CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009)
 Lecture 12,13: Flows and Circulations, Matroids

Lecturer: Mohammad R. Salavatipour
Scriber: Michael Joya
Date: Oct.13-15, 2009

1 Flows and Circulations cont'd

This lecture builds on the fundamentals of flows that were covered in the last week. We look at some related concepts to flow, namely circulations and b-transshipments, and see some variant problems. We then spend a lecture introducing matroids and examine some instances of these structures.

Some applications of maximum flow

Maximum Bipartite matching: We can solve problems of related types using flows. Eg. Consider augmenting a bipartite graph $G=(A \cup B, E)$ with a node s and t s.t. there is an edge from s to every $a \in A$ and an edge from every $b \in B$ to t, all with capacities 1 . We also direct the edges between A and B to go from A to B. Then it is straightforward that in every maximum $s-t$-flow in this graph, the edges between A and B with non-zero amount of flow correspond to a maximum matching in the original graph G.

Figure 1: A bipartite graph with added nodes s and t
Edge-disjoint paths: The problem of finding maximum number of edge-disjoint paths one can find between two given nodes s and t can be solved using max-flow by assigning a capacity of 1 to each edge. Then in any flow, the flow must follow edge-disjoint paths. Using max-flow-min-cut theorem, the number of such paths is equal to the minimum number of edges across any $s-t$-cut. This is known as Menger's theorem:
Theorem 1.1 (Menger) In any graph $G(V, E)$ and any $u, v \in V$, the maximum number of edge-disjoint paths between u, v is equal to the minimum number of edges whose removal disconnects u, v (aka the connectivity of u, v).
Definition 1.2 (Connectivity) Connectivity of G is the minimum size of the set $U \subseteq V$ such that $G-U$ is connected [S03].
Multisource, multisink flow: Suppose we are given a graph $G=(V, E)$ with a set of sources $\left\{s_{1}, \ldots, s_{k}\right\}$ and a set of sinks t_{1}, \ldots, t_{ℓ}. Each edge has a capacity and our goal is to find a maximum amount of flow assuming that the flow originates from the sources and arrives at the sinks. The maximum flow problem in this multi-source multi-sink instance can be reduced to the single-source single-sink case by just adding a

Figure 2: A set of edge-disjoint paths.
universal source s connected to all s_{i} 's with directed edges with capacity ∞ and connect all the sinks t_{j} 's to a new sink node t with capacity ∞; now compute a maximum $s-t$-flow in the new graph.

Figure 3: A flow with k sources and j sinks

2 Circulations

Given a digraph $G=(V, E)$ and any function $f: E \rightarrow \mathbb{R}^{\geq 0}$, the excess function excess $_{f}: V \rightarrow \mathbb{R}$ is defined as $\operatorname{excess}_{f}(v)=f\left(s^{i n}(v)\right)$.
Function f is called a circulation if $\operatorname{excess}_{f}(v)=0$ for every vertex v. So we have flow conservation everywhere. Note that in an $s-t$-flow we have $\operatorname{excess}_{f}(v)=0$ for all $v \neq s, t$ and $\operatorname{excess}_{f}(s)=$ $-\operatorname{excess}_{f}(t)$.
Given a vector b (of size $|V|$), we say f is a b-transshipment if $\operatorname{excess}_{f}(v)=b(v) \quad \forall v \in V$.

2.1 Relations of Circulations and Flows

Suppose we are given a digraph $G=(V, E)$ and two capacity bounds $d, c: E \rightarrow \mathbb{Q}^{\geq 0}$ with $d \leq c$. Our goal is to find a circulation f satisfying $d \leq f \leq c$.
This problem can be solved by reducing it to a flow problem.

Figure 4: Nodes in a circulation.
For each edge $e \in E$ we define a new capacity as: $c^{\prime}(e)=c(e)-d(e)$. We add two new vertices s, t to the set of nodes. For each $v \in V$ with $\operatorname{excess}_{d}(v)>0$ add an edge $s v$ with capacity $c^{\prime}(s, v)=\operatorname{excess}_{d}(v)$
and for each vertex v with $\operatorname{excess}_{d}(v)<0$ add an edge $v t$ with capacity $c^{\prime}(v, t)=-\operatorname{excess}_{d}(v)$. Call this new graph G^{\prime}. We claim that G^{\prime} has an $s-t$-flow f^{\prime} with capacity constraint c^{\prime} of value $\left|f^{\prime}\right|=$ $\sum_{v: \text { excess }_{d}(v)>0} \operatorname{excess}_{d}(v)$ if and only if G has a flow f with $d \leq f \leq c$. To see this it is sufficient to take $f(e)=f^{\prime}(e)+d(e)$ for each edge $e \in E$.

Figure 5: Depiction of intermediate step.
Claim 2.1 G has a circulation $d \leq f \leq c$ iff G^{\prime} has an $s-t$ flow with value f^{\prime} (as above).
Proof: An easy exercise.
We can also solve the max-flow problem using circulation. For that, suppose we are given a graph $G=$ (V, E) with source-sink pair s, t and capacities c. We create an edge $t s$ with capacity ∞ and a demand d. The largest value of d for which there is a circulation in which the flow in on edge $t s$ is at least d gives us a maximum $s-t$ flow.

Figure 6: Make d as large as possible as long as there is a circulation.

2.2 Min-cost Flows and Circulations

Given a digraph $G=\langle V, E\rangle$ with cost/weight: $w: E \rightarrow \mathbb{R}$, any function $f: E \rightarrow \mathbb{R}^{\geq 0}$ has cost:

$$
\operatorname{cost}(f):=\sum_{e} f(e) \cdot w(e)
$$

The Min-cost-flow problem is: Given $G=\langle V, E\rangle s, t \in V, w, \Phi, c: E \rightarrow R^{\geq 0}$, where w is the weight function, c is the capacity function and Φ a value, find a flow of value $\geq \Phi$ with minimum cost. The min-cost-max-flow problem is to find a max $s-t$-flow of minimum cost. The min-cost flow can be formulated as an LP:

$$
\begin{array}{rl}
\forall v \in V-\{s, t\} & f\left(\delta^{\text {in }}(v)\right) \\
V * E\left(\delta^{\text {out }}(v)\right) \\
V * E & f\left(\delta^{\text {out }}(v)\right) \\
& =f\left(\delta^{\text {in }}(t)\right) \\
& \left.\operatorname{delta}^{\text {out }}(s)\right) \\
\geq \Phi
\end{array}
$$

However, we will see that there are more efficient ways to solve this problem.

Similarly, one can define the min-cost-circulation problem: Given a graph $G=(V, E)$ with weights, capacities and demands on the edges $w, d, c: E \rightarrow \mathbb{R}^{\geq 0}$ the goal is to find a circulation $d \leq f \leq c$ with minimum cost. One can reduce the min-cost flow problem to min-cost circulation as follows: add a $t s$ edge with capacity and demand Φ (which is the given flow requirement) and set the weight of this edge be zero $d(t s)=c(t s)=\Phi, w(t s)=0$. Then a min-cost circulation corresponds to a min-cost flow with value Φ. If our goal is to find min-cost max-flow then we set $c(t s)=\infty, d(t s)=0$, and $w(t s)=-1$ and for every other edge e we define $w(e)=0$; then ask for a min-cost circulation.
Many problems are special cases of min-cost flow. For example, the shortest path problem is the special case of $\Phi=1$: find a min-cost unit flow from s to t.

Residual Graph: The residual graph of a digraph $D=\langle V, E\rangle$ is the union of all the forward edges that have residual capacity, and all the backward edges such that the flow isn't minimal.

Definition 2.2 (Residual Graph) $G_{f}=\left\langle V, E_{f}\right\rangle$

$$
\begin{array}{rlll}
\forall e \in E: & e=u v & & \\
& u v \in E_{f} & \text { if } & f(e)<c(e)
\end{array} \quad w_{f}(e)=w(e), ~ 子 \quad \text { if } \quad f(e)>d(e) \quad w_{f}\left(e_{f}\right)=-w(e)
$$

Theorem 2.3 Given $G=\langle V, E\rangle, w, d, c$: let $d \leq f \leq c$ be a feasible circulation. Then f has a min-cost iff G_{f} has no negative-cost directed cycle.
Proof: If \mathcal{C} is a negative cycle in G_{f}, then for sufficiently small ϵ, we can replace f with

$$
d \leq \underbrace{f-\epsilon}_{f^{\prime}} \leq c
$$

while f^{\prime} remains feasible and and $\operatorname{cost}\left(f^{\prime}\right)<\operatorname{cost}(f)$.
Conversely, suppose every cycle in G_{f} has ≥ 0 weight and suppose f is not min-cost. Let f^{\prime} be any feasible circulation and define $f^{*}=f^{\prime}-f$. Observe that f^{*} is a circulation. Since we have flow conservation at every node (for flow f^{*}), f^{*} can be decomposed into a collection of cycles: $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$:

$$
f^{*}=f^{\prime}-f=\sum_{i} \alpha_{i} \mathcal{C}_{i} \quad \alpha_{i}>0
$$

Therefore, $\operatorname{cost}\left(f^{*}\right)=\operatorname{cost}\left(f^{\prime}\right)-\operatorname{cost}(f)=\sum_{i} \alpha_{i} \operatorname{cost}\left(\mathcal{C}_{i}\right)$. If all \mathcal{C}_{i} 's have >0 weight, then $c\left(f^{*}\right)>0$, which implies that $\operatorname{cost}\left(f^{\prime}\right)<\operatorname{cost}(f)$ a contradiction.

This suggests an algorithm for finding the min-cost circulation: as long as there is a negative cycle \mathcal{C} in G_{f}, find one and update f by increasing the flow in the other direction.

If C is the maximum capacity on any edge, W is the maximum cost and $m=|E|$ then the max \# of iterations is $O(m \cdot W \cdot C)$. Each iteration can be performed using Bellman-Ford which takes $O(m n)$; so the total running time will be $O\left(m^{2} n^{2} C W\right)$ which is not a polynomial time algorithm.
We can improve the running time to strongly polynomial if instead of finding any negative cycle in each iteration, one finds a cycle \mathcal{C} minimizing $\frac{w(\mathcal{C})}{|\mathcal{C}|}$
Theorem 2.4 (Goldberg and Tarjan) Choosing a minimum mean cycle in each iteration of the above algorithm, the number of iterations is at most $O\left(\mathrm{~nm}^{2} \cdot \log n\right)$.

3 Matroids

Suppose that E is a finite ground set and \mathcal{I} is a collection of subsets of E, called independent sets. We say $M=(E, \mathcal{I})$ is a matroid if the following two axioms hold:

1. For any $X \subseteq Y \subseteq E:$ if $Y \in \mathcal{I}$ then $X \in \mathcal{I}$
2. For any $X, Y \subseteq \mathcal{I}:$ if $|Y|>|X|$ then $\exists e \in Y \backslash X: X \cup\{e\} \in \mathcal{I}$

Sets in \mathcal{I} are called independent sets. Any set not in \mathcal{I} is called a dependent set. Observation: all maximal independent sets of \mathcal{I} have the same size. They are called bases of the matroid.
Example: Uniform matroid Let $\mathcal{I}=\{X \subseteq E:|X| \leq k\}$ for some given integer k. ("All subsets with order less than or equal to k "). If $|E|=n$ this is the uniform matroid $U_{n, k}$. The bases are subsets $B \subseteq E$ with size $|B|=k$ exactly. It is easy to see that both axioms are satisfied by the subsets of \mathcal{I}.
Example: Linear matroid Let $A_{m \times n}$ be an $m \times n$ matrix. Let E be the set of indices of columns of A. For $X \subseteq E$, let A_{x} be the submatrix with columns indexed by X and define:

$$
\mathcal{I}=\left\{X \subseteq E: \text { columns of } A_{x} \text { are linearly independent, i.e. } \operatorname{rank}\left(A_{x}\right)=|X|\right\}
$$

Axiom (1) is easy to see, as any subset of X will be linearly independent for a $X \in \mathcal{I}$. For 2) one needs to observe that if $X \subseteq Y$ and $|Y|>|X|$ and these columns are full-rank then there must be a column of Y not spanned by X; therefore one can add a column of matrix A_{Y} to A_{X} to obtain a larger matrix of full-column rank.

Example: Graphic matroids Given a graph $G=(V, E)$, then $M=(E, I)$ is a matroid where each $I \in \mathcal{I}$ is a forest (i.e: an acyclic collection of edges in G.) Consider the matroid axioms:

1. Any subset of a forest is a forest; thus it is closed under taking subsets.
2. If $c(V, X)$ denotes the number of connected components of the graph on vertices V and edges X then for any pair $X, Y \in \mathcal{I}$ with $|X|<|Y|$ we have $c(V, X)>c(V, Y)$; thus there is an edge in $Y-X$ such that $X \cup\{e\}$ is a forest (such an edge runs between two connected components of (V, X)).

If G is connected then bases of this matroid correspond to spanning trees of G.
Any minimal dependent set is called a circuit. In graphic matroids a circuits correspond to a cycle in G.
Example: Matching matroid Given graph $G=(V, E)$, say $\mathcal{I}=\{F \subseteq E: F$ is matching in $G\}$: One might ask whether this is a matroid or not. Although any subset of a matching is a matching too, the second axiom of matroid is not satisfied, for example assume that $X=\{b c\}$ while $Y=\{a b, c d\}$. Then clearly one cannot extend X to a larger matching by adding edges from Y.
However we can define a matroid in the following way:

$$
\mathcal{I}=\{S \subseteq V: S \text { is covered by some matching } M\}
$$

One can check that matroid axioms are satisfied:

1. is easy to check
2. Suppose that $X, Y \in \mathcal{I}$, with $|X|<|Y|$, say M_{1} is a matching covering the nodes in X and M_{2} is a matching covering the nodes in Y. Our goal is to show there is a node $v \in Y \backslash X$ and a matching M^{\prime} that covers $X \cup\{v\}$. If M_{1} covers v too we are done. Otherwise consider $M_{1} \Delta M_{2}$. There must be an alternating path from some vertex $v \in Y \backslash X$ to a vertex not in X. Then applying this path to M_{1} gives a matching that covers $X \cup\{v\}$.

Recall that a minimal (inclusion-wise) dependent set is a circuit. By definition, if we remove any element from a circuit we obtain an independent set.
Theorem 3.1 Given a matroid $M=(E, \mathcal{I})$, for every $I \in \mathcal{I}$ and $e \in E$, either $I+e \in \mathcal{I}$, or it contains a unique circuit.
Proof: Suppose $I+e \notin \mathcal{I}$. In other words, assume that $I+e$ contains a circuit. Let $C=\{c: I+e-c \in \mathcal{I}\}$. First we claim that C is dependent. Suppose C is independent. It can be extended to a basis of $I+e$ of cardinality $|I|$, so it has the form $I+e-d$, which is contradicting the definition. Next we prove that C is minimal: removing any c from C makes C a subset of $\mathcal{I}+e-c$ which belongs to \mathcal{I}. Thus C is a minimal dependent set, i.e. a circuit. Thirdly, we prove that C is unique. Say D is another circuit in $I+e$, so $\exists c \in C-D$. Then $D \subseteq \underbrace{I+e-c}_{\in \mathcal{I}}$ but by the definition of C, we know that $D \in \mathcal{I}$ so D is not a circuit.
Consider the example of graphic matroid over a connected graph G. Every base is a spanning tree. If we have two spanning trees T_{1} and T_{2} then for every edge $e_{1} \in T_{1} \backslash T_{2}, T_{2}+e_{1}$ has a unique cycle C. Also if we remove any edge $e_{2} \in C \cap T_{2}$ from this cycle we obtain another spanning tree of the graph. This can be proved in general for matriods:
Lemma 3.2 Let $M=(E, \mathcal{I})$ be a matroid and B_{1}, B_{2} be bases. Let $x \in B_{1} \backslash B_{2}$. Then $\exists y \in B_{2} \backslash B_{1}$ such that $B_{2}-x+y$ and $B_{1}-y+x$ are bases.

3.1 Rank functions

Let $M=(E, \mathcal{I})$ be a matroid and $A \subseteq E$. The rank function of M is a function $r_{M}: 2^{|E|} \rightarrow \mathbb{N}$ such that $r_{M}(A)=\max \{|X|: X \subseteq A, X \in \mathcal{I}\}$. Note that all such subsets X of A have the same size; so the rank function is well-defined.

Example: Linear matroid Recall that in a linear matroid E is the set of indices of columns of a matrix $\left.A_{m \times n}\right)$. Here, $r_{M}(X)$ is exactly the rank of the matrix A_{X} in the algebraic sense.

Example: Graphic matroid Consider matroid $M=(E, \mathcal{I})$ over the graph $G=(V, E)$ with \mathcal{I} being the set of forests of G. For every $F \subseteq E$ with $c(V, F)$ connected components, $r_{M}(F)=n-c(V, F)$.
We will prove later that:
Theorem 3.3 Let E be a ground set, and \mathcal{I} a collection of subsets of E that is closed under taking subsets. Consider a function r :

$$
r: 2^{|E|} \rightarrow \mathbb{N}
$$

Then r is the rank function of a matroid if and only if for all $X, Y \subseteq E$:

1. $0 \leq r(X) \leq|X|$
2. if $X \subseteq Y$ then $r(X) \leq r(Y)$
3. r is submodular, i.e. $r(X \cap Y)+r(X \cup Y) \leq r(X)+r(Y)$

References

S03 A. SCHRIJVER, Combinatorial Optimization, Springer 2003, pp. 148-195,237.

