CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009)

Lecture 12,13: Flows and Circulations, Matroids

Lecturer: Mohammad R. Salavatipour Date: Oct.13-15, 2009

Scriber: Michael Joya

1 Flows and Circulations cont'd

This lecture builds on the fundamentals of flows that were covered in the last week. We look at some related concepts to flow, namely circulations and b-transshipments, and see some variant problems. We then spend a lecture introducing matroids and examine some instances of these structures.

Some applications of maximum flow

Maximum Bipartite matching: We can solve problems of related types using flows. Eg. Consider augmenting a bipartite graph $G = (A \cup B, E)$ with a node s and t s.t. there is an edge from s to every $a \in A$ and an edge from every $b \in B$ to t, all with capacities 1. We also direct the edges between A and B to go from A to B. Then it is straightforward that in every maximum s - t-flow in this graph, the edges between A and B with non-zero amount of flow correspond to a maximum matching in the original graph G.

Figure 1: A bipartite graph with added nodes s and t.

Edge-disjoint paths: The problem of finding maximum number of edge-disjoint paths one can find between two given nodes s and t can be solved using max-flow by assigning a capacity of 1 to each edge. Then in any flow, the flow must follow edge-disjoint paths. Using max-flow-min-cut theorem, the number of such paths is equal to the minimum number of edges across any s - t-cut. This is known as Menger's theorem:

Theorem 1.1 (Menger) In any graph G(V, E) and any $u, v \in V$, the maximum number of edge-disjoint paths between u, v is equal to the minimum number of edges whose removal disconnects u, v (aka the connectivity of u, v).

Definition 1.2 (Connectivity) Connectivity of G is the minimum size of the set $U \subseteq V$ such that G - U is connected [S03].

Multisource, multisink flow: Suppose we are given a graph G = (V, E) with a set of sources $\{s_1, \ldots, s_k\}$ and a set of sinks t_1, \ldots, t_ℓ . Each edge has a capacity and our goal is to find a maximum amount of flow assuming that the flow originates from the sources and arrives at the sinks. The maximum flow problem in this multi-source multi-sink instance can be reduced to the single-source single-sink case by just adding a

Figure 2: A set of edge-disjoint paths.

universal source s connected to all s_i 's with directed edges with capacity ∞ and connect all the sinks t_j 's to a new sink node t with capacity ∞ ; now compute a maximum s - t-flow in the new graph.

Figure 3: A flow with k sources and j sinks

2 Circulations

Given a digraph G = (V, E) and any function $f : E \to \mathbb{R}^{\geq 0}$, the excess function $excess_f : V \to \mathbb{R}$ is defined as $excess_f(v) = f(s^{in}(v))$.

Function f is called a circulation if $excess_f(v) = 0$ for every vertex v. So we have flow conservation everywhere. Note that in an s - t-flow we have $excess_f(v) = 0$ for all $v \neq s, t$ and $excess_f(s) = -excess_f(t)$.

Given a vector b (of size |V|), we say f is a b-transshipment if $excess_f(v) = b(v) \quad \forall v \in V$.

2.1 Relations of Circulations and Flows

Suppose we are given a digraph G = (V, E) and two capacity bounds $d, c : E \to \mathbb{Q}^{\geq 0}$ with $d \leq c$. Our goal is to find a circulation f satisfying $d \leq f \leq c$.

This problem can be solved by reducing it to a flow problem.

Figure 4: Nodes in a circulation.

For each edge $e \in E$ we define a new capacity as: c'(e) = c(e) - d(e). We add two new vertices s, t to the set of nodes. For each $v \in V$ with $excess_d(v) > 0$ add an edge sv with capacity $c'(s, v) = excess_d(v)$

and for each vertex v with $excess_d(v) < 0$ add an edge vt with capacity $c'(v,t) = -excess_d(v)$. Call this new graph G'. We claim that G' has an s - t-flow f' with capacity constraint c' of value $|f'| = \sum_{v:excess_d(v)>0} excess_d(v)$ if and only if G has a flow f with $d \le f \le c$. To see this it is sufficient to take f(e) = f'(e) + d(e) for each edge $e \in E$.

Figure 5: Depiction of intermediate step.

Claim 2.1 *G* has a circulation $d \le f \le c$ iff G' has an s - t flow with value f' (as above).

Proof: An easy exercise.

We can also solve the max-flow problem using circulation. For that, suppose we are given a graph G = (V, E) with source-sink pair s, t and capacities c. We create an edge ts with capacity ∞ and a demand d. The largest value of d for which there is a circulation in which the flow in on edge ts is at least d gives us a maximum s - t flow.

Figure 6: Make d as large as possible as long as there is a circulation.

2.2 Min-cost Flows and Circulations

Given a digraph $G = \langle V, E \rangle$ with cost/weight: $w : E \to \mathbb{R}$, any function $f : E \to \mathbb{R}^{\geq 0}$ has cost:

$$cost(f) := \sum_{e} f(e) \cdot w(e)$$

The **Min-cost-flow** problem is: Given $G = \langle V, E \rangle$ $s, t \in V, w, \Phi, c : E \to \mathbb{R}^{\geq 0}$, where w is the weight function, c is the capacity function and Φ a value, find a flow of value $\geq \Phi$ with minimum cost. The min-cost-max-flow problem is to find a max s - t-flow of minimum cost. The min-cost flow can be formulated as an LP:

$$\begin{array}{ll} \forall v \in V - \{s, t\} & f(\delta^{in}(v)) &= f(\delta^{out}(v)) \\ V * E & f(\delta^{out}(v)) &= f(\delta^{in}(t)) \\ f(delta^{out}(s)) &\ge \Phi \end{array}$$

However, we will see that there are more efficient ways to solve this problem.

Similarly, one can define the min-cost-circulation problem: Given a graph G = (V, E) with weights, capacities and demands on the edges $w, d, c : E \to \mathbb{R}^{\geq 0}$ the goal is to find a circulation $d \leq f \leq c$ with minimum cost. One can reduce the min-cost flow problem to min-cost circulation as follows: add a ts edge with capacity and demand Φ (which is the given flow requirement) and set the weight of this edge be zero $d(ts) = c(ts) = \Phi, w(ts) = 0$. Then a min-cost circulation corresponds to a min-cost flow with value Φ . If our goal is to find min-cost max-flow then we set $c(ts) = \infty$, d(ts) = 0, and w(ts) = -1 and for every other edge e we define w(e) = 0; then ask for a min-cost circulation.

Many problems are special cases of min-cost flow. For example, the shortest path problem is the special case of $\Phi = 1$: find a min-cost unit flow from s to t.

Residual Graph: The residual graph of a digraph $D = \langle V, E \rangle$ is the union of all the forward edges that have residual capacity, and all the backward edges such that the flow isn't minimal.

Definition 2.2 (Residual Graph) $G_f = \langle V, E_f \rangle$

$$\begin{array}{ll} \forall e \in E: & e = uv \\ & uv \in E_f \quad \text{if} \quad f(e) < c(e) \quad w_f(e) = w(e) \\ & vu \in E_f \quad \text{if} \quad f(e) > d(e) \quad w_f(e_f) = -w(e) \end{array}$$

Theorem 2.3 Given $G = \langle V, E \rangle$, w, d, c: let $d \leq f \leq c$ be a feasible circulation. Then f has a min-cost iff G_f has no negative-cost directed cycle.

Proof: If C is a negative cycle in G_f , then for sufficiently small ϵ , we can replace f with

$$d \leq \underbrace{f - \epsilon}_{f'} \leq c$$

while f' remains feasible and and cost(f') < cost(f).

Conversely, suppose every cycle in G_f has ≥ 0 weight and suppose f is not min-cost. Let f' be any feasible circulation and define $f^* = f' - f$. Observe that f^* is a circulation. Since we have flow conservation at every node (for flow f^*), f^* can be decomposed into a collection of cycles: $C_1, ..., C_n$:

$$f^* = f' - f = \sum_i \alpha_i \mathcal{C}_i \quad \alpha_i > 0$$

Therefore, $cost(f^*) = cost(f') - cost(f) = \sum_i \alpha_i cost(\mathcal{C}_i)$. If all \mathcal{C}_i 's have > 0 weight, then $c(f^*) > 0$, which implies that cost(f') < cost(f) a contradiction.

This suggests an algorithm for finding the min-cost circulation: as long as there is a negative cycle C in G_f , find one and update f by increasing the flow in the other direction.

If C is the maximum capacity on any edge, W is the maximum cost and m = |E| then the max # of iterations is $O(m \cdot W \cdot C)$. Each iteration can be performed using Bellman-Ford which takes O(mn); so the total running time will be $O(m^2n^2CW)$ which is not a polynomial time algorithm.

We can improve the running time to strongly polynomial if instead of finding any negative cycle in each iteration, one finds a cycle C minimizing $\frac{w(C)}{|C|}$

Theorem 2.4 (Goldberg and Tarjan) Choosing a minimum mean cycle in each iteration of the above algorithm, the number of iterations is at most $O(nm^2 \cdot \log n)$.

3 Matroids

Suppose that E is a finite ground set and \mathcal{I} is a collection of subsets of E, called independent sets. We say $M = (E, \mathcal{I})$ is a matroid if the following two axioms hold:

- 1. For any $X \subseteq Y \subseteq E$: if $Y \in \mathcal{I}$ then $X \in \mathcal{I}$
- 2. For any $X, Y \subseteq \mathcal{I}$: if |Y| > |X| then $\exists e \in Y \setminus X : X \cup \{e\} \in \mathcal{I}$

Sets in \mathcal{I} are called *independent* sets. Any set not in \mathcal{I} is called a *dependent* set. Observation: all maximal independent sets of \mathcal{I} have the same size. They are called *bases* of the matroid.

Example: Uniform matroid Let $\mathcal{I} = \{X \subseteq E : |X| \leq k\}$ for some given integer k. ("All subsets with order less than or equal to k"). If |E| = n this is the uniform matroid $U_{n,k}$. The bases are subsets $B \subseteq E$ with size |B| = k exactly. It is easy to see that both axioms are satisfied by the subsets of \mathcal{I} .

Example: Linear matroid Let $A_{m \times n}$ be an $m \times n$ matrix. Let E be the set of indices of columns of A. For $X \subseteq E$, let A_x be the submatrix with columns indexed by X and define:

 $\mathcal{I} = \{X \subseteq E : \text{ columns of } A_x \text{ are linearly independent, i.e. } rank(A_x) = |X|\}$

Axiom (1) is easy to see, as any subset of X will be linearly independent for a $X \in \mathcal{I}$. For 2) one needs to observe that if $X \subseteq Y$ and |Y| > |X| and these columns are full-rank then there must be a column of Y not spanned by X; therefore one can add a column of matrix A_Y to A_X to obtain a larger matrix of full-column rank.

Example: Graphic matroids Given a graph G = (V, E), then M = (E, I) is a matroid where each $I \in \mathcal{I}$ is a forest (i.e. an acyclic collection of edges in G.) Consider the matroid axioms:

- 1. Any subset of a forest is a forest; thus it is closed under taking subsets.
- 2. If c(V, X) denotes the number of connected components of the graph on vertices V and edges X then for any pair $X, Y \in \mathcal{I}$ with |X| < |Y| we have c(V, X) > c(V, Y); thus there is an edge in Y - Xsuch that $X \cup \{e\}$ is a forest (such an edge runs between two connected components of (V, X)).

If G is connected then bases of this matroid correspond to spanning trees of G.

Any minimal dependent set is called a *circuit*. In graphic matroids a circuits correspond to a cycle in G.

Example: Matching matroid Given graph G = (V, E), say $\mathcal{I} = \{F \subseteq E : F \text{ is matching in } G\}$: One might ask whether this is a matroid or not. Although any subset of a matching is a matching too, the second axiom of matroid is not satisfied, for example assume that $X = \{bc\}$ while $Y = \{ab, cd\}$. Then clearly one cannot extend X to a larger matching by adding edges from Y.

However we can define a matroid in the following way:

 $\mathcal{I} = \{ S \subseteq V : S \text{ is covered by some matching } M \}$

One can check that matroid axioms are satisfied:

1. is easy to check

Suppose that X, Y ∈ I, with |X| < |Y|, say M₁ is a matching covering the nodes in X and M₂ is a matching covering the nodes in Y. Our goal is to show there is a node v ∈ Y \ X and a matching M' that covers X ∪ {v}. If M₁ covers v too we are done. Otherwise consider M₁ΔM₂. There must be an alternating path from some vertex v ∈ Y \ X to a vertex not in X. Then applying this path to M₁ gives a matching that covers X ∪ {v}.

Recall that a minimal (inclusion-wise) dependent set is a circuit. By definition, if we remove any element from a circuit we obtain an independent set.

Theorem 3.1 Given a matroid M = (E, I), for every $I \in I$ and $e \in E$, either $I + e \in I$, or it contains a unique circuit.

Proof: Suppose $I + e \notin \mathcal{I}$. In other words, assume that I + e contains a circuit. Let $C = \{c : I + e - c \in \mathcal{I}\}$. First we claim that C is dependent. Suppose C is independent. It can be extended to a basis of I + e of cardinality |I|, so it has the form I + e - d, which is contradicting the definition. Next we prove that C is minimal: removing any c from C makes C a subset of $\mathcal{I} + e - c$ which belongs to \mathcal{I} . Thus C is a minimal dependent set, i.e. a circuit. Thirdly, we prove that C is unique. Say D is another circuit in I + e, so $\exists c \in C - D$. Then $D \subseteq \underbrace{I + e - c}_{\in \mathcal{I}}$ but by the definition of C, we know that $D \in \mathcal{I}$ so D is not a circuit.

Consider the example of graphic matroid over a connected graph G. Every base is a spanning tree. If we have two spanning trees T_1 and T_2 then for every edge $e_1 \in T_1 \setminus T_2$, $T_2 + e_1$ has a unique cycle C. Also if we remove any edge $e_2 \in C \cap T_2$ from this cycle we obtain another spanning tree of the graph. This can be proved in general for matriods:

Lemma 3.2 Let $M = (E, \mathcal{I})$ be a matroid and B_1, B_2 be bases. Let $x \in B_1 \setminus B_2$. Then $\exists y \in B_2 \setminus B_1$ such that $B_2 - x + y$ and $B_1 - y + x$ are bases.

3.1 Rank functions

Let $M = (E, \mathcal{I})$ be a matroid and $A \subseteq E$. The rank function of M is a function $r_M : 2^{|E|} \to \mathbb{N}$ such that $r_M(A) = max\{|X| : X \subseteq A, X \in \mathcal{I}\}$. Note that all such subsets X of A have the same size; so the rank function is well-defined.

Example: Linear matroid Recall that in a linear matroid E is the set of indices of columns of a matrix $A_{m \times n}$). Here, $r_M(X)$ is exactly the rank of the matrix A_X in the algebraic sense.

Example: Graphic matroid Consider matroid $M = (E, \mathcal{I})$ over the graph G = (V, E) with \mathcal{I} being the set of forests of \overline{G} . For every $\overline{F} \subseteq E$ with c(V, F) connected components, $r_M(F) = n - c(V, F)$.

We will prove later that:

Theorem 3.3 Let E be a ground set, and I a collection of subsets of E that is closed under taking subsets. Consider a function r:

 $r:2^{|E|}\to\mathbb{N}$

Then r is the rank function of a matroid if and only if for all $X, Y \subseteq E$ *:*

- 1. $0 \le r(X) \le |X|$
- 2. if $X \subseteq Y$ then $r(X) \leq r(Y)$
- 3. r is submodular, i.e. $r(X \cap Y) + r(X \cup Y) \le r(X) + r(Y)$

References

S03 A. SCHRIJVER, Combinatorial Optimization, Springer 2003, pp. 148–195,237.