
CMPUT 675: Topics in Algorithms and Combinatorial Optimiza tion (Fall 2009)

Lecture 1: Basics, Bipartite Matching

Lecturer: Mohammad R. Salavatipour Scriber: Mohammad R. Salavatipour
Date: Sept 3, 2009

This lecture starts with some basic notions. Then we study the problem of finding a maximum (cardinality)
bipartite matching.

1 P, NP, and NP-complete

Here we give a very quick overview of the notions of P, NP, and NP-complete. For those who have not
seen these notions before, we refer to any standard text bookon complexity theory (such as “Introduction to
Theory of Computation” by Sipser).

First let’s define what is a decision problem. An abstract problems whose solution is always eitheryesor no.
For example, “given an integerP , is P a prime number?” or “given a graphG = (V,E) and two vertices
s, t ∈ V , is it true that there is a path froms to t in G?”. Note that many optimization problems can be
re-formulated as a decision one. For example, in the decision version of the Maximum flow problem we are
given a networkG = (V,E) with edge capacitiesce, a sources ∈ V and a sinkt ∈ V , and an integerℓ.
Question is: is there a flow froms to t in G such that its value is at leastℓ?

1.1 Relations between optimization problem and decision problem

It is easy to see that if you can solve the optimization problem, then you can also solve the decision problem.
The interesting part is that in many cases the opposite is also true. For example, if you consider the problem
of finding the shortest path between two given nodess, t in a given graphG = (V,E), the decision problem
is: “givenG, s, t, and integerk, is there a path of length at mostk from s to t?” if we have an oracle (proce-
dure) to solve this problem then we can solve the optimization problem (shortest path) using polynomially
many calls to this oracle. One can easily find thelengthof the shortest path by trying all possible values of
1 ≤ k ≤ n (or just do binary search) to find the smallestk for which the oracle says yes and no for larger
values.

Exercise 1:How can you extend this to actually find the shortest path itself?

1.2 Deterministic Turing Machine and class P

We give a model of computation to solve decision problems. The abstract model of computation we consider
is a Turing Machine.

1

Tape

.

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

Finite
State

Control

6
Read-Write Head

A deterministic Turing Machine (DTM) consists of three maincomponents: 1) a finite state control, 2)
a read-write head, and 3) a (two-way, infinite, position labeled) tape. You can think of the FSC as the
program. This FSC works by reading the letter written on the tape at the position currently the head is
pointing to. Then based on the value of that and the current state it specifies the next state, also the letter
should be written back to the tape, and to move the head one step to left or right. We useΣ to denote the
set of alphabet we are working with and there is a special character,b, used to denote blank. Let’s call
Γ = Σ ∪ {b}. FSC has a finite state setQ which includes 3 special states:q0 for start,qY andqN for halt
(accept and reject states). A transition function specifiesthe next move of the machine at any given state:δ:
(Q− {qY , qN})× Γ→ Q× Γ× {−1,+1}.

Turing Machines can in fact be used to solve more than just decision problems. One can treat the final
sequence left on the tape at the halting state as the solutionreturned by the Turing Machine. But for now we
only focus on decision problems.

For a given input stringx, the running time of a DTMM on x, denoted bytM (x), is the number of steps it
takes to get into one of halting states. The size of inputx, denoted by|x|, is the number of characters inx.
The worst case running time of a DTM,M , is a functionTM : N→ N ∪ {∞} with

TM (n) = max
x
{tM (x)| stringsx with |x| = n}

If this function is a polynomial inn then we say thatM is a polynomial time DTM.

Class P:is the set of decision problems for which there is a polynomial time DTM that solves it.

As said earlier, if the TM needs to output a string we can view the string on the tape as the output string
when the TM halts. In this case we sayM computes a functionf : Σ∗ → Σ∗ if for eachx ∈ Σ∗, givenx,
M halts with outputf(x) on the tape.

Then we can define:

FP = {f : Σ∗ → Σ∗| there is polytime TMM that computesf}

Polytime Thesis (Church-Turing thesis): If a problem can be solved (language can be accepted) or a
function can be computed by some polytime algorithm, based on some reasonable notion of polytime-
algorithm, then that language or function can be computed bya polytime TM.

Therefore, we can switch the model of computation to a RAM (random access machine) which is basically
the computers we use. Reduction from a TM to a RAM is easy; the other way is also true. Therefore, when
we say an algorithm (on a RAM) has polynomial running time, itmeans it is a function that is polynomial
in size of the input. We should be careful as what is the size ofan input. The size of an instance is the

2

number of memory bits (or memory blocks) needed to representthe instance in binary (or larger bases). For
example, if the input is a graphG = (V,E) then the size of the instance isO(|V | + |E|). If we are also
given an integerW then the size of the instance isO(|V |+ |E|+ log W) since we only needlog W bits to
represent that integer. Therefore, for the problem of “given integerP , is P a prime?” the running time of
algorithm should be polynomial inlog P to be considered polynomial. If the running time is a function of
the actual value of integers then it is pseudo-polynomial. If the input contains some numbers but the running
time is only dependent on the number of them but not on their values then we say the algorithm is strongly
polynomial.

Example 1: Given a list ofn integers (each of which fits into one memory block), a runningtime ofO(nc)
for any fixed constantc is considered polynomial. If we are given a graphG = (V,E) with |V | = n,
|E| = m, and each edge having an integer weight of up toW then a running time ofO(n2m log W) is
considered polynomial butO(nmW) is not polynomial. A running time ofO(n3m2) is strongly polynomial.

1.3 Polynomial time Reductions, NP and NP-complete

The notion of class NP is defined using non-deterministic Turing machine. Basically, a problem belongs
to NP if there is a NDTM for it with polynomial running time. Alternatively, we say a decision problem
Π belongs to NP if for every yes instancex of the problem (i.e. if the answer to the question is yes) then
there is a certificatey whose size is polynomial inx and can be verified in polynomial time (by a DTM).
For example, the question of “Is given integerN a composite?” is clearly in NP because if the answer is
yes then a certificate would be two integersm,p > 1 such thatN = m · p and one can easily verify this
(given m, p) in polynomial time. Another example could be: “given a graph G = (V,E), doesG have a
Hamiltonian cycle (i.e. a simple cycle containing all the vertices)?”. Clearly a certificate to a yes answer
(which will be a ham-cycle) can be verified in polynomial time. To define class NP-complete we need to
define notion of reduction.

Reduction: Given two decision problemsΠ1 and Π2, a reduction fromΠ1 to Π2 is a polynomial time
computable functionf which maps instances ofΠ1 to instances ofΠ2 such thatx ∈ Π1 ⇔ f(x) ∈ Π2, that
is the answer to instancex is yes if and only if the answer to instancef(x) is yes. Thus, if we can solveΠ2

in polytime then we can solveΠ1 in polytime too.

It is easy to verify that the polytime reduction defined aboveis transitive. That is if there is a reduction from
Π1 to Π2 and there is a reduction fromΠ2 to another problemΠ3 then there is a polytime reduction from
Π1 to Π2. Now we are ready to define class NP-complete.

A problemΠ is NP-complete if:

1. Π is in NP

2. Every other problemΠ′ ∈ NP can be reduced toΠ.

In a sense, problems in NP-complete are the hardest problemsof NP. The question becomes, how can one
prove the second property? Fortunately, there is a nice theorem which proves the existence of a problem
that is NP-complete. SAT is the problem of checking whether agiven Boolean formula is satisfiable or not.
Cook proved (in 1971) that SAT is NP-complete

Theorem 1.1 (Cook’71) SAT is NP-complete.

Once we have a non-empty class of NP-complete problems to start, to prove a problemΠ is NP-complete,
one only needs to show that it is in NP and then find a problemΠ′ that is already known to be NP-complete

3

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

����������������

����������������

����������������

����������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

u1 v1

v2

v3

v4
u4

u3

u2

Figure 1: A maximal matching in a bipartite graph

and give a reduction fromΠ′ to Π. By transitivity of reduction, it implies that every problem in NP can be
reduced toΠ and that proves the NP-completeness ofΠ.

2 Maximum Cardinality Bipartite Matching

A graphG = (V,E) is bipartite if its vertex set can be partitioned into two sets A,B such that every edge
e ∈ E has one end-point inA and one end-point inB. The degree of a nodev, is the number of edges
incident to that node. It is easy to prove that:

Lemma 2.1 A graphG is bipartite if and only if it does not have any odd cycles.

Proof: Exercise.

Definition 2.2 A subset of edgesM ⊆ E is called a matching if each vertex ofV is incident to at most one
edge ofM , i.e. edges ofM do not share any end-points. Vertices ofV that are incident to an edge ofM are
calledsaturated; the other vertices are calledunsaturatedor exposed.

Therefore, every vertex of a graph in a matching has degree atmost 1. A matchingM is maximalif it cannot
be extended to a larger matching by adding more edges. It is amaximummatching if it has the largest size
among all possible matchings. We say it is aperfectmatching if it saturates all the vertices. Therefore, in a
bipartite graphG = (A ∪B,E) to have a perfect matching one has to have|A| = |B|.

The maximum (unweighted) matching problem is: given a graphG, find a matching of maximum size. In
this lecture we focus on this problem when the input graph is bipartite. This problem can be generalized to
the weighted case where along with the graph we have an edge weight we for each edge and the goal is to
find a matching whose total weight is the largest. The cardinality matching is the special case when all edge
weights are 1. Figure 1 shows an example of a bipartite graph with a maximal matching (shown in bolder
lines).

One natural algorithm one might try to find a maximum matchingcould be a greedy one. It is not hard to
convince yourself that such an algorithm will fail (for example one could end-up in with a maximal matching
such as the one in Figure 1 which is not maximum).

An important question we need to answer is: how to tell if a given matchingM is maximum? In general, in
designing algorithms for optimization problems an important task is to find good bounds for the optimum.
For this case, we need to find good upper bounds on the size of a matching and hope that the smallest of the
upper bounds is equal to the size of a matching we have found and therefore our solution is optimum (i.e.

4

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��������������

��������������

��������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Figure 2: Two graphs each with a vertex cover (the squared nodes)

maximum matching). For this purpose, we need to define another problem which will be thedual problem
of matching.

Definition 2.3 A vertex cover of a given graphG = (V,E) is a setC ⊆ V such that every edge of the
graph has at least one end-point inC, i.e. C covers all the edges (see Figure 2).

It follows from the definition of a vertex cover that there is no edge inV − C. This implies that the size of
any matching is at most the size of any vertex cover (since forevery matchingM , any vertex cover must
contain at least one vertex from every edge and all the edges of the matching are disjoint). Thus:

Fact: For any matchingM and any vertex coverC: |C| ≥ |M |.

This fact is true for any graphG (which may not be bipartite).

The vertex cover problem is: given a graphG, find the smallest vertex cover inG. This problem is the dual
of matching. The above fact is called the weak duality: the size of the solution of the minimization problem
(vertex cover) is an upper bound for the size of the maximization problem (maximum matching). We shall
prove that this upper bound is tight ifG is bipartite, i.e. we have a min-max theorem:

Theorem 2.4 (König) For any bipartite graphG, the maximum size of a matching is equal to the minimum
size of a vertex cover.

What this theorem is showing is called strong duality. This is one of many examples of min-max theorems
in combinatorial optimization. We will prove this theorem algorithmically, by presenting an algorithm that
finds a maximum matching and a minimum vertex cover (of the same size).

Definition 2.5 Given a matchingM , anM -alternating path is a path that alternates between the edges of
M and those inE −M .

Definition 2.6 An M -augmenting path is anM -alternating path in which the first and last vertex are ex-
posed.

For example, for the matching of Figure 1, both of the following paths areM -augmenting:u1 → v1,→
u2 → v2 → u3 → v3, andu1 → v4 → ur → v3.

Note that if anM -augmenting path hask edges ofM then it must havek + 1 edges ofE −M . Also the
end-points of such a path are in different parts. What is the purpose of the augmenting paths? As we prove in
the following lemma, if we can find an augmenting path then we can make the matching larger by replacing
the edges ofM in the path by those of the path that are not inM .

Lemma 2.7 If M is a matching andP is anM -augmenting path thenM∆P = (M − P) ∪ (P −M) is a
matching of size|M |+ 1.

5

Proof: It is easy to see thatM∆P is a matching because each vertex still has a degree of at most1 (every
saturated vertex ofP still has degree 1 and the end-points are now also saturated and have degree 1). It is
easy to see that the size is|M |+ 1.

Thus, if we can find an augmenting path then we can enlarge the matching. The question is, is it true that if
there is no augmenting path then the matching is maximum?

Theorem 2.8 A matchingM is maximum if and only if there is noM -augmenting path.

Proof: Using Lemma 2.7, it is easy to see that if there is an augmenting path thenM is not a maximum
matching. We now prove the other direction.

Suppose that there is no augmenting path and there is a matching M ′ with |M ′| > |M . Consider the graph
H = (V,M ∪M ′). SinceH has maximum degree at most two every connected component ofH is either
a path or an even cycle (remember there are no odd cycles in a bipartite graph). Noting that in each cycle
the edges are alternating betweenM andM ′ and so the cycles have an equal number of edges ofM and
M ′, there must be a component that is a path with more edges fromM ′ thanM . Thus, there must be anM -
alternating path with more edges inM ′ than inM , this will be anM -augmenting path inH, contradicting
the assumption that there is noM -augmenting path.

This theorem suggests an algorithm for finding a maximum matching in a given bipartite graph:

Maximum Bipartite Matching

M ← ∅
while there is anM -augmenting pathP do

M ←M∆P

return M

We analyze this algorithm in the next lecture and provide more details on how to find anM -augmenting
path efficiently and complete the proof of Theorem 2.4.

6

