
CMPUT 675: Topics on Approximation Algorithms and Approximability Fall 2007

Lecture 8: Oct 2
Lecturer: Mohammad R. Salavatipour Scribe: Zhuang Guo from Spring 2005

Recall from the last lecture that the minimum multicut problem is NP-hard even if the graph G is restricted
to trees that are stars and we gave a factor 2 approximation algorithm for when G is a tree. In this lecture, we
discuss an O(log k)-factor approximation algorithm for the minimum multicut problem on general graphs.

8.1 The Minimum Multicut Problem (general graphs)

Recall the definition of multicut:
Input: An undirected graph G = (V,E) with nonnegative weight/capacity ce for each edge e ∈ E and a set of
source-sink pairs S = {(s1, t1), (s2, t2), · · · , (sk, tk)}, where each pair is distinct.

Goal: Find a multicut with minimum weight.

For each vertex pair (si, ti), let Pi denote the set of all paths from si to ti. Let P =
⋃k

i=1 Pi. Consider the
LP-formulation of the minimum multicut problem:

minimize
∑
e∈E

ce · xe

subject to
∑
e∈pi

xe ≥ 1, pi ∈ Pi, 1 ≤ i ≤ k

xe ≥ 0, e ∈ E

The above LP-formulation has an exponential number of constraints. However, we can still solve this LP using
the Ellipsoid method. Given a (possible) solution vector ~x (assignments to xe, e ∈ E), we can check if it is
feasible in polynomial time (this implies that the separation oracle for this LP is in P). To do so we interpret
variable xe as a distance label on edge e, for each e ∈ E; then we compute the lengths of shortest paths between
each source-sink pair (si, ti) w.r.t the current distance labels. If all the lengths are ≥ 1, then all the paths
between each pair (si, ti) must have lengths ≥ 1, and therefore, we can conclude that all constraints are satisfied
and the solution is feasible. If the shortest path is < 1 then we obtain a violated constraint.

8.2 The O(log k)-factor approximation Algorithm

Now, we introduce the beautiful O(log k)-factor approximation algorithm due to Garg, Vazirani, and Yannakakis
[GVY]. Before giving the algorithm, we restate the problem as a pipe system. This will help to some intuition
behind the algorithm.

Consider a feasible solution ~x to the LP. Suppose that we have a pipe running between i, j if there is an edge
e = (i, j) in E. Let the length of this pipe be xe and the cross-sectional area of this pipe be ce. Therefore,
ce ·xe will be the volume of this pipe and

∑
e∈E ce ·xe will be the total volume of the pipes in our system. With

this definition, the multicut problem is in fact the question of designing a pipe system such that the distance
between every source-sink pair is at least 1 and the total volume of pipes in the system is minimized. Therefore,

8-1

8-2 Lecture 8: Oct 2

the fractional optimal solution, i.e. the solution to the LP, is the volume of the pipe system and we denote it
by V ∗.

Definition 8.1 For a feasible solution ~x, denote dx(u, v) to be the length of the shortest path between u and v

in G w.r.t the distance labels of ~x.

Definition 8.2 For a set of vertices S ⊆ V , denote the set of edges in the cut (S, V − S) as δ(S).

Definition 8.3 For a vertex v ∈ V and a (real) radius r, define the set of vertices in G with distance ≤ r (with
respect to distance label given by ~x) to v as Bx(v, r), i.e. Bx(v, r) = {u|dx(u, v) ≤ r}.

The algorithm will find disjoint sets of vertices S1, . . . , Sℓ≤k, called regions by growing balls around terminals
such that:

• no region contains any source-sink pair, and for each 1 ≤ i ≤ k, either si or ti is in one of the Sj’s.

• For each region, the weight of δ(Sj) is “small”.

GVY O(log k)-approximation algorithm

C ← Φ.
let ~x be an optimal solution to the LP.
while there is some pair (si, ti) not separated, do:

let S = Bx(si, r) for some r < 1
2 .

C ← C
⋃
δ(S).

V ← V − S.
return C.

Lemma 8.4 The algorithm terminates.

Proof: Since the ball grown around a terminal si at each iteration has radius at most 1
2 it cannot contain ti.

Thus, δ(S) will separate (at least) one source-sink pair. The algorithm has at most k iterations.

Lemma 8.5 The algorithm returns a multicut.

Proof: The only problem is when the algorithm separates some pair (si, ti) and there is a pair (sj , tj), such that
both sj ∈ BX(si, r) and tj ∈ BX(si, r). In this case, since we are removing all the vertices of the ball around
si, then (sj , tj) will not be separated by the algorithm. But this scenario is impossible to happen. Otherwise,
from dx(sj , tj) ≤ dx(si, sj) + dx(si, tj) ≤ 2 · r < 1, one of the LP constraints for sj , tj is violated.

Definition 8.6 Let V ∗ be the optimal fractional solution to the LP. Given a vertex v ∈ V and a radius r, a
ball with radius r is defined. Define the volume of this ball (region) as

Vx(v, r) =
∑

e=(u,v)∈Bx(v,r)

ce · xe +
∑

e=(u,v)∈δ(Bx(v,r))

v∈Bx(v,r)

ce(r − dx(u, v)) +
V ∗

k

and the cut volume of this region as

Cx(v, r) =
∑

e∈δ(Bx(v,r))

ce

Lecture 8: Oct 2 8-3

Note that Vx(v, r) is an increasing function of r. It is a piece-wise linear function with possible discontinuities at
values of r where new vertices are added to the region. Therefore, VX(v, r) is differentiable everywhere except
those possible discontinuous points and

d Vx(v, r)

d r
= Cx(v, r) (8.1)

Lemma 8.7 There is some r < 1
2 , such that Cx(si,r)

VX (si,r)
≤ 2 · ln(k + 1) and we can find such an r in polynomial

time.

Proof: By contradiction, assume throughout the region growing process, starting with r = 0 ending at r = 1
2 :

Cx(si, r)

Vx(si, r)
> 2 · ln(k + 1).

This implies that
d Vx(v, r)

d r
·

1

Vx(si, r)
> 2 · ln(k + 1).

Let r1 = 0 ≤ r2 ≤ · · · ≤ rq = 1
2 be the radii at which new vertices are added to the region (si, rq). For all r in

(rj , rj+1): ∫ rj+1

rj

d Vx(v, r)

d r
·

1

Vx(si, r)
>

∫ rj+1

rj

2 · ln(k + 1)d r

⇓

ln(Vx(si, rj+1))− ln(Vx(si, rj)) > (rj+1 − rj) · 2 · ln(k + 1).

We are going to sum up over all intervals (rj , rj+1) for 1 ≤ j < q. This will give us a telescopic sum and
the terms will be canceled out except the first and the last term. Doing this, even though the function is
discontinuous at the end-points of the intervals, is valid because the function Vx(si, r) is an increasing function.
Thus:

ln(VX(si, rq))− ln(Vx(si, r1)) > 2 · ln(k + 1) · (rq − r1)

⇓

ln(Vx(si,
1

2
)) > 2 · ln(k + 1) · rq + ln(

V ∗

k
)

⇓

ln(VX(si,
1

2
)) = ln(k + 1) + ln(

V ∗

k
)

⇓

ln(Vx(si,
1

2
)) > ln(V ∗ +

V ∗

k
)

⇓

Vx(si,
1

2
) > V ∗ +

V ∗

k
.

But this cannot happen, since Vx(si,
1
2) is part of the total volume and cannot be larger than it. This implies

that there exists such an r < 1
2 . To find r, consider the vertices of G according to non-decreasing order of

distance from si: si = v1, v2, . . . , vp with distances r1 = 0 ≤ r2 ≤ . . . , rp ≤ rp+1 where rp+1 ≥
1
2 and rp < 1

2 .
At any interval (rj , rj+1), the volume Vx(si, r) increases while the value of cut Cx(si, r) is fixed. Therefore, the

volume is maximized (i.e. Cx(si,r)
Vx(si,r)

is minimized) at the end of the interval. So it is enough to check the ratio
Cx(si,r)
Vx(si,r)

at the end of the intervals.

8-4 Lecture 8: Oct 2

Theorem 8.8 The GVY algorithm is a (4 ln(k + 1))-factor approximation algorithm for IMC.

Proof: We charge the cost of the edges removed from the graph at each iteration against the volume of the
region removed. By lemma 8.7, at each iteration:

Cx(si, r) ≤ 2 ln(k + 1) · Vx(si, r).

⇓ (Summing up for 1 ≤ i ≤ k)

∑
e∈C

ce ≤ 2 ln(k + 1)

k∑
i=1

Vx(si, r)

≤ 2 ln(k + 1) · (V ∗ +
V ∗

k
· k)

= 4 ln(k + 1) · V ∗

≤ 4 ln(k + 1) · OPT.

References

GVY N. Garg, V.V. Vazirani, and M. Yannakakis, Approximate max-flow min-(multi)cut theorems and
their applications, SIAM Journal on Computing, 1996, 25:235–251.

