CMPUT 675: Approximation Algorithms Fall 2011

Lecture 14 (Oct. 25): Multi-Cut Problem

Lecturer: Mohammad R. Salavatipour Scribe: Weitian Tong

14.1 Multiway cut problem and a minimum-cut-based algorithm

Multiway Cut Problem

Input: A graph G = (V, E) with an assignment of cost to each edge ¢ : E — R* and a set of terminals
S = {515527"'5519} - V.

Goal: Find a minimum-cost collection of edges that separate each s; from other terminals.
Definition 1 An s;-cut is a set of edges that separates s; from all other terminals.

One greedy approach to solve this problem involves using minimum s;-cut. If we remove the edges in any s;-cut,
we can separate s; from other terminals.

Minimum-cut-based Algorithm
1. for i + 1 to k do
2. Let C; be a minimum s;-cut.
3. Let C be the costliest cut among all the s;-cuts, i =1,2,... k.

4. return C = Uf;llci.

Theorem 1 The Minimum-cut-based Algorithm is a (2 — %)-approa:imation algorithm.

Proof. Let A be an optimal solution. Then G-A has at least k components with each s; in one of them.
Actually, G-A contains exactly k components, otherwise there must exist some component that contains no
terminals and could obtain a smaller solution by not deleting the edges that separate this component from at
least one other component. Suppose Gi,Ga,...,G are components of G-A. Let A; = 6(G;), which means
A =UF_| A;. Of course, each A; is an s;-cut. Thus, we have ¢(C;) < ¢(A;),i = 1,2,..., k. Since each edge in A
appears exactly two A;’s,
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Note that C' = Uf;ll C; is also a feasible solution since for each ¢ < k — 1, C; separate s; from si. Because C} is
the costliest cut of C1,...,Cy, ¢(Cr) > £ ZZ 1 ¢(Cy), which means
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Hence, it is a (2 — £)-approximation algorithm. [ |
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14.2 Multiway cut problem and an LP rounding algorithm

Now we introduce a better approximation algorithm for the multiway cut problem via LP rounding. Another
way of looking at the multiway cut problem is finding an optimal partition of V', say Vi, Vs, ..., Vi, such that
s; € Vi,i=1,2,... k and the cost of U¥_,6(V;) is minimized.

To formulate the problem as an integer program, we need to define some sets of variables. For each vertex
v € V, we have k boolean variables 2! such that 2/, = 1 if and only if v is assigned to the set V;. For each edge
e € E, we create a boolean variable z¢ such that z¢ = 1 if and only if e € §(V;). Since if e € §(V;), it is also the
case that e € §(V;) for some j # 4, the objective function of the integer program is then

1 L
52062,22.
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Now we consider the constraints for the integer program. Obviously, we have zZS =1,i=1,...,k since each s;

must be assigned to V; and we can also have Zle 2! =1 for any vertex u € V since u must be contained in
some V;. Because for any edge e = (u,v), e € 6(V;) if and only if exactly one of its endpoints is in V;, we have
zt > |z, — x!|. Then the overall integer program is as follows:

1 k
minimize 3 g ceg 2

eckE i=1
k .
subject to Zzz =1, Yu eV,
=1 _ (14.1)
D R Ve = (u,v) € E,
2t >l — a2l Ve = (u,v) € E,
ah =1, i=1,...k,
vt €{0,1}, YueVyi=1,... k.

Since the relaxed linear program of this integer program is closely related with the [;-metric for measuring
distances in Euclidean space, we give the definition of /;-metric below.

Definition 2 [y-metric is a metric space where for any x = (z*,...,2"),y = (y},...,y") € R" the distance
between them is ||z —y|ly = Y1 2" — y'|.

Let Ay denote the k—1 dimensional simplex, that is, the surface in R¥ defined by {x € R¥|z > 0 & Zle xt =1},
where x is a vector and ' is the ith coordinate of 2. The LP relaxation will map each vertex of G to a point in
Ak, and especially map each terminal to a unit vector. Let x, represent the point to which vertex v is mapped.
Thus, the relaxed linear program is as follows:

1
minimize B Z Ce||$u—$v||1

e=(u,v)EFE (142)
subject to 1z, € Ag, Yv eV,
Ts; = €4, i=1,...,k,

For any r € [0,1] and 1 < i < k, let B(s;,r) be the set of vertices corresponding to the points x, in a ball of
radius r around s; under the measure of l;-metric, that is, B(s;,r) = {v € V| 1||s; — zo||1 < r}.
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Randomized-LP-rounding Algorithm

1. Let = be an optimal LP solution to (14.2).

2. Pick r € (0,1) uniformly at random.

3. Pick a random permutation 7 of {1,2,...,k}.

4. for i+ 1tok—1do

5. Vg < B(Sx)sr) — UjciVai

6. Vw(k) =V - Uj<kV7r(j)

7. return U¥_,6(V;)
Theorem 2 The randomized-LP-rounding algorithm is a %—appmm'mation algorithm.
To prove this theorem, we need to introduce some useful lemmas first.
Lemma 1 Yu,v € V and any index I, |z, — ol | < 3|z, — 2|1
Proof. Without loss of generality, assume that x!, > 2. Then

o, — | = al—ah= (1= ad) - (1) wl)
i Al
- Y-
il
< N el —adl
il
Thus we have .
2lary, — | < o), —ay |+ ) led —ad| =) |od —al| = llew -z,
J#l Jj=1

which implies |2}, — 2! | < %qu — Zyl|1- [ ]

Lemma 2 u € B(s;,r) if and only if 1 — ¢, <.

Proof.
1 1
u € B(s;,r) < §||Si—$u||1§T©§Z|$i_$%|§T
=1

1 1 .
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Lemma 3 For each edge e = (u,v), Pr[e is in cut] < 3|z, — z,]1.

Proof. We say that an index i settles edge (u,v) if ¢ is the first index in the random permutation such that at
least one of u,v € B(s;,r). We say that an index ¢ cuts edge (u,v) if exactly one of u,v € B(s;,r). Let S; be

the event that i settles (u,v) and X; be the event that i cuts (u,v). Thus, Pr[ e is in cut] = 32 | Pr[S; A X;].
Note that S; depends on the random permutation, while X; is independent of the randomized permutation.

By lemma 2, we have

Pr[X;] = Primin(1 — 2,1 —2') <r <max(l — 2,1 —2°)] = |2f, — 2 |.

ur

Let | = argmin;(min(1 — 2,1 — 2%)), that is , s; is the closest terminal to one of u,v. We can claim that
any index ¢ # I cannot settle the edge e = (u,v) if [ comes before ¢ in permutation 7, since if at least one
of u,v € B(s;,7), then at least one of u,v € B(s;,r). Note that the probability that ! comes before i in the
randomized permutation 7 is % Hence for i # [, we have

Pr[S; AXi] = Pr[S;AXi|l >xi|Pr[l > ]+ Pr[S; A Xi|l < i|Pr[l <y i]
1
= PrSiAXill >5 ] +0

IN

1
§PI'[XZ|Z >n 'L]

Since the event X; is independent of the randomized permutation, Pr[X;|l >, i] = Pr[X;] and therefore for
i#1,

1 1 . )

We also have that Pr[S; A X;] < Pr[X;] < |2}, — 2!|. Therefore, we have

k
Prle is in cut] = ZPr[S’i/\Xi]
i=1
< |zlfxl|+12|zif:ci|
— u v 2 u v
i#£l
1 1
= b ol Ll ol
1 1
< Z||$u*$u||1+§||$u*$71||1 By lemma 1

= Z”xu — 2|1

Now using the above three lemma, we can prove the theorem 2.

Proof. Let Z,, be a boolean variable which is 1 if u and v are in different parts of the partition. Then the
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total cost of the cut returned by this algorithm is W =3
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e=(u,0)EE CeZyw, which have the expectation
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