminar famil§ of sets, in which
we have a nodeg in T for every setsS € F, ug is called parent ob g if S is the smallest set of that
containsS’ then it is easy to see thdtis a forest (doesn’t have any cycles).

The next lemma shows that if every set of a laminar family hzes at least 2 then there are at mest 1
sets in the laminar family.

Lemma 1.3 LetU be a ground set of size and £ be a laminar family of non-crossing sets without sets of
size 1 (singletons). Thed| < n — 1.

Proof: We can prove this by induction. We s&ye £ is maximal if there is no set’ € £ with S C S'.
Let S1,5,,...,5, be maximal sets iC. Since they don't cross, this gives a partitioning(df As for
the base case, {U| = 2, since we don’t have singletons, we have only oneSetFor the induction
step, using induction hypothesis, the number of set§ obntained inS; is at most|.S;| — 1. Therefore,
L] <3258 = 1) = 2L, ISi)) —m =n—m <n—1. .

uUncrossing, is a powerful technique in combinatorial ojtettion. The following observation can be proved
by noting that every type of edge (as in Figure ??) contribtite same amount to each side of the equation
below:

Observation 1.4 For any two sets of vertice¥,Y C V. Then
z(BE(X))+z(EY))=z2(E(XUY))+z(E(XNY)) —z(6(X,Y))

whered (X, Y) denotes the edges betweErandY'.
An immediate corollary is:
Corollary 1.5 Forany two sets(,Y C V: z(E(X)) + z(E(Y)) <z(E(XUY))+z(E(X NY)).

Let = be a bfs of thel. Py, s with z. > 0 for all edgese € E. LetF = {S|z(E(S)) = |S| — 1} be the
family of all tight constraints of the LP. For each setve usex(E(S)) to denote the characteristic vector
of E(S) of size|E|:

1 ifee E(S)
0 ow.

ME@DZ{

Lemmal.61f ST € FandSNT # (), then bothS N T and S U T are in F. Furthermore,x(E(S)) +
X(E(T)) = x(E(SUT)) +x(E(SNT)).

Proof:

S| =14+ |T| -1 =ax(E(S)) +z(E(T)) sinceS, T € F
<z(E(SUT))+z(E(SNT)) byCorollary 1.5
<|SNT|—-1+|SUT|—-1 since these are constraints in the LP
=|S|-1+|T|—-1

So all inequalities must hold with equality, and in partaul
z(E(SNT))+z(E(SUT))=|SNT| -1+ |SUT|-1.

Thus, we must have bothin T andS U T be tight constraints. Therefor§,n T andS U T are inF. Also

we must haver(6(S,T")) = 0 which impliesx(E(S)) + x(E(T)) = x(E(SNT))+ x(E(SUT)). =

We usespan(F) to denote the vector space of those séts F'i.e. the vector space §fy(E(S)) : S € F}.

Lemma 1.7 If £ is a maximal laminar subfamily of, thenspan(L) = span(F).

Proof: Supposel is a maximal laminar family ofF, but span(L£) C span(F). For eachS ¢ L define
intersect(S,L) = |{T € L| S andT intersec}|. There must be a s&t € F with x(E(S)) & span(L).
Choose such a sét with smallest value otntersect(S, L). Observe thaintersect(S,L£) > 1 or else
L U {S} is a larger laminar family. Lef’ be one of the sets iff that S intersects. We will prove the
following Proposition shortly.

Proposition 1.8
intersection(S NT, L) < intersection(S, L)

intersection(S UT, L) < intersection(S, L)
For now assume this proposition is true. Applying Lemma 6.6 and7’, we get bothS N T"andS U T
are inF. So using this proposition and by minimality 6ftersect(S, L), bothS N'T andS U T are in

span(L). On the other handy(E(S)) + x(E(T)) = x(E(SNT)) + x(E(SUT)). Sincex(E(SNT))
andx(E(SUT)) are inspan(L) andT € L, we must have (E(S)) € span(L), a contradiction.

So it only remains to prove the above proposition.
Forasetk € L with R # T, R does not intersed (sinceL is a laminar family). So wheneveét intersects
SNTorSUT, R also intersects. [

Thus, we obtain the following:

Lemma 1.9 Letx be a bfs of thel Py, g7 with z, > 0 for all e € E and letF = {S|z(E(S)) = |S| — 1}.
Then there is a laminar familg C F such that:

1. vectors of x (E(S))|S € L} are linearly independent, and
2. span(L) = span(F)
3. [£] = |E]

1.2 lterative Algorithm

Here we describe an iterative algorithm to obtain a ffdeom a bfs of thelL P, s7; this is done by picking
edges with value 1 in the LP iteratively:

Iterative MST algorithm

F 0
while V(G) # 0 do
Find a bfsxz of LPy;s7r and remove any edgewith z, = 0
Find a vertexv with degree 1, say = uv; thenG «— G — {v} andF' — F U {e}

Lemma 1.10 For any bfsz with 2. > 0 for all edges, there is a vertexwith deg(v) = 1.

Proof: Suppose all nodes hadév) > 2in supportE (i.e. edges that are left). ThéR| = %teG deg(v) >
|[V'|. Since there is no edges with = 0, each tight constraint is of the form{ £(S)) = |S|—1. By Lemma
1.9, there is a laminar familg with |£| = |E| > |V]; but by Lemma 1.3,£| < |V| — 1, this is a contradic-
tion.]

We can also modify the last step in the following way:
“Find an edge: with z, = 1 and thenG «— G//e andF — F U {e}"

whereG/e means the graph obtained contracting edg@&hen we can prove the following lemma instead
of Lemma 1.10:

Lemma 1.11 For any bfsz with 2. > 0 for all edges, there is an edgewith z, = 1.

Proof: By Lemma 1.9, there argC| linearly independent tight constraints of the fosrt(S)) = |S| — 1,
and|L| = |E|. We derive a contradiction by a counting argument. Assige tmken for each edgeto
the smallest set i that contains both endpoints ef So there are a total ¢¥| tokens. We show we can
collect 1 token for each set and still have some extra tokehigh is a clear contradiction.

Let S € £ be a set have childreRy, ..., Ry (in the laminar family). Since these are all tight sets, weeha

#(E(S) = [S]-1
z(E(R;)) = |Ri|—1 foralll<i<k

Subtracting the sides we get:

2(BS) = Y w(BR) = |8]- 3 |Ril+k—1

Let A = E(S)\U, E(R;). Thenz(E(A)) = |S| — >, |Ri| + k — 1. SetS gets exactly one token for
each edge il. If A = 0 thenx(E(S)) = >_, x(E(R;)) which contradicts linear independencebfAlso
we cannot havéA| = 1 sincex(E(A)) is an integer (as the right-hand side is sum/difference zufssof a
number of sets) and eaah is assumed to be fractional. Therefofegets at least two tokens! [

Using Lemma 1.10 or 1.11 it is easy to show that the iteratigerdhms find a MST.
Theorem 1.12 The iterative algorithm (and its alternate form) find a MST.

Proof: It only remains to show that the result is a spanning tree kisdg done by induction on the number
of iterations. Consider the first form of the algorithm. If filed a vertex of degree 1, salg(v) = 1 then
the edge incident to it must hawe = 1 (sincex(d(v)) > 1 is a constraint). Thus each edge added'to
in either form of the algorithm has value 1. Wheiis added tof" andv is removed fromG note that for
any spanning treg” of G — {v}, we can build a spanning tréeof G by definingT = 7" U {e}. So itis
sufficient that we find a spanning treedGti = G — {v}. Note that the restriction of to E(G’), call it s,

is a feasible solution to the LP f@’. So by induction, we find a treg” for G’ of cost at most optimum
value of the LP foiG’. Thusc(F’) < ¢ - zyes andC(F) = C(F’) + c.. Thus

¢(F)<c Tpes+ce=c-x

sincez, = 1. [}

2 Min-cost Arborescence

We can use the same technique to show that the standard Lieforihimum cost-arborescence problem
is integral. Here we are given a digraph= (V, A) and with rootr, a cost function: : A — R=%. Our goal
is to find a minimum cost-arborescence. It is easy to see that the following is an l&Xag&on:

min Y c,Zq
st z(6™(S)>1 VSCV —r
(0" (v) =1 YWweV —r
z(6™(r)) =0
z, > 0.
We leave it as an exercise to prove the following lemma:

Lemma 2.1 Letx be a bfs of the above LP, and assume all edgkavex, > 0. There is a laminar family
L such that:

1. z is the unique solution to the linear systdm(6™(S)) =1: 5 € L}
2. The vector{x(6"*(S)) : S € L} are linearly independent, and
3. [£] = |A]

Then an algorithm similar to the algorithm of MST in which iadh rounds picks an edge witl) = 1 finds
a minimum cost-arborescence (details are an exercise).

3 Minimum Cost Bounded Degree Spanning Tree

In this section we show how iterative algorithms can solvenemore general problems (although approxi-
mately). Here we consider the problem of bounded degreenspatrees. Given a grapi = (V, E') and

a boundk, suppose we want to find a spanning tree with maximum degremsitk. This is NP-complete
since withk = 2, it is the Hamiltonian path problem.

Theorem 3.1 (Furer & Raghavarchi '90) There is a polynomial time algorithm that finds a spanning tre
of maximum degree a mast+ 1 (if there is one of with maximum degree at most

As a more general case, suppose each edge of the graph hagisemeostc.. Also, each vertex has a
given boundB, and our goal is to find a minimum cost spanning tree with deboemded byB,'s.

Theorem 3.2 (Singh & Lan '07) There is a polynomial time algorithm that finds a spanning wécost at
mostopt and degree in which every vertexhas degree at mos8, + 1.

In this lecture and the next lecture, we prove this theoreor.tiiat end, we first formulate the problem as
an integer program and consider the LP relaxation. Thevatlg LP is the relaxation for an even more
general form of the problem in which we have degree bouBgdsor a subselV C V of vertices. We call
the following LP,L Pgppsst.

mianeace
VS CV X(E(S)) <|S]—1
(E(V))=V[-1
(0(v)) < By
X, >0

X
veW X

For ease of exposition, we first prove a weaker version of bova theorem. We show that the following
algorithm finds a tree whose cost is at most optimum and degfregery vertexv is bounded by at most
B, + 2.

Additive +2 approximation for BDMST

F—0
while V(G) # 0 do
Find a bfsxz of L Pgpysr and remove any edgewith 2, = 0
If there is a vertexw € V with at most one edge = uv incident tov then
F — FuU{e}
G—G-—{v}
W —W —{v}
B, B,—1
If there is a vertex € W with degg(v) < 3 then
W —W —{v}
ReturnF’

So at each iteration, if there is an edgthat is the only edge incident tg and we show that we must have
z. > 1 and we pick this edge. Thus the cost we pay for an edge is na than what the optimum pays. We
argue that if there is no such vertexwith an edge of value 1 then there is a verteg W with d(v) < 3;

so at each iteration we make progress in one of the two stept® tNat if there is a vertex with d(v) < 3

and we remove this constraint sinég > 1 in the worst case we will have picked all the at most 3 edges
incident withwv in our final solution, so the degree bound will be at most 3 Wiscat mostB,, + 2.

LetF = {S CV :z(E(S)) =|S| — 1} be the set of tight set constraints. Then the following lenuara
be proved similar to lemma 1.9 by applying uncrossing to sefs:

Lemma 3.3 Letz be a bfs ofL Pzpyrsp With z. > 0 for all edges. There is @ C W with z(6(v)) = B,
for eachv € T, and a laminar familyZ C F such that

1. vectors{x(E(S)): S € L} U{x(d(v)) : v € T} are linearly independent
2. vector space ofpan(L) U {x(0(v)) : v € T} = span(F)
3. L] +T| = |E]

By the argument given earlier, it is thus sufficient to prave following lemma:

Lemma 3.4 (Main lemma) Letx be a bfs ofL. Pgpyrsp With z. > 0 for all edges. There is a vertexwith
degree(v) = 1 or there is a vertex € W with degree(v) < 3.

Proof: By way of contradiction, suppose that none of these holdseach vertex € V hasdegree(v) > 2
and eachy € W hasdegree(v) > 4. Thus, with|V| = n:

AW+ 2(n = [W])) = n+ [W]. (1)

N |

1
|E| = 5 Z degree(v) >
veV
By the previous lemma, there is a laminar familyC F and setl’ C W with |£| + |T'| = | E|. SinceL has
sets of size atleast 2| <n — 1. Thus|E| = ||+ |T| <n — 1+ |T| <n — 1+ |W]| which contradicts
inequality (1). [

Theorem 3.5 The iterative algorithm given above returns a tfBewith cost at most optimum ant{v) <
B, + 2 for eachv € W.

Proof: If there is a node with degree(v) = 1 then sincer(é(v)) > 1 is a valid constraint (obtained by
subtractingz(E(V —v)) < |V| =2 fromz(E(V)) = |V| — 1), we must have:, > 1. So we pay no more
than what the LP pays at each step we pick an edge. Also, trenim variables define a feasible solution
for the residual LP, so inductively, the costBfis at most the cost of the LP solution. As for the degree
bounds, letB! be the current residual degree bound for a vertelt is easy to see that since we always pick
full edges and update the degree bounds,df W thendegr (v) + B), = B,. Now whenv is removed from

W (because it hagdeg(v) < 3) thendegr(v) < degr(v)+3 < B, — B, +3< B, +2,sinceB, > 1. m

3.1 Additive +1 approximation algorithm

In this Section we prove Theorem 3.2. We start from a bfs angvghat at each iteration we can either find
an edges with . = 1 (‘and so pick it) or there is a vertaxe W with deg(v) < B, + 1 and we relax the
constraint. The following equivalent algorithm is eas@ianalyze. We start from a biswith z. > 0, for

all e € E. We iteratively find a vertex € W with deg(v) < B, + 1 and remove from . At the end we
have the LP without any degree constraints, so it is the saaslfor MST and is thus integral.

Additive +1 approximation for BDMST

while V(G) # 0 do
Find a bfsxz of LPgpys and remove any edgewith 2, = 0
Letv € W be a node withleg(v) < B, + 1.
W — W —{v}

Return all edges with, = 1.

It is easy to see that if at each iteration we find a vertex W with deg(v) < B, + 1 then the degree of

v at the final solution is no more thah, + 1 once we remove that constraint from the LP. Als@s it is,

is feasible for the more relaxed LP. Therefore, the valuehefdolution for the residual (relaxed) LP is no
more than opt. This implies that at the end we have a tree wihat most optimum and degree bounds are
violated by no more than +1. Thus we only have to show thatelt &aration of the algorithm we can find
such a vertexr € W to remove fromi¥. Note that from Lemma 3.3 we can find the laminar fandh\C F
and tight degree nodéE C W such thatL| + |T'| = |E| and the corresponding constraints are linearly
independent. We prove the following Lemma:

Lemma 3.6 Letx be a bfs of thel Pgp s with 2. > 0 for all edges andC and T be as in Lemma 3.3.
Then ifT" # () then there is a node € W such thatdegree(v) < B, + 1.

We will see the proof of this lemma next lecture and that catgd the proof of Theorem 3.2.

