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Recall from the last lecture that the minimum multicut problem is NP-hard even if the graph G is restricted
to trees that are stars and we gave a factor 2 approximation algorithm for when G is a tree. In this lecture, we
discuss an O(log k)-factor approximation algorithm for the minimum multicut problem on general graphs.

8.1 The Minimum Multicut Problem (general graphs)

Recall the definition of multicut:
Input: An undirected graph G = (V,E) with nonnegative weight/capacity ce for each edge e ∈ E and a set of
source-sink pairs S = {(s1, t1), (s2, t2), · · · , (sk, tk)}, where each pair is distinct.

Goal: Find a multicut with minimum weight.

For each vertex pair (si, ti), let Pi denote the set of all paths from si to ti. Let P =
⋃k

i=1 Pi. Consider the
LP-formulation of the minimum multicut problem:

minimize
∑
e∈E

ce · xe

subject to
∑
e∈pi

xe ≥ 1, pi ∈ Pi, 1 ≤ i ≤ k

xe ≥ 0, e ∈ E

The above LP-formulation has an exponential number of constraints. However, we can still solve this LP using
the Ellipsoid method. Given a (possible) solution vector ~x (assignments to xe, e ∈ E), we can check if it is
feasible in polynomial time (this implies that the separation oracle for this LP is in P). To do so we interpret
variable xe as a distance label on edge e, for each e ∈ E; then we compute the lengths of shortest paths between
each source-sink pair (si, ti) w.r.t the current distance labels. If all the lengths are ≥ 1, then all the paths
between each pair (si, ti) must have lengths ≥ 1, and therefore, we can conclude that all constraints are satisfied
and the solution is feasible. If the shortest path is < 1 then we obtain a violated constraint.

8.2 The O(log k)-factor approximation Algorithm

Now, we introduce the beautiful O(log k)-factor approximation algorithm due to Garg, Vazirani, and Yannakakis
[GVY]. Before giving the algorithm, we restate the problem as a pipe system. This will help to some intuition
behind the algorithm.

Consider a feasible solution ~x to the LP. Suppose that we have a pipe running between i, j if there is an edge
e = (i, j) in E. Let the length of this pipe be xe and the cross-sectional area of this pipe be ce. Therefore,
ce ·xe will be the volume of this pipe and

∑
e∈E ce ·xe will be the total volume of the pipes in our system. With

this definition, the multicut problem is in fact the question of designing a pipe system such that the distance
between every source-sink pair is at least 1 and the total volume of pipes in the system is minimized. Therefore,
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the fractional optimal solution, i.e. the solution to the LP, is the volume of the pipe system and we denote it
by V ∗.

Definition 8.1 For a feasible solution ~x, denote dx(u, v) to be the length of the shortest path between u and v

in G w.r.t the distance labels of ~x.

Definition 8.2 For a set of vertices S ⊆ V , denote the set of edges in the cut (S, V − S) as δ(S).

Definition 8.3 For a vertex v ∈ V and a (real) radius r, define the set of vertices in G with distance ≤ r (with
respect to distance label given by ~x) to v as Bx(v, r), i.e. Bx(v, r) = {u|dx(u, v) ≤ r}.

The algorithm will find disjoint sets of vertices S1, . . . , Sℓ≤k, called regions by growing balls around terminals
such that:

• no region contains any source-sink pair, and for each 1 ≤ i ≤ k, either si or ti is in one of the Sj’s.

• For each region, the weight of δ(Sj) is “small”.

GVY O(log k)-approximation algorithm

C ← Φ.
let ~x be an optimal solution to the LP.
while there is some pair (si, ti) not separated, do:

let S = Bx(si, r) for some r < 1
2 .

C ← C
⋃
δ(S).

V ← V − S.
return C.

Lemma 8.4 The algorithm terminates.

Proof: Since the ball grown around a terminal si at each iteration has radius at most 1
2 it cannot contain ti.

Thus, δ(S) will separate (at least) one source-sink pair. The algorithm has at most k iterations.

Lemma 8.5 The algorithm returns a multicut.

Proof: The only problem is when the algorithm separates some pair (si, ti) and there is a pair (sj , tj), such that
both sj ∈ BX(si, r) and tj ∈ BX(si, r). In this case, since we are removing all the vertices of the ball around
si, then (sj , tj) will not be separated by the algorithm. But this scenario is impossible to happen. Otherwise,
from dx(sj , tj) ≤ dx(si, sj) + dx(si, tj) ≤ 2 · r < 1, one of the LP constraints for sj , tj is violated.

Definition 8.6 Let V ∗ be the optimal fractional solution to the LP. Given a vertex v ∈ V and a radius r, a
ball with radius r is defined. Define the volume of this ball (region) as

Vx(v, r) =
∑

e=(u,v)∈Bx(v,r)

ce · xe +
∑

e=(u,v)∈δ(Bx(v,r))

v∈Bx(v,r)

ce(r − dx(u, v)) +
V ∗

k

and the cut volume of this region as

Cx(v, r) =
∑

e∈δ(Bx(v,r))

ce
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Note that Vx(v, r) is an increasing function of r. It is a piece-wise linear function with possible discontinuities at
values of r where new vertices are added to the region. Therefore, VX(v, r) is differentiable everywhere except
those possible discontinuous points and

d Vx(v, r)

d r
= Cx(v, r) (8.1)

Lemma 8.7 There is some r < 1
2 , such that Cx(si,r)

VX (si,r)
≤ 2 · ln(k + 1) and we can find such an r in polynomial

time.

Proof: By contradiction, assume throughout the region growing process, starting with r = 0 ending at r = 1
2 :

Cx(si, r)

Vx(si, r)
> 2 · ln(k + 1).

This implies that
d Vx(v, r)

d r
·

1

Vx(si, r)
> 2 · ln(k + 1).

Let r1 = 0 ≤ r2 ≤ · · · ≤ rq = 1
2 be the radii at which new vertices are added to the region (si, rq). For all r in

(rj , rj+1): ∫ rj+1

rj

d Vx(v, r)

d r
·

1

Vx(si, r)
>

∫ rj+1

rj

2 · ln(k + 1)d r

⇓

ln(Vx(si, rj+1))− ln(Vx(si, rj)) > (rj+1 − rj) · 2 · ln(k + 1).

We are going to sum up over all intervals (rj , rj+1) for 1 ≤ j < q. This will give us a telescopic sum and
the terms will be canceled out except the first and the last term. Doing this, even though the function is
discontinuous at the end-points of the intervals, is valid because the function Vx(si, r) is an increasing function.
Thus:

ln(VX(si, rq))− ln(Vx(si, r1)) > 2 · ln(k + 1) · (rq − r1)

⇓

ln(Vx(si,
1

2
)) > 2 · ln(k + 1) · rq + ln(

V ∗

k
)

⇓

ln(VX(si,
1

2
)) = ln(k + 1) + ln(

V ∗

k
)

⇓

ln(Vx(si,
1

2
)) > ln(V ∗ +

V ∗

k
)

⇓

Vx(si,
1

2
) > V ∗ +

V ∗

k
.

But this cannot happen, since Vx(si,
1
2 ) is part of the total volume and cannot be larger than it. This implies

that there exists such an r < 1
2 . To find r, consider the vertices of G according to non-decreasing order of

distance from si: si = v1, v2, . . . , vp with distances r1 = 0 ≤ r2 ≤ . . . , rp ≤ rp+1 where rp+1 ≥
1
2 and rp < 1

2 .
At any interval (rj , rj+1), the volume Vx(si, r) increases while the value of cut Cx(si, r) is fixed. Therefore, the

volume is maximized ( i.e. Cx(si,r)
Vx(si,r)

is minimized) at the end of the interval. So it is enough to check the ratio
Cx(si,r)
Vx(si,r)

at the end of the intervals.
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Theorem 8.8 The GVY algorithm is a (4 ln(k + 1))-factor approximation algorithm for IMC.

Proof: We charge the cost of the edges removed from the graph at each iteration against the volume of the
region removed. By lemma 8.7, at each iteration:

Cx(si, r) ≤ 2 ln(k + 1) · Vx(si, r).

⇓ ( Summing up for 1 ≤ i ≤ k)

∑
e∈C

ce ≤ 2 ln(k + 1)

k∑
i=1

Vx(si, r)

≤ 2 ln(k + 1) · (V ∗ +
V ∗

k
· k)

= 4 ln(k + 1) · V ∗

≤ 4 ln(k + 1) · OPT.
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