CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009)
Lecture 1: Basics, Bipartite Matching

Lecturer: Mohammad R. Salavatipour Scriber: Mohammad R. Salavatipour
Date: Sept 3, 2009

This lecture starts with some basic notions. Then we stueytbblem of finding a maximum (cardinality)
bipartite matching.

1 P, NP, and NP-complete

Here we give a very quick overview of the notions of P, NP, arRtddmplete. For those who have not
seen these notions before, we refer to any standard textdoookmplexity theory (such as “Introduction to
Theory of Computation” by Sipser).

First let's define what is a decision problem. An abstracbfmms whose solution is always eithgsor no.
For example, “given an integd?, is P a prime number?” or “given a graphl = (V,) and two vertices
s,t € V,is it true that there is a path fromto ¢ in G?”. Note that many optimization problems can be
re-formulated as a decision one. For example, in the detisosion of the Maximum flow problem we are
given a networkG = (V| E) with edge capacities., a sources € V and a sinkt € V, and an integef.
Question is: is there a flow fromto ¢ in G such that its value is at lea&?

1.1 Relations between optimization problem and decision pblem

Itis easy to see that if you can solve the optimization problégnen you can also solve the decision problem.
The interesting part is that in many cases the opposite éstals. For example, if you consider the problem
of finding the shortest path between two given nogesn a given graptG = (V, E), the decision problem
is: “given G, s, t, and integel, is there a path of length at mdsfrom s to ¢t?” if we have an oracle (proce-
dure) to solve this problem then we can solve the optimingpimblem (shortest path) using polynomially
many calls to this oracle. One can easily find limggthof the shortest path by trying all possible values of
1 < k < n (or just do binary search) to find the smallésfor which the oracle says yes and no for larger
values.

Exercise 1:How can you extend this to actually find the shortest patiftse
1.2 Deterministic Turing Machine and class P

We give a model of computation to solve decision problems dlbstract model of computation we consider
is a Turing Machine.

5 -4-3-2-1012 3 45 6

Tape Read-Write Head

Finite
State
Control

A deterministic Turing Machine (DTM) consists of three ma&iomponents: 1) a finite state control, 2)
a read-write head, and 3) a (two-way, infinite, position labgtape. You can think of the FSC as the
program. This FSC works by reading the letter written on tiggetat the position currently the head is
pointing to. Then based on the value of that and the curret¢ #t specifies the next state, also the letter
should be written back to the tape, and to move the head opéddcsteft or right. We use: to denote the
set of alphabet we are working with and there is a specialacter, b, used to denote blank. Let’s call
I' = ¥ U {b}. FSC has a finite state s@twhich includes 3 special stateg; for start,qy andgy for halt
(accept and reject states). A transition function specifiesnext move of the machine at any given stéte:
(@ —{av,an}) xT'— Q@ xI' x {~1,+1}.

Turing Machines can in fact be used to solve more than jussidecproblems. One can treat the final
sequence left on the tape at the halting state as the sohetiomed by the Turing Machine. But for now we
only focus on decision problems.

For a given input string;, the running time of a DTMV/ on x, denoted by (), is the number of steps it
takes to get into one of halting states. The size of inputenoted byz|, is the number of characters in
The worst case running time of a DTM/, is a functionZ}; : N — N U {oco} with

Tr(n) = max{ty(x)| stringsz with |z| = n}

If this function is a polynomial im then we say thad/ is a polynomial time DTM.
Class P:is the set of decision problems for which there is a polyndtmae DTM that solves it.

As said earlier, if the TM needs to output a string we can vikes gtring on the tape as the output string
when the TM halts. In this case we s&y computes a functiorf : ¥* — »* if for eachx € ¥*, givenz,
M halts with outputf (z) on the tape.

Then we can define:
FP ={f:%" — ¥*| there is polytime TMM that compute¥}

Polytime Thesis (Church-Turing thesis): If a problem can be solved (language can be accepted) or a
function can be computed by some polytime algorithm, basedane reasonable notion of polytime-
algorithm, then that language or function can be computeda jpglytime TM.

Therefore, we can switch the model of computation to a RAMdman access machine) which is basically
the computers we use. Reduction from a TM to a RAM is easy; tinveravay is also true. Therefore, when
we say an algorithm (on a RAM) has polynomial running timené@ans it is a function that is polynomial

in size of the input. We should be careful as what is the sizanoinput. The size of an instance is the

number of memory bits (or memory blocks) needed to repraberinstance in binary (or larger bases). For
example, if the input is a grap¥ = (V, E) then the size of the instance@|V| + |E|). If we are also
given an integeiV then the size of the instancel¥ |V | + | E| + log W) since we only neetbg 1V bits to
represent that integer. Therefore, for the problem of “giitegerP, is P a prime?” the running time of
algorithm should be polynomial ilvg P to be considered polynomial. If the running time is a functad
the actual value of integers then it is pseudo-polynomidhd input contains some numbers but the running
time is only dependent on the number of them but not on théiregathen we say the algorithm is strongly
polynomial.

Example 1: Given a list ofn integers (each of which fits into one memory block), a runringe of O(n°)
for any fixed constant is considered polynomial. If we are given a graph= (V, E) with |[V| = n,
|E| = m, and each edge having an integer weight of upitahen a running time 0O (n?mlog W) is
considered polynomial bd®(nm W) is not polynomial. A running time ab (n3m?) is strongly polynomial.

1.3 Polynomial time Reductions, NP and NP-complete

The notion of class NP is defined using non-deterministidibumachine. Basically, a problem belongs
to NP if there is a NDTM for it with polynomial running time. fdrnatively, we say a decision problem
IT belongs to NP if for every yes instanaeof the problem (i.e. if the answer to the question is yes) then
there is a certificatgy whose size is polynomial im and can be verified in polynomial time (by a DTM).
For example, the question of “Is given integ8ra composite?” is clearly in NP because if the answer is
yes then a certificate would be two integetsp > 1 such thatN = m - p and one can easily verify this
(givenm, p) in polynomial time. Another example could be: “given a drap = (V, E), doesG have a
Hamiltonian cycle (i.e. a simple cycle containing all thetioes)?”. Clearly a certificate to a yes answer
(which will be a ham-cycle) can be verified in polynomial timgo define class NP-complete we need to
define notion of reduction.

Reduction: Given two decision problembl; andIl,, a reduction fromll; to Il is a polynomial time
computable functiorf which maps instances of; to instances ofI, such that: € II; < f(x) € I, that
is the answer to instanceis yes if and only if the answer to instan¢ér) is yes. Thus, if we can solvds
in polytime then we can solvd; in polytime too.

It is easy to verify that the polytime reduction defined abisvigansitive. That is if there is a reduction from
II; to II, and there is a reduction froiid; to another problenils then there is a polytime reduction from
IT; to ITs. Now we are ready to define class NP-complete.

A problemII is NP-complete if:

1. ITisin NP

2. Every other problenil’ € N P can be reduced td.

In a sense, problems in NP-complete are the hardest proldéMB. The question becomes, how can one
prove the second property? Fortunately, there is a nicerén@avhich proves the existence of a problem
that is NP-complete. SAT is the problem of checking whethgivan Boolean formula is satisfiable or not.
Cook proved (in 1971) that SAT is NP-complete

Theorem 1.1 (Cook’71) SAT is NP-complete.

Once we have a non-empty class of NP-complete problemsro tstrove a problenil is NP-complete,
one only needs to show that it is in NP and then find a prolilErhat is already known to be NP-complete

U2

us .

Uq

Figure 1: A maximal matching in a bipartite graph

and give a reduction frorfl’ to I1. By transitivity of reduction, it implies that every prolbtein NP can be
reduced td1 and that proves the NP-completenesslof

2 Maximum Cardinality Bipartite Matching

A graphG = (V, E) is bipartite if its vertex set can be partitioned into twossét B such that every edge
e € E has one end-point il and one end-point il3. The degree of a node, is the humber of edges
incident to that node. It is easy to prove that:

Lemma 2.1 A graphd is bipartite if and only if it does not have any odd cycles.
Proof: Exercise. [

Definition 2.2 A subset of edget/ C FE is called a matching if each vertex &fis incident to at most one
edge ofM, i.e. edges oM do not share any end-points. Verticeslothat are incident to an edge @i are
called saturategdthe other vertices are callednsaturatear exposed

Therefore, every vertex of a graph in a matching has degnemst 1. A matching\/ is maximalif it cannot

be extended to a larger matching by adding more edges. Inaxamunmatching if it has the largest size
among all possible matchings. We say it ipeafectmatching if it saturates all the vertices. Therefore, in a
bipartite graphG = (A U B, E) to have a perfect matching one has to hate= |B|.

The maximum (unweighted) matching problem is: given a gr@pfind a matching of maximum size. In
this lecture we focus on this problem when the input graphpartite. This problem can be generalized to
the weighted case where along with the graph we have an edgatwe for each edge and the goal is to
find a matching whose total weight is the largest. The calitjn@atching is the special case when all edge
weights are 1. Figure 1 shows an example of a bipartite graghavnaximal matching (shown in bolder
lines).

One natural algorithm one might try to find a maximum matchiogld be a greedy one. It is not hard to
convince yourself that such an algorithm will fail (for exal® one could end-up in with a maximal matching
such as the one in Figure 1 which is not maximum).

An important question we need to answer is: how to tell if &gimatchingl/ is maximum? In general, in
designing algorithms for optimization problems an impotteask is to find good bounds for the optimum.
For this case, we need to find good upper bounds on the size afchimg and hope that the smallest of the
upper bounds is equal to the size of a matching we have fouddheamefore our solution is optimum (i.e.

F

Figure 2: Two graphs each with a vertex cover (the squareésjod

maximum matching). For this purpose, we need to define anptioblem which will be thedual problem
of matching.

Definition 2.3 A vertex cover of a given grapi = (V, E) is a setC' C V such that every edge of the
graph has at least one end-pointdr i.e. C covers all the edges (see Figure 2).

It follows from the definition of a vertex cover that there i3 @dge inV” — C'. This implies that the size of
any matching is at most the size of any vertex cover (since¥ery matchingl/, any vertex cover must
contain at least one vertex from every edge and all the edgée onatching are disjoint). Thus:

Fact: For any matching\/ and any vertex covet': |C| > |M]|.
This fact is true for any grapty (which may not be bipartite).

The vertex cover problem is: given a graghfind the smallest vertex cover @. This problem is the dual
of matching. The above fact is called the weak duality: tke sif the solution of the minimization problem
(vertex cover) is an upper bound for the size of the maxinomgproblem (maximum matching). We shall
prove that this upper bound is tightdf is bipartite, i.e. we have a min-max theorem:

Theorem 2.4 (Konig) For any bipartite graph(z, the maximum size of a matching is equal to the minimum
size of a vertex cover.

What this theorem is showing is called strong duality. Thisme of many examples of min-max theorems
in combinatorial optimization. We will prove this theorergarithmically, by presenting an algorithm that
finds a maximum matching and a minimum vertex cover (of theessiae).

Definition 2.5 Given a matchingy/, an M-alternating path is a path that alternates between the sdge
M and those ik — M.

Definition 2.6 An M-augmenting path is ai/-alternating path in which the first and last vertex are ex-
posed.

For example, for the matching of Figure 1, both of the follogvipaths are\/-augmenting:u; — vy, —
Uy — V9 — uz — v3, andu; — v4 — u, — v3.

Note that if anM -augmenting path has edges ofM then it must havé: 4+ 1 edges ofE — M. Also the
end-points of such a path are in different parts. What is thipgse of the augmenting paths? As we prove in
the following lemma, if we can find an augmenting path then aremake the matching larger by replacing
the edges o/ in the path by those of the path that are noflin

Lemma 2.7 If M is a matching and” is an M -augmenting path theh/ AP = (M — P)U (P — M)is a
matching of sizéM | + 1.

Proof: Itis easy to see that/ AP is a matching because each vertex still has a degree of atinfesery
saturated vertex oP still has degree 1 and the end-points are now also saturatttiave degree 1). Itis
easy to see that the size|l§| + 1.]

Thus, if we can find an augmenting path then we can enlarge #tehing. The question is, is it true that if
there is no augmenting path then the matching is maximum?

Theorem 2.8 A matching)M is maximum if and only if there is i/ -augmenting path.

Proof: Using Lemma 2.7, it is easy to see that if there is an augmgpi@th then) is not a maximum
matching. We now prove the other direction.

Suppose that there is no augmenting path and there is a mgteHiwith |A/'| > |M. Consider the graph
H = (V,M U M’). SinceH has maximum degree at most two every connected componédti®kither

a path or an even cycle (remember there are no odd cycles imagtibe graph). Noting that in each cycle
the edges are alternating betwelhand /1" and so the cycles have an equal number of edged @ind
M'’, there must be a component that is a path with more edgesXfothanM/. Thus, there must be an -
alternating path with more edges id’ than in M, this will be anM-augmenting path i/, contradicting
the assumption that there is Ad-augmenting path. [

This theorem suggests an algorithm for finding a maximum hiiadgcin a given bipartite graph:

Maximum Bipartite Matching

M—0

while there is anV/-augmenting patt® do
M «— MAP

return M

We analyze this algorithm in the next lecture and provide eraetails on how to find an/-augmenting
path efficiently and complete the proof of Theorem 2.4.

