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1 Flows and Circulations cont’d

This lecture builds on the fundamentals of flows that were covered in the last week. We look at some related
concepts to flow, namely circulations and b-transshipments, and see some variant problems. We then spend
a lecture introducing matroids and examine some instances of these structures.

Some applications of maximum flow

Maximum Bipartite matching: We can solve problems of related types using flows. Eg. Consider aug-
menting a bipartite graph G = (A U B, F) with a node s and ¢ s.t. there is an edge from s to every a € A
and an edge from every b € B to t, all with capacities 1. We also direct the edges between A and B to go
from A to B. Then it is straightforward that in every maximum s — ¢-flow in this graph, the edges between
A and B with non-zero amount of flow correspond to a maximum matching in the original graph G.
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Figure 1: A bipartite graph with added nodes s and ¢.

Edge-disjoint paths: The problem of finding maximum number of edge-disjoint paths one can find between
two given nodes s and ¢ can be solved using max-flow by assigning a capacity of 1 to each edge. Then in
any flow, the flow must follow edge-disjoint paths. Using max-flow-min-cut theorem, the number of such
paths is equal to the minimum number of edges across any s — t-cut. This is known as Menger’s theorem:

Theorem 1.1 (Menger) In any graph G(V, E) and any u,v € V, the maximum number of edge-disjoint
paths between u,v is equal to the minimum number of edges whose removal disconnects u,v (aka the
connectivity of u,v).

Definition 1.2 (Connectivity) Connectivity of G is the minimum size of the set U C V such that G — U is
connected [SO3].

Multisource, multisink flow: Suppose we are given a graph G = (V, E) with a set of sources {s1, ..., sk}
and a set of sinks ¢1,...,t,. Each edge has a capacity and our goal is to find a maximum amount of flow
assuming that the flow originates from the sources and arrives at the sinks. The maximum flow problem in
this multi-source multi-sink instance can be reduced to the single-source single-sink case by just adding a
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Figure 2: A set of edge-disjoint paths.

universal source s connected to all s;’s with directed edges with capacity oo and connect all the sinks ¢;’s to
a new sink node ¢ with capacity co; now compute a maximum s — t-flow in the new graph.
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Figure 3: A flow with k sources and j sinks

2 Circulations

Given a digraph G = (V, E) and any function f : E — R=9, the excess function excess V= Ris
defined as excessy(v) = f(s"(v)).

Function f is called a circulation if excessy(v) = 0 for every vertex v. So we have flow conservation
everywhere. Note that in an s — t-flow we have excessf(v) = 0 for all v # s,t and excessy(s) =
—excessy(t).

Given a vector b (of size |V|), we say f is a b-transshipment if excess¢(v) = b(v) Vv e V.

2.1 Relations of Circulations and Flows

Suppose we are given a digraph G = (V, E)) and two capacity bounds d, ¢ : E — Q=° with d < c. Our goal
is to find a circulation f satisfyingd < f < c.

This problem can be solved by reducing it to a flow problem.
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Figure 4: Nodes in a circulation.

For each edge e € F we define a new capacity as: ¢/(e) = c(e) — d(e). We add two new vertices s, ¢ to
the set of nodes. For each v € V with excessq(v) > 0 add an edge sv with capacity ¢/ (s, v) = excessq(v)



and for each vertex v with exzcessg(v) < 0 add an edge vt with capacity ¢'(v,t) = —excessq(v). Call
this new graph G’. We claim that G’ has an s — t-flow f’ with capacity constraint ¢’ of value |f/| =
Zv:e:pcessd(v)>0 excessq(v) if and only if G has a flow f with d < f < c. To see this it is sufficient to take
f(e) = f'(e) + d(e) for each edge € € E.
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Figure 5: Depiction of intermediate step.

Claim 2.1 G has a circulation d < f < c iff G' has an s — t flow with value f’ (as above).
Proof: An easy exercise. u

We can also solve the max-flow problem using circulation. For that, suppose we are given a graph G =
(V, E) with source-sink pair s, ¢ and capacities c. We create an edge ts with capacity oo and a demand d.
The largest value of d for which there is a circulation in which the flow in on edge ¢s is at least d gives us a
maximum s — ¢ flow.

Figure 6: Make d as large as possible as long as there is a circulation.

2.2 Min-cost Flows and Circulations
Given a digraph G = (V| E) with cost/weight: w : E — R, any function f : F — R’ has cost:
cost(f) =3 f(e) - wle)

The Min-cost-flow problem is: Given G = (V, E) s,t € V,w,®,c: E — R™’, where w is the weight
function, c is the capacity function and ® a value, find a flow of value > ® with minimum cost. The min-
cost-max-flow problem is to find a max s — ¢-flow of minimum cost. The min-cost flow can be formulated
as an LP:

veV —{s F6"(v) = f(5"(v))
v e‘Y*E{ £} F(5°u(v)) = f(8m (1))
f(delta®(s)) > ®

However, we will see that there are more efficient ways to solve this problem.



Similarly, one can define the min-cost-circulation problem: Given a graph G = (V, E) with weights, ca-
pacities and demands on the edgesw,d,c : £ — R’ the goal is to find a circulation d < f < ¢ with
minimum cost. One can reduce the min-cost flow problem to min-cost circulation as follows: add a ¢s edge
with capacity and demand ® (which is the given flow requirement) and set the weight of this edge be zero
d(ts) = c(ts) = @, w(ts) = 0. Then a min-cost circulation corresponds to a min-cost flow with value ®.
If our goal is to find min-cost max-flow then we set ¢(ts) = oo, d(ts) = 0, and w(ts) = —1 and for every
other edge e we define w(e) = 0; then ask for a min-cost circulation.

Many problems are special cases of min-cost flow. For example, the shortest path problem is the special
case of ® = 1: find a min-cost unit flow from s to ¢.

Residual Graph: The residual graph of a digraph D = (V| E) is the union of all the forward edges that
have residual capacity, and all the backward edges such that the flow isn’t minimal.

Definition 2.2 (Residual Graph) G = (V, Ey)

Veec EF: e=uv
w € By if  f(e) <cle) wy(e) =w(e)
vu € By if  f(e) > d(e) wys(ef) = —w(e)
Theorem 2.3 Given G = (V, E), w,d,c:letd < f < c be a feasible circulation. Then f has a min-cost
iff Gy has no negative-cost directed cycle.

Proof: If C is a negative cycle in G ¢, then for sufficiently small €, we can replace f with

d< f—e<c
—
f/

while f remains feasible and and cost(f") < cost(f).

Conversely, suppose every cycle in G ¢ has > 0 weight and suppose f is not min-cost. Let f’ be any feasible
circulation and define f* = f’ — f. Observe that f* is a circulation. Since we have flow conservation at
every node (for flow f*), f* can be decomposed into a collection of cycles: Cy, ..., Cy:

f*:f,—f:ZOéiCi a; >0

Therefore, cost(f*) = cost(f') — cost(f) = >, aicost(C;). If all C;’s have > 0 weight, then ¢(f*) > 0,
which implies that cost(f") < cost(f) a contradiction. |

This suggests an algorithm for finding the min-cost circulation: as long as there is a negative cycle C in G,
find one and update f by increasing the flow in the other direction.

If C' is the maximum capacity on any edge, W is the maximum cost and m = |E/| then the max # of iterations
is O(m - W - C). Each iteration can be performed using Bellman-Ford which takes O(mn); so the total
running time will be O(m?n?CW) which is not a polynomial time algorithm.
We can improve the running time to strongly polynomial if instead of finding any negative cycle in each
w(C)

C|
Theorem 2.4 (Goldberg and Tarjan) Choosing a minimum mean cycle in each iteration of the above al-
gorithm, the number of iterations is at most O(nm? - log n).

iteration, one finds a cycle C minimizing



3 Matroids

Suppose that E is a finite ground set and Z is a collection of subsets of E, called independent sets. We say
M = (E,T) is a matroid if the following two axioms hold:

1. Forany X CY CFE:ifY € Zthen X € Z

2. Forany X, Y CZ:if|Y| > |X|thenJdec Y\ X : X U{e} €7

Sets in Z are called independent sets. Any set not in Z is called a dependent set. Observation: all maximal
independent sets of Z have the same size. They are called bases of the matroid.

Example: Uniform matroid Let Z = {X C E : |X| < k} for some given integer k. ("All subsets with
order less than or equal to k7). If | E| = n this is the uniform matroid U, ;. The bases are subsets B C E
with size | B| = k exactly. It is easy to see that both axioms are satisfied by the subsets of Z. [ |

Example: Linear matroid Let A,,,«, be an m x n matrix. Let E be the set of indices of columns of A. For
X C F, let A, be the submatrix with columns indexed by X and define:

Z ={X C E: columns of A, are linearly independent, i.e. rank(A;) = |X|}

Axiom (1) is easy to see, as any subset of X will be linearly independent for a X € Z. For 2) one needs to
observe that if X C Y and |Y'| > |X| and these columns are full-rank then there must be a column of ¥ not
spanned by X ; therefore one can add a column of matrix Ay to Ax to obtain a larger matrix of full-column
rank. [ |

Example: Graphic matroids Given a graph G = (V, E), then M = (FE, I) is a matroid where each I € 7 is
a forest (i.e: an acyclic collection of edges in GG.) Consider the matroid axioms:

1. Any subset of a forest is a forest; thus it is closed under taking subsets.

2. If ¢(V, X) denotes the number of connected components of the graph on vertices V' and edges X then
for any pair X,Y € 7 with | X| < |Y| we have ¢(V, X) > ¢(V,Y); thus there is an edge in Y — X
such that X U {e} is a forest (such an edge runs between two connected components of (V, X)).

If G is connected then bases of this matroid correspond to spanning trees of G. [ |
Any minimal dependent set is called a circuit. In graphic matroids a circuits correspond to a cycle in G.

Example: Matching matroid Given graph G = (V, E), say Z = {F C FE : F is matching in G}: One
might ask whether this is a matroid or not. Although any subset of a matching is a matching too, the second
axiom of matroid is not satisfied, for example assume that X = {bc} while Y = {ab, cd}. Then clearly one
cannot extend X to a larger matching by adding edges from Y.

However we can define a matroid in the following way:

T ={S CV:Siscovered by some matching M }

One can check that matroid axioms are satisfied:

1. is easy to check



2. Suppose that X, Y € Z, with | X| < |Y|, say M; is a matching covering the nodes in X and M, is a
matching covering the nodes in Y. Our goal is to show there is a node v € Y\ X and a matching M’
that covers X U {v}. If M; covers v too we are done. Otherwise consider M; AMs. There must be
an alternating path from some vertex v € Y\ X to a vertex not in X. Then applying this path to M;
gives a matching that covers X U {v}.

Recall that a minimal (inclusion-wise) dependent set is a circuit. By definition, if we remove any element
from a circuit we obtain an independent set.

Theorem 3.1 Given a matroid M = (E,Z), forevery I € T and e € E, either I + e € Z, or it contains a
unique circuit.

Proof: Suppose I +e ¢ Z. In other words, assume that / +-e contains a circuit. Let C' = {¢: [+e—c € T}.
First we claim that C' is dependent. Suppose C' is independent. It can be extended to a basis of I + e of
cardinality |I|, so it has the form I + e — d, which is contradicting the definition. Next we prove that C' is
minimal: removing any ¢ from C makes C' a subset of Z + e — ¢ which belongs to Z. Thus C is a minimal
dependent set, i.e. a circuit. Thirdly, we prove that C' is unique. Say D is another circuit in / + e, so
Jde € C — D. Then D C I + e — ¢ but by the definition of C', we know that D € Z so D is not a circuit. ®

€T

Consider the example of graphic matroid over a connected graph G. Every base is a spanning tree. If we
have two spanning trees 77 and 75 then for every edge ey € 17 \ T, T» + e; has a unique cycle C. Also if
we remove any edge eo € C' N T5 from this cycle we obtain another spanning tree of the graph. This can be
proved in general for matriods:

Lemma 3.2 Let M = (E,Z) be a matroid and By, B be bases. Let x € By \ Ba. Then 3y € Bo \ By such
that Bo — x 4+ y and B — y + x are bases.

3.1 Rank functions

Let M = (E,T) be amatroid and A C E. The rank function of M is a function r; : 2% — N such that
rar(A) = maz{|X|: X C A, X € Z}. Note that all such subsets X of A have the same size; so the rank
function is well-defined.

Example: Linear matroid Recall that in a linear matroid E is the set of indices of columns of a matrix
Apxn). Here, rp(X) is exactly the rank of the matrix A x in the algebraic sense. [ ]

Example: Graphic matroid Consider matroid M = (F,Z) over the graph G = (V, E') with Z being the set
of forests of G. For every F' C E with ¢(V, F') connected components, 7/ (F) = n — ¢(V, F). ]

We will prove later that:

Theorem 3.3 Let E be a ground set, and T a collection of subsets of E that is closed under taking subsets.

Consider a function r:
r: 2Bl 5 N

Then r is the rank function of a matroid if and only if for all X, Y C E:
1. 0 <r(X)<|X]
2. if X CY thenr(X) <r(Y)
3. rissubmodular, i.e. T( X NY)+r(XUY) <r(X)+r(Y)
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