14.1 Multiway cut problem and a minimum-cut-based algorithm

Multiway Cut Problem

Input: A graph $G=(V, E)$ with an assignment of cost to each edge $c: E \rightarrow \mathbb{R}^{+}$and a set of terminals $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq V$.

Goal: Find a minimum-cost collection of edges that separate each s_{i} from other terminals.
Definition 1 An s_{i}-cut is a set of edges that separates s_{i} from all other terminals.
One greedy approach to solve this problem involves using minimum s_{i}-cut. If we remove the edges in any s_{i}-cut, we can separate s_{i} from other terminals.

Minimum-cut-based Algorithm

1. for $i \leftarrow 1$ to k do
2. Let C_{i} be a minimum s_{i}-cut.
3. Let C_{k} be the costliest cut among all the s_{i}-cuts, $i=1,2, \ldots, k$.
4. return $C=\cup_{i=1}^{k-1} C_{i}$.

Theorem 1 The Minimum-cut-based Algorithm is a $\left(2-\frac{2}{k}\right)$-approximation algorithm.
Proof. Let A be an optimal solution. Then G - A has at least k components with each s_{i} in one of them. Actually, G - A contains exactly k components, otherwise there must exist some component that contains no terminals and could obtain a smaller solution by not deleting the edges that separate this component from at least one other component. Suppose $G_{1}, G_{2}, \ldots, G_{k}$ are components of G - A. Let $A_{i}=\delta\left(G_{i}\right)$, which means $A=\cup_{i=1}^{k} A_{i}$. Of course, each A_{i} is an s_{i}-cut. Thus, we have $c\left(C_{i}\right) \leq c\left(A_{i}\right), i=1,2, \ldots, k$. Since each edge in A appears exactly two A_{i} 's,

$$
\sum_{i=1}^{k} c\left(C_{i}\right) \leq \sum_{i=1}^{k} c\left(A_{i}\right)=2 c(A)=2 O P T
$$

Note that $C=\cup_{i=1}^{k-1} C_{i}$ is also a feasible solution since for each $i \leq k-1, C_{i}$ separate s_{i} from s_{k}. Because C_{k} is the costliest cut of $C_{1}, \ldots, C_{k}, c\left(C_{k}\right) \geq \frac{1}{k} \sum_{i=1}^{k} c\left(C_{i}\right)$, which means

$$
\sum_{i=1}^{k-1} c\left(C_{i}\right) \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(C_{i}\right) \leq\left(2-\frac{2}{k}\right) O P T
$$

Hence, it is a $\left(2-\frac{2}{k}\right)$-approximation algorithm.

14.2 Multiway cut problem and an LP rounding algorithm

Now we introduce a better approximation algorithm for the multiway cut problem via LP rounding. Another way of looking at the multiway cut problem is finding an optimal partition of V, say $V_{1}, V_{2}, \ldots, V_{k}$, such that $s_{i} \in V_{i}, i=1,2, \ldots, k$ and the cost of $\cup_{i=1}^{k} \delta\left(V_{i}\right)$ is minimized.
To formulate the problem as an integer program, we need to define some sets of variables. For each vertex $v \in V$, we have k boolean variables x_{v}^{i} such that $x_{v}^{i}=1$ if and only if v is assigned to the set V_{i}. For each edge $e \in E$, we create a boolean variable z_{e}^{i} such that $z_{e}^{i}=1$ if and only if $e \in \delta\left(V_{i}\right)$. Since if $e \in \delta\left(V_{i}\right)$, it is also the case that $e \in \delta\left(V_{j}\right)$ for some $j \neq i$, the objective function of the integer program is then

$$
\frac{1}{2} \sum_{e \in E} c_{e} \sum_{i=1}^{k} z_{e}^{i}
$$

Now we consider the constraints for the integer program. Obviously, we have $x_{s_{i}}^{i}=1, i=1, \ldots, k$ since each s_{i} must be assigned to V_{i} and we can also have $\sum_{i=1}^{k} x_{u}^{i}=1$ for any vertex $u \in V$ since u must be contained in some V_{i}. Because for any edge $e=(u, v), e \in \delta\left(V_{i}\right)$ if and only if exactly one of its endpoints is in V_{i}, we have $z_{e}^{i} \geq\left|x_{u}^{i}-x_{v}^{i}\right|$. Then the overall integer program is as follows:

$$
\begin{array}{llr}
\operatorname{minimize} & \frac{1}{2} \sum_{e \in E} c_{e} \sum_{i=1}^{k} z_{e}^{i} & \\
\text { subject to } & \sum_{i=1}^{k} x_{u}^{i}=1, & \forall u \in V, \tag{14.1}\\
& z_{e}^{i} \geq x_{u}^{i}-x_{v}^{i}, & \forall e=(u, v) \in E, \\
& z_{e}^{i} \geq x_{v}^{i}-x_{u}^{i}, & \forall e=(u, v) \in E, \\
& x_{s_{i}}^{i}=1, & i=1, \ldots, k, \\
& x_{u}^{i} \in\{0,1\}, & \forall u \in V, i=1, \ldots, k
\end{array}
$$

Since the relaxed linear program of this integer program is closely related with the l_{1}-metric for measuring distances in Euclidean space, we give the definition of l_{1}-metric below.

Definition $2 l_{1}$-metric is a metric space where for any $x=\left(x^{1}, \ldots, x^{n}\right), y=\left(y^{1}, \ldots, y^{n}\right) \in \mathbb{R}^{n}$ the distance between them is $\|x-y\|_{1}=\sum_{i=1}^{n}\left|x^{i}-y^{i}\right|$.

Let Δ_{k} denote the $k-1$ dimensional simplex, that is, the surface in \mathbb{R}^{k} defined by $\left\{x \in \mathbb{R}^{k} \mid x \geq 0 \& \sum_{i=1}^{k} x^{i}=1\right\}$, where x is a vector and x^{i} is the i th coordinate of x. The LP relaxation will map each vertex of G to a point in Δ_{k}, and especially map each terminal to a unit vector. Let x_{v} represent the point to which vertex v is mapped. Thus, the relaxed linear program is as follows:

$$
\begin{array}{llr}
\operatorname{minimize} & \frac{1}{2} \sum_{e=(u, v) \in E} c_{e}\left\|x_{u}-x_{v}\right\|_{1} & \tag{14.2}\\
\text { subject to } & x_{v} \in \Delta_{k}, & \forall v \in V \\
& x_{s_{i}}=e_{i}, & i=1, \ldots, k
\end{array}
$$

For any $r \in[0,1]$ and $1 \leq i \leq k$, let $B\left(s_{i}, r\right)$ be the set of vertices corresponding to the points x_{v} in a ball of radius r around s_{i} under the measure of l_{1}-metric, that is, $B\left(s_{i}, r\right)=\left\{v \in V \left\lvert\, \frac{1}{2}\left\|s_{i}-x_{v}\right\|_{1} \leq r\right.\right\}$.

Randomized-LP-rounding Algorithm

1. Let x be an optimal LP solution to (14.2).
2. Pick $r \in(0,1)$ uniformly at random.
3. Pick a random permutation π of $\{1,2, \ldots, k\}$.
4. for $i \leftarrow 1$ to $k-1$ do
5. $\quad V_{\pi(i)} \leftarrow B\left(S_{\pi(i)}, r\right)-\cup_{j<i} V_{\pi(j)}$
6. $V_{\pi(k)}=V-\cup_{j<k} V_{\pi(j)}$
7. return $\cup_{i=1}^{k} \delta\left(V_{i}\right)$

Theorem 2 The randomized-LP-rounding algorithm is a $\frac{3}{2}$-approximation algorithm.
To prove this theorem, we need to introduce some useful lemmas first.
Lemma $1 \forall u, v \in V$ and any index $l,\left|x_{u}^{l}-x_{v}^{l}\right| \leq \frac{1}{2}\left\|x_{u}-x_{v}\right\|_{1}$.
Proof. Without loss of generality, assume that $x_{u}^{l} \geq x_{v}^{l}$. Then

$$
\begin{aligned}
\left|x_{u}^{l}-x_{v}^{l}\right| & =x_{u}^{l}-x_{v}^{l}=\left(1-\sum_{j \neq l} x_{u}^{j}\right)-\left(1-\sum_{j \neq l} x_{v}^{j}\right) \\
& =\sum_{j \neq l}\left(x_{u}^{j}-x_{v}^{j}\right) \\
& \leq \sum_{j \neq l}\left|x_{u}^{j}-x_{v}^{j}\right|
\end{aligned}
$$

Thus we have

$$
2\left|x_{u}^{l}-x_{v}^{l}\right| \leq\left|x_{u}^{l}-x_{v}^{l}\right|+\sum_{j \neq l}\left|x_{u}^{j}-x_{v}^{j}\right|=\sum_{j=1}^{k}\left|x_{u}^{j}-x_{v}^{j}\right|=\left\|x_{u}-x_{v}\right\|_{1}
$$

which implies $\left|x_{u}^{l}-x_{v}^{l}\right| \leq \frac{1}{2}\left\|x_{u}-x_{v}\right\|_{1}$.
Lemma $2 u \in B\left(s_{i}, r\right)$ if and only if $1-x_{u}^{i} \leq r$.

Proof.

$$
\begin{aligned}
u \in B\left(s_{i}, r\right) & \Leftrightarrow \frac{1}{2}\left|\left|s_{i}-x_{u} \|_{1} \leq r \Leftrightarrow \frac{1}{2} \sum_{j=1}^{k}\right| x_{u}^{j}-x_{v}^{j}\right| \leq r \\
& \Leftrightarrow \frac{1}{2} \sum_{j \neq i} x_{u}^{j}+\frac{1}{2}\left(1-x_{u}^{i}\right) \leq r \\
& \Leftrightarrow \frac{1}{2}\left(1-x_{u}^{i}\right)+\frac{1}{2}\left(1-x_{u}^{i}\right) \leq r \\
& \Leftrightarrow 1-x_{u}^{i} \leq r .
\end{aligned}
$$

Lemma 3 For each edge $e=(u, v), \operatorname{Pr}[e$ is in cut $] \leq \frac{3}{4}\left\|x_{u}-x_{v}\right\|_{1}$.

Proof. We say that an index i settles edge (u, v) if i is the first index in the random permutation such that at least one of $u, v \in B\left(s_{i}, r\right)$. We say that an index i cuts edge (u, v) if exactly one of $u, v \in B\left(s_{i}, r\right)$. Let S_{i} be the event that i settles (u, v) and X_{i} be the event that i cuts (u, v). Thus, $\operatorname{Pr}[e$ is in cut $]=\sum_{i=1}^{k} \operatorname{Pr}\left[S_{i} \wedge X_{i}\right]$. Note that S_{i} depends on the random permutation, while X_{i} is independent of the randomized permutation.

By lemma 2, we have

$$
\operatorname{Pr}\left[X_{i}\right]=\operatorname{Pr}\left[\min \left(1-x_{u}^{i}, 1-x_{v}^{i}\right) \leq r<\max \left(1-x_{u}^{i}, 1-x_{v}^{i}\right)\right]=\left|x_{u}^{i}-x_{v}^{i}\right| .
$$

Let $l=\operatorname{argmin}_{i}\left(\min \left(1-x_{u}^{i}, 1-x_{v}^{i}\right)\right)$, that is, s_{l} is the closest terminal to one of u, v. We can claim that any index $i \neq l$ cannot settle the edge $e=(u, v)$ if l comes before i in permutation π, since if at least one of $u, v \in B\left(s_{i}, r\right)$, then at least one of $u, v \in B\left(s_{l}, r\right)$. Note that the probability that l comes before i in the randomized permutation π is $\frac{1}{2}$. Hence for $i \neq l$, we have

$$
\begin{aligned}
\operatorname{Pr}\left[S_{i} \wedge X_{i}\right] & =\operatorname{Pr}\left[S_{i} \wedge X_{i} \mid l>_{\pi} i\right] \operatorname{Pr}\left[l>_{\pi} i\right]+\operatorname{Pr}\left[S_{i} \wedge X_{i} \mid l<_{\pi} i\right] \operatorname{Pr}\left[l<_{\pi} i\right] \\
& =\frac{1}{2} \operatorname{Pr}\left[S_{i} \wedge X_{i} \mid l>_{\pi} i\right]+0 \\
& \leq \frac{1}{2} \operatorname{Pr}\left[X_{i} \mid l>_{\pi} i\right]
\end{aligned}
$$

Since the event X_{i} is independent of the randomized permutation, $\operatorname{Pr}\left[X_{i} \mid l>_{\pi} i\right]=\operatorname{Pr}\left[X_{i}\right]$ and therefore for $i \neq l$,

$$
\operatorname{Pr}\left[S_{i} \wedge X_{i}\right] \leq \frac{1}{2} \operatorname{Pr}\left[X_{i}\right]=\frac{1}{2}\left|x_{u}^{i}-x_{v}^{i}\right|
$$

We also have that $\operatorname{Pr}\left[S_{l} \wedge X_{l}\right] \leq \operatorname{Pr}\left[X_{l}\right] \leq\left|x_{u}^{l}-x_{v}^{l}\right|$. Therefore, we have

$$
\begin{aligned}
\operatorname{Pr}[e \text { is in cut }] & =\sum_{i=1}^{k} \operatorname{Pr}\left[S_{i} \wedge X_{i}\right] \\
& \leq\left|x_{u}^{l}-x_{v}^{l}\right|+\frac{1}{2} \sum_{i \neq l}\left|x_{u}^{i}-x_{v}^{i}\right| \\
& =\frac{1}{2}\left|x_{u}^{l}-x_{v}^{l}\right|+\frac{1}{2}\left\|x_{u}-x_{v}\right\|_{1} \\
& \leq \frac{1}{4}\left\|x_{u}-x_{v}\right\|_{1}+\frac{1}{2}\left\|x_{u}-x_{v}\right\|_{1} \quad \text { By lemma } 1 \\
& =\frac{3}{4}\left\|x_{u}-x_{v}\right\|_{1}
\end{aligned}
$$

Now using the above three lemma, we can prove the theorem 2.
Proof. Let $Z_{u v}$ be a boolean variable which is 1 if u and v are in different parts of the partition. Then the
total cost of the cut returned by this algorithm is $W=\sum_{e=(u, v) \in E} c_{e} Z_{u v}$, which have the expectation

$$
\begin{aligned}
E[W] & =E\left[\sum_{e=(u, v) \in E} c_{e} Z_{u v}\right] \\
& =\sum_{e=(u, v) \in E} c_{e} E\left[Z_{u v}\right] \\
& =\sum_{e=(u, v) \in E} c_{e} \operatorname{Pr}[e \text { is in cut }] \\
& \leq \sum_{e=(u, v) \in E} c_{e} \frac{3}{4}\left\|x_{u}-x_{v}\right\|_{1} \\
& =\frac{3}{2} * \frac{1}{2} \sum_{e=(u, v) \in E} c_{e}\left\|x_{u}-x_{v}\right\|_{1} \\
& \leq \frac{3}{2} O P T
\end{aligned}
$$

