
CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009)

Lecture 12,13: Flows and Circulations, Matroids

Lecturer: Mohammad R. Salavatipour Scriber: Michael Joya
Date: Oct.13-15, 2009

1 Flows and Circulations cont’d

This lecture builds on the fundamentals of flows that were covered in the last week. We look at some related
concepts to flow, namely circulations and b-transshipments, and see some variant problems. We then spend
a lecture introducing matroids and examine some instances of these structures.

Some applications of maximum flow

Maximum Bipartite matching: We can solve problems of related types using flows. Eg. Consider aug-
menting a bipartite graph G = (A ∪ B,E) with a node s and t s.t. there is an edge from s to every a ∈ A
and an edge from every b ∈ B to t, all with capacities 1. We also direct the edges between A and B to go
from A to B. Then it is straightforward that in every maximum s− t-flow in this graph, the edges between
A and B with non-zero amount of flow correspond to a maximum matching in the original graph G.

Figure 1: A bipartite graph with added nodes s and t.

Edge-disjoint paths: The problem of finding maximum number of edge-disjoint paths one can find between
two given nodes s and t can be solved using max-flow by assigning a capacity of 1 to each edge. Then in
any flow, the flow must follow edge-disjoint paths. Using max-flow-min-cut theorem, the number of such
paths is equal to the minimum number of edges across any s− t-cut. This is known as Menger’s theorem:

Theorem 1.1 (Menger) In any graph G(V,E) and any u, v ∈ V , the maximum number of edge-disjoint
paths between u, v is equal to the minimum number of edges whose removal disconnects u, v (aka the
connectivity of u, v).

Definition 1.2 (Connectivity) Connectivity of G is the minimum size of the set U ⊆ V such that G− U is
connected [S03].

Multisource, multisink flow: Suppose we are given a graph G = (V,E) with a set of sources {s1, . . . , sk}
and a set of sinks t1, . . . , t`. Each edge has a capacity and our goal is to find a maximum amount of flow
assuming that the flow originates from the sources and arrives at the sinks. The maximum flow problem in
this multi-source multi-sink instance can be reduced to the single-source single-sink case by just adding a

1

Figure 2: A set of edge-disjoint paths.

universal source s connected to all si’s with directed edges with capacity ∞ and connect all the sinks tj’s to
a new sink node t with capacity ∞; now compute a maximum s− t-flow in the new graph.

Figure 3: A flow with k sources and j sinks

2 Circulations

Given a digraph G = (V,E) and any function f : E → R≥0, the excess function excessf : V → R is
defined as excessf (v) = f

(
sin(v)

)
.

Function f is called a circulation if excessf (v) = 0 for every vertex v. So we have flow conservation
everywhere. Note that in an s − t-flow we have excessf (v) = 0 for all v 6= s, t and excessf (s) =
−excessf (t).

Given a vector b (of size |V |), we say f is a b-transshipment if excessf (v) = b(v) ∀v ∈ V .

2.1 Relations of Circulations and Flows

Suppose we are given a digraph G = (V,E) and two capacity bounds d, c : E → Q≥0 with d ≤ c. Our goal
is to find a circulation f satisfying d ≤ f ≤ c.

This problem can be solved by reducing it to a flow problem.

Figure 4: Nodes in a circulation.

For each edge e ∈ E we define a new capacity as: c′(e) = c(e) − d(e). We add two new vertices s, t to
the set of nodes. For each v ∈ V with excessd(v) > 0 add an edge sv with capacity c′(s, v) = excessd(v)

2

and for each vertex v with excessd(v) < 0 add an edge vt with capacity c′(v, t) = −excessd(v). Call
this new graph G′. We claim that G′ has an s − t-flow f ′ with capacity constraint c′ of value |f ′| =∑

v:excessd(v)>0 excessd(v) if and only if G has a flow f with d ≤ f ≤ c. To see this it is sufficient to take
f(e) = f ′(e) + d(e) for each edge e ∈ E.

Figure 5: Depiction of intermediate step.

Claim 2.1 G has a circulation d ≤ f ≤ c iff G′ has an s− t flow with value f ′ (as above).

Proof: An easy exercise.

We can also solve the max-flow problem using circulation. For that, suppose we are given a graph G =
(V,E) with source-sink pair s, t and capacities c. We create an edge ts with capacity ∞ and a demand d.
The largest value of d for which there is a circulation in which the flow in on edge ts is at least d gives us a
maximum s− t flow.

Figure 6: Make d as large as possible as long as there is a circulation.

2.2 Min-cost Flows and Circulations

Given a digraph G = 〈V,E〉 with cost/weight: w : E → R, any function f : E → R≥0
has cost:

cost(f) :=
∑

e

f(e) · w(e)

The Min-cost-flow problem is: Given G = 〈V,E〉 s, t ∈ V,w, Φ, c : E → R
≥0

, where w is the weight
function, c is the capacity function and Φ a value, find a flow of value ≥ Φ with minimum cost. The min-
cost-max-flow problem is to find a max s − t-flow of minimum cost. The min-cost flow can be formulated
as an LP:

∀v ∈ V − {s, t}
V ∗ E

f(δin(v)) = f(δout(v))
f(δout(v)) = f(δin(t))

f(deltaout(s)) ≥ Φ

However, we will see that there are more efficient ways to solve this problem.

3

Similarly, one can define the min-cost-circulation problem: Given a graph G = (V,E) with weights, ca-
pacities and demands on the edgesw, d, c : E → R≥0

the goal is to find a circulation d ≤ f ≤ c with
minimum cost. One can reduce the min-cost flow problem to min-cost circulation as follows: add a ts edge
with capacity and demand Φ (which is the given flow requirement) and set the weight of this edge be zero
d(ts) = c(ts) = Φ, w(ts) = 0. Then a min-cost circulation corresponds to a min-cost flow with value Φ.
If our goal is to find min-cost max-flow then we set c(ts) = ∞, d(ts) = 0, and w(ts) = −1 and for every
other edge e we define w(e) = 0; then ask for a min-cost circulation.

Many problems are special cases of min-cost flow. For example, the shortest path problem is the special
case of Φ = 1: find a min-cost unit flow from s to t.

Residual Graph: The residual graph of a digraph D = 〈V,E〉 is the union of all the forward edges that
have residual capacity, and all the backward edges such that the flow isn’t minimal.

Definition 2.2 (Residual Graph) Gf = 〈V,Ef 〉

∀e ∈ E : e = uv
uv ∈ Ef if f(e) < c(e) wf (e) = w(e)
vu ∈ Ef if f(e) > d(e) wf (ef) = −w(e)

Theorem 2.3 Given G = 〈V,E〉, w, d, c : let d ≤ f ≤ c be a feasible circulation. Then f has a min-cost
iff Gf has no negative-cost directed cycle.

Proof: If C is a negative cycle in Gf , then for sufficiently small ε, we can replace f with

d ≤ f − ε︸ ︷︷ ︸
f ′

≤ c

while f ′ remains feasible and and cost(f ′) < cost(f).

Conversely, suppose every cycle in Gf has ≥ 0 weight and suppose f is not min-cost. Let f ′ be any feasible
circulation and define f∗ = f ′ − f . Observe that f∗ is a circulation. Since we have flow conservation at
every node (for flow f∗), f∗ can be decomposed into a collection of cycles: C1, ..., Cn:

f∗ = f ′ − f =
∑

i

αiCi αi > 0

Therefore, cost(f∗) = cost(f ′) − cost(f) =
∑

i αicost(Ci). If all Ci’s have > 0 weight, then c(f∗) > 0,
which implies that cost(f ′) < cost(f) a contradiction.

This suggests an algorithm for finding the min-cost circulation: as long as there is a negative cycle C in Gf ,
find one and update f by increasing the flow in the other direction.

If C is the maximum capacity on any edge, W is the maximum cost and m = |E| then the max # of iterations
is O(m · W · C). Each iteration can be performed using Bellman-Ford which takes O(mn); so the total
running time will be O(m2n2CW) which is not a polynomial time algorithm.

We can improve the running time to strongly polynomial if instead of finding any negative cycle in each

iteration, one finds a cycle C minimizing
w(C)
|C|

Theorem 2.4 (Goldberg and Tarjan) Choosing a minimum mean cycle in each iteration of the above al-
gorithm, the number of iterations is at most O(nm2 · log n).

4

3 Matroids

Suppose that E is a finite ground set and I is a collection of subsets of E, called independent sets. We say
M = (E, I) is a matroid if the following two axioms hold:

1. For any X ⊆ Y ⊆ E : if Y ∈ I then X ∈ I

2. For any X, Y ⊆ I : if |Y | > |X| then ∃e ∈ Y \X : X ∪ {e} ∈ I

Sets in I are called independent sets. Any set not in I is called a dependent set. Observation: all maximal
independent sets of I have the same size. They are called bases of the matroid.

Example: Uniform matroid Let I = {X ⊆ E : |X| ≤ k} for some given integer k. (”All subsets with
order less than or equal to k”). If |E| = n this is the uniform matroid Un,k. The bases are subsets B ⊆ E
with size |B| = k exactly. It is easy to see that both axioms are satisfied by the subsets of I.

Example: Linear matroid Let Am×n be an m× n matrix. Let E be the set of indices of columns of A. For
X ⊆ E, let Ax be the submatrix with columns indexed by X and define:

I = {X ⊆ E : columns of Ax are linearly independent, i.e. rank(Ax) = |X|}

Axiom (1) is easy to see, as any subset of X will be linearly independent for a X ∈ I. For 2) one needs to
observe that if X ⊆ Y and |Y | > |X| and these columns are full-rank then there must be a column of Y not
spanned by X; therefore one can add a column of matrix AY to AX to obtain a larger matrix of full-column
rank.

Example: Graphic matroids Given a graph G = (V,E), then M = (E, I) is a matroid where each I ∈ I is
a forest (i.e: an acyclic collection of edges in G.) Consider the matroid axioms:

1. Any subset of a forest is a forest; thus it is closed under taking subsets.

2. If c(V,X) denotes the number of connected components of the graph on vertices V and edges X then
for any pair X, Y ∈ I with |X| < |Y | we have c(V,X) > c(V, Y); thus there is an edge in Y − X
such that X ∪ {e} is a forest (such an edge runs between two connected components of (V,X)).

If G is connected then bases of this matroid correspond to spanning trees of G.

Any minimal dependent set is called a circuit. In graphic matroids a circuits correspond to a cycle in G.

Example: Matching matroid Given graph G = (V,E), say I = {F ⊆ E : F is matching in G}: One
might ask whether this is a matroid or not. Although any subset of a matching is a matching too, the second
axiom of matroid is not satisfied, for example assume that X = {bc} while Y = {ab, cd}. Then clearly one
cannot extend X to a larger matching by adding edges from Y .

However we can define a matroid in the following way:

I = {S ⊆ V : S is covered by some matching M}

One can check that matroid axioms are satisfied:

1. is easy to check

5

2. Suppose that X, Y ∈ I, with |X| < |Y |, say M1 is a matching covering the nodes in X and M2 is a
matching covering the nodes in Y . Our goal is to show there is a node v ∈ Y \X and a matching M ′

that covers X ∪ {v}. If M1 covers v too we are done. Otherwise consider M1∆M2. There must be
an alternating path from some vertex v ∈ Y \X to a vertex not in X . Then applying this path to M1

gives a matching that covers X ∪ {v}.

Recall that a minimal (inclusion-wise) dependent set is a circuit. By definition, if we remove any element
from a circuit we obtain an independent set.

Theorem 3.1 Given a matroid M = (E, I), for every I ∈ I and e ∈ E, either I + e ∈ I, or it contains a
unique circuit.

Proof: Suppose I+e /∈ I. In other words, assume that I+e contains a circuit. Let C = {c : I+e−c ∈ I}.
First we claim that C is dependent. Suppose C is independent. It can be extended to a basis of I + e of
cardinality |I|, so it has the form I + e − d, which is contradicting the definition. Next we prove that C is
minimal: removing any c from C makes C a subset of I + e− c which belongs to I. Thus C is a minimal
dependent set, i.e. a circuit. Thirdly, we prove that C is unique. Say D is another circuit in I + e, so
∃c ∈ C −D. Then D ⊆ I + e− c︸ ︷︷ ︸

∈I

but by the definition of C, we know that D ∈ I so D is not a circuit.

Consider the example of graphic matroid over a connected graph G. Every base is a spanning tree. If we
have two spanning trees T1 and T2 then for every edge e1 ∈ T1 \ T2, T2 + e1 has a unique cycle C. Also if
we remove any edge e2 ∈ C ∩ T2 from this cycle we obtain another spanning tree of the graph. This can be
proved in general for matriods:

Lemma 3.2 Let M = (E, I) be a matroid and B1, B2 be bases. Let x ∈ B1 \B2. Then ∃y ∈ B2 \B1 such
that B2 − x + y and B1 − y + x are bases.

3.1 Rank functions

Let M = (E, I) be a matroid and A ⊆ E. The rank function of M is a function rM : 2|E| → N such that
rM (A) = max{|X| : X ⊆ A,X ∈ I}. Note that all such subsets X of A have the same size; so the rank
function is well-defined.

Example: Linear matroid Recall that in a linear matroid E is the set of indices of columns of a matrix
Am×n). Here, rM (X) is exactly the rank of the matrix AX in the algebraic sense.

Example: Graphic matroid Consider matroid M = (E, I) over the graph G = (V,E) with I being the set
of forests of G. For every F ⊆ E with c(V, F) connected components, rM (F) = n− c(V, F).

We will prove later that:

Theorem 3.3 Let E be a ground set, and I a collection of subsets of E that is closed under taking subsets.
Consider a function r:

r : 2|E| → N

Then r is the rank function of a matroid if and only if for all X, Y ⊆ E:

1. 0 ≤ r(X) ≤ |X|

2. if X ⊆ Y then r(X) ≤ r(Y)

3. r is submodular, i.e. r(X ∩ Y) + r(X ∪ Y) ≤ r(X) + r(Y)

6

References

S03 A. SCHRIJVER, Combinatorial Optimization, Springer 2003, pp. 148–195,237.

7

