CMPUT 675: Topics on Approximation Algorithms and Approximability Fall 2007

Lecture 8: Oct 2
Lecturer: Mohammad R. Salavatipour Scribe: Zhuang Guo from Spring 2005

Recall from the last lecture that the minimum multicut problem is NP-hard even if the graph G is restricted
to trees that are stars and we gave a factor 2 approximation algorithm for when G is a tree. In this lecture, we
discuss an O(log k)-factor approximation algorithm for the minimum multicut problem on general graphs.

8.1 The Minimum Multicut Problem (general graphs)

Recall the definition of multicut:
Input: An undirected graph G = (V, E) with nonnegative weight/capacity c. for each edge e € F and a set of
source-sink pairs S = {(s1,%1), (s2,t2), -+, (Sk, tk)}, where each pair is distinct.

Goal: Find a multicut with minimum weight.

For each vertex pair (s;,t;), let P; denote the set of all paths from s; to t;. Let P = Ule P;. Consider the
LP-formulation of the minimum multicut problem:

minimaize Z Ce * Te
eeFE
subject to Z Te > 1, pie P11 <1<k
eep;
Te > 0, ec F

The above LP-formulation has an exponential number of constraints. However, we can still solve this LP using
the Ellipsoid method. Given a (possible) solution vector ¥ (assignments to z.,e € E), we can check if it is
feasible in polynomial time (this implies that the separation oracle for this LP is in P). To do so we interpret
variable z. as a distance label on edge e, for each e € E; then we compute the lengths of shortest paths between
each source-sink pair (s;,¢;) w.r.t the current distance labels. If all the lengths are > 1, then all the paths
between each pair (s;,t;) must have lengths > 1, and therefore, we can conclude that all constraints are satisfied
and the solution is feasible. If the shortest path is < 1 then we obtain a violated constraint.

8.2 The O(logk)-factor approximation Algorithm

Now, we introduce the beautiful O(log k)-factor approximation algorithm due to Garg, Vazirani, and Yannakakis
[GVY]. Before giving the algorithm, we restate the problem as a pipe system. This will help to some intuition
behind the algorithm.

Consider a feasible solution & to the LP. Suppose that we have a pipe running between 4, j if there is an edge
e = (i,j) in E. Let the length of this pipe be z. and the cross-sectional area of this pipe be c.. Therefore,
Ce - T Will be the volume of this pipe and Zee g Ce - Te Will be the total volume of the pipes in our system. With
this definition, the multicut problem is in fact the question of designing a pipe system such that the distance
between every source-sink pair is at least 1 and the total volume of pipes in the system is minimized. Therefore,
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the fractional optimal solution, i.e. the solution to the LP, is the volume of the pipe system and we denote it
by V*.

Definition 8.1 For a feasible solution T, denote d,(u,v) to be the length of the shortest path between u and v
in G w.r.t the distance labels of Z.

Definition 8.2 For a set of vertices S C V, denote the set of edges in the cut (S,V —S) as 4(5).

Definition 8.3 For a vertezv € V and a (real) radius r, define the set of vertices in G with distance < r (with
respect to distance label given by ) to v as By(v,r), i.e. By(v,r) = {u|d(u,v) < r}.

The algorithm will find disjoint sets of vertices Si,..., S¢<k, called regions by growing balls around terminals
such that:

e no region contains any source-sink pair, and for each 1 <17 < k, either s; or ¢; is in one of the S;’s.

e For each region, the weight of §(S;) is “small”.

GVY O(log k)-approximation algorithm

C+ @.

let & be an optimal solution to the LP.

while there is some pair (s;,t;) not separated, do:
let S = By(s;,r) for some r < 3.

C + ClJd(9).
V«V-25.
return C.

Lemma 8.4 The algorithm terminates.

Proof: Since the ball grown around a terminal s; at each iteration has radius at most % it cannot contain ;.
Thus, 6(S) will separate (at least) one source-sink pair. The algorithm has at most & iterations. [ |

Lemma 8.5 The algorithm returns a multicut.

Proof: The only problem is when the algorithm separates some pair (s;, t;) and there is a pair (s;,t;), such that
both s; € Bx(s;,r) and t; € Bx(s;,r). In this case, since we are removing all the vertices of the ball around
si, then (sj,t;) will not be separated by the algorithm. But this scenario is impossible to happen. Otherwise,
from dg(sj,t;) < dz(si,s5) + de(si,t;) <2-r <1, one of the LP constraints for s;,t; is violated. [ |

Definition 8.6 Let V* be the optimal fractional solution to the LP. Given a vertex v € V and a radius r, a
ball with radius r is defined. Define the volume of this ball (region) as

*

Ve(v,r) = Z Ce Te+ Z Ce(T*dI(UaU»ﬁLV?

e=(u,v)€Bg(v,r) e=(u,v)€8(Bg (v,7))
vEBy (v,r)

and the cut volume of this region as
Cy(v,r) = g Ce
e€d§(By(v,r))
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Note that V.. (v, r) is an increasing function of r. It is a piece-wise linear function with possible discontinuities at
values of r where new vertices are added to the region. Therefore, Vx (v, r) is differentiable everywhere except
those possible discontinuous points and

dV,(v,r)

0T = Cyo,r) (8.1)

Lemma 8.7 There is some r < %, such that g;((;:)) < 2-ln(k+1) and we can find such an r in polynomial
time.

Proof: By contradiction, assume throughout the region growing process, starting with » = 0 ending at r = L:

5
Cy(si,7)

2-1 1).
Vlsir) > n(k+1)

This implies that
dV,(v,r) 1

. >2-In(k+1).
dr Ve (si, 1) n(k+1)
Let i =0<rpg <--- <1y = % be the radii at which new vertices are added to the region (s;,r,). For all 7 in
(rj,mj41):
T+t d Vy(v,r) 1 /TJ'+1
: > 2-In(k+1)dr
/rj dr Vae(si,r) rj
U

hl(Vz(Si, Tj+1)) — 1D(Vz(8i, Tj)) > (Tj+1 — Tj) -2 1n(k + 1).

We are going to sum up over all intervals (rj,rj+1) for 1 < j < ¢. This will give us a telescopic sum and
the terms will be canceled out except the first and the last term. Doing this, even though the function is

discontinuous at the end-points of the intervals, is valid because the function V,(s;,r) is an increasing function.
Thus:

In(Vx (si,rq)) — In(Vy(si,71)) 2-In(k+1):(ry—r1)

>
I

In(Vy (s, %)) > 2-In(k+1)-rg + 1n(v7)
¢

*

In(k +1) + 1n(v?)

In(Vic (51, 5))

J
1 %
In(Vy(s;, =) > In(V*+ )
2 k
I
1 LV
Vx(5i7 5) > V4 ?

But this cannot happen, since V;(s;, %) is part of the total volume and cannot be larger than it. This implies
that there exists such an r < % To find r, consider the vertices of G according to non-decreasing order of
distance from s;: s; = v1,v2,...,v, with distances r1 =0 < ry < ... r, < rpy1 where rpqpq > % and 7, < %

At any interval (rj,rj41), the volume V,(s;, ) increases while the value of cut Cy(s;,7) is fixed. Therefore, the
volume is maximized ( i.e. % is minimized) at the end of the interval. So it is enough to check the ratio
Ca(siyr)

Vet at the end of the intervals. [ |
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Theorem 8.8 The GVY algorithm is a (41n(k + 1))-factor approximation algorithm for IMC.

Proof: We charge the cost of the edges removed from the graph at each iteration against the volume of the
region removed. By lemma 8.7, at each iteration:

Cy(siy7)

D c

ecC
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