
, 5

CMPUT 675: Approximation Algorithms Fall 2011

Lecture 4, 5 (Sep 20, Sep 22, 2011): Set Cover, LP Duality, 0-1 Kanpsack
Lecturer: Mohammad R. Salavatipour Scribe: Amritpal Saini

This week we see two other algorithms for approximating set cover: one using randomized rounding an LP
relaxation and the other using Primal-Dual schema. We will also see how to design an FPTAS for the 0/1
knapscak problem.

4.1 Set Cover using Randomized Rounding

In this section we consider another method for solving the set cover problem approximately. The method uses
randomized rounding of the solution obtained from the linear programming (LP) relaxation of set cover. The
basic idea behind this algorithm is first to solve the LP relaxation for the set cover problem. We can think of
the solution ~x as a probability to either select a set or not. Note that the output of the algorithm might not be
a set cover. But the probability to get a set cover can be increased by repeating the same procedure multiple
times.

For set cover corresponding LP is

minimize :

m
∑

i=1

c(Si)xSi

subject to :
∑

e∈Si

c(Si)xSi
≥ 1, ∀e ∈ U

xSi
≥ 0,

Algorithm: Set cover by randomized rounding

Let x∗ be an optimum solution to the LP relaxation for set cover
For each set Si, set x̂Si

= 1 with probability x∗
Si
.

Return C = {Si|x̂Si
}

The expected cost of the solution returned is

E [cost (C)] =
∑

Si

c(Si)x
∗
si

= z∗ (4.1)

where z∗ is the optimal value of the LP solution. But the problem with this algorithm is that the solution might
not be a set cover. To address this, we will show that it is enough to repeat the this algorithm α times (for
some α ∈ O(log n)), and return the union of collection of all sets selected in all these repetitions. That is, if Ci

is the collection of sets that are selected at the ith iteration of this algorithm, then we would have C = ∪αi=1ci.
We show that this new algorithm has a good chance of returning a feasible solution with approximation ratio
O(log n).

Consider an arbitrary element ej and WLOG assume that it belongs to sets S1, . . . , Sk. Since we start from a
feasible solution, we must have x∗

S1
+ . . .+ x∗

Sk
≥ 1; in the worst case we should have x∗

S1
+ x∗

S2
+ . . .+ x∗

Sk
= 1.

4-1

4-2 Lecture 4, 5: Set Cover, LP Duality, 0-1 Kanpsack

What is the probability that none of the corresponding k sets be selected given the probabilities of x∗
Si
’s? The

following lemma (whose proof is starightforward) suggests that this probability is the highest when all the x∗’s
are equal.

Lemma 1 Given x1 + . . . + xk = 1, if we select each Si with probability x∗
i , the probability that no Si will be

selected is highest (worst case) when all x∗
i = 1

k
.

Thus the probabilty that an element ej is not covered in the i’th iteration of this algorithm is:

Pr [ej /∈ Ci] ≤

(

1−
1

k

)k

≤ e−1 (4.2)

Now one way to increase the probability to get a set cover is to repeat the algorithm α times and take union of
all the C’s i.e. sets selected in each iteration. Thus the probablity of an element not covered after α = (1+ǫ) lnn
iteration is

Pr

(

ej /∈

α
⋃

i=1

Ci

)

≤ e−α (4.3)

=
1

n1+ǫ
(4.4)

Using union bound, the probability that the result after α iterations is not a set cover is at most

Pr

(

α
⋃

i=1

Ci is not a set cover

)

≤
n

n1+ǫ
(4.5)

=
1

nǫ
(4.6)

< 1/4. (4.7)

The expected cost for the probablistic rounding set cover after α iterations is

E

[

cost

(

α
⋃

i=1

Ci

)]

= α · z∗ (4.8)

= O (logn · opt) (4.9)

Using Markov’s inequality, Pr[X ≥ t] ≤ E[X]
t

:

Pr [cost(C) > 4α · z∗] ≤
1

4

Therefore, with a probability greater than or equal to 1
2 , we have a feasible solution with cost less than or equal

to 4α · z∗ which is in O(log n) ·OPT , where OPT is the cost of the optimal solution. To get better probability
it’s enough to repeat the algorithm a constant number of times and get the best answer.

4.2 Duality of Linear Program

Consider the following simple LP:

Lecture 4, 5: Set Cover, LP Duality, 0-1 Kanpsack 4-3

minimize 10x1 + 6x2 + 4x3 (4.10)

subject to: 2x1 + x2 − x3 ≥ 2 (4.11)

x1 + x2 + x3 ≥ 3 (4.12)

x1, x2, x3 > 0 (4.13)

Let z∗ denote the optimum value of this linear program. Consider the question, ”Is z∗ at most 50?” A Yes
certificate for this question, is a feasible solution with value at most 50, for example x = (1, 1, 1), since it
satisfies the two constraints of the problem, and the objective function value for this solution is 20. Thus, any
Yes certificate to this question provides an upper bound on z∗.

Now consider the following question: is z∗ ≥ 10? To answer this we need to find lower bounds for all feasible
solutions. We can obtain lower bounds by looking at the constraints. For instance, from constraint 4.11, and
because the coefficients of variables x1, x2, x3 are all smaller in the constraint with respect to those in the
objective function, it follows that 2 is a lower bound for z∗. By combining constraints 4.11 and 4.12 we obtain
that 3x1 + 2x2 + 0x3 ≥ 5 and therefore 5 is a new lower bound for z∗. In general, any linear combination of
these constraints could lead to a lower bound, as long as the final coefficients of the variables are not larger than
those in the objective function. For instance, using a y1 factor of constraint 1 and y2 factor of constraint 4.12,
we get:

y1(2x1 + x2 − x3) ≥ 2y1
y2(x1 + x2 + x3) ≥ 3y2

There is a systematic way of obtaining the dual of any linear program; one is a minimization problem and the
other is a maximization problem. In general, for a primal LP of the form:

minimize
∑n

i=1 cixi

subject to
∑n

j=1 aijxj ≥ bi
xj ≥ 0

The dual has the form:

maximize
∑n

i=1 biyi
subject to

∑m

i=1 aijyi ≤ cj
yi ≥ 0

By construction, every feasible solution to the dual program gives a lower bound on the optimum value of the
primal. Also, every feasible solution to the primal program gives an upper bound on the optimal value of the
dual. Therefore, if we can find feasible solutions for the dual and the primal with matching objective function
value, then both solutions must be optimal.

Theorem 1 Weak Duality Theorem: If ~x and ~y are feasible solution for primal and dual then
∑n

j=1 cjxj ≥
∑m

i=1 biyi.

4-4 Lecture 4, 5: Set Cover, LP Duality, 0-1 Kanpsack

Proof.

n
∑

j=1

cjxj ≥

n
∑

j=1

(

m
∑

i=1

aijyi

)

xj (4.14)

=

m
∑

i=1

n
∑

j=1

aijxj

 yi (4.15)

≥

n
∑

i=1

biyi (4.16)

Theorem 2 (Strong Duality Theorem) Primal of an LP has a finite optimum solution if and only if its
dual has finte optimum. Also if ~x∗ and ~y∗ are optimal for primal and dual then

∑n

j=1 cjxj =
∑n

i=1 biyi

The following theorem follows easily from the above theorems:

Theorem 3 (Complementary slackness condition) Let ~x and ~y be two feasible solutions for the primal
and dual. then ~x and ~y are both optimum iff the following two conditions hold:

1. Primal complementary slackness conditions

For each 1 ≤ j ≤ n: either xj = 0 or
∑m

i=1 aijyi = cj;

2. Dual complementary slackness conditions

For each 1 ≤ i ≤ m: either yi = 0 or
∑n

j=1 aijxj = bi.

Relaxed complementary slackness condition: Let ~x and ~y be the feasible solution for primal and dual.
Suppose that we have both primal and dual relaxed slackness conditions: for α ≥ 1 and β ≥ 1, for each 1 ≤ j ≤ n
either xj = 0 or

cj
α
≤
∑m

i=1 aijyi ≤ cj ; and for each 1 ≤ i ≤ m either yi = 0 or bi ≤
∑m

j=1 aijxj ≤ βbj . Then
∑n

j=1 cjxj ≤ α · β
∑m

i=1 biyi.

4.3 Primal dual scheme

Previously mentioned LP based algorithms actually approximate the problem by solving the LP and computing
an integer solution from the LP solution. The general idea of primary-dual method is to start with a primal
infeasible and a dual feasible solution (usually the trivial solution ~x = 0 and ~y = 0). Then we iteratively improve
the feasibility of primal and optimality of dual. Primal is always extended integrally and at the end Primal is a
feasible solution. At each iteration, we use relaxed slackness conditions to help to find feasible solutions to the
primal.

Big advantage of Primal-Dual over rounding: we don’t have to solve LP (which is time consuming although
polynomial time solvable).

4.3.1 primal dual applied to set cover

Consider the following LP relaxation for Set Cover and its dual:

Lecture 4, 5: Set Cover, LP Duality, 0-1 Kanpsack 4-5

minimize
∑

S∈S c(S)xS

subject to
∑

S:e∈S xS ≥ 1, ∀e ∈ U
xS ≥ 0

maximize
∑

e∈U ye
subject to

∑

S:e∈S ye ≤ c(S) ∀S ∈ S
ye ≥ 0

Note that the dual problem is a packing problem. We can say, we are going to pack stuff into elements so that
the total amount packed is maximized without overpacking any set.

Remark: The dual of a covering problem is a packing problem and the dual of a packing problem is a covering
problem. Packing problems are typically harder.

We start with a trivial solution of −→x = 0, −→y = 0. We try to satisfy the Primal complementary slackness
conditions:

∀S ∈ § : xS 6= 0⇒
∑

e∈S

ye = c(S).

If we find a pair of feasible solutions (x, y) that satisfy the above condition, because each xs > 0 has value 1,
we’ll have:

xs = 1⇒
∑

e∈S

ye = c(S).

In that case, the total cost of the solution will be:

∑

S∈S

c(S) · xS =
∑

S∈S

xS

(

∑

e∈S

ye

)

≤
∑

e∈U

ye
∑

S:e∈S

≤
∑

e∈U

ye · f

≤ f · optLP

So it is enough to show how find such feasible primal solution. We call a set S for which the right-hand-side
inequality of the primal complementary slackness condition holds with equality a tight set (intuitively we cannot
pack more stuff into elements of that set).

The following is the PrimalDual Set Cover Algorithm.

1: ~x← 0, ~y ← 0
2: while not all elements are covered do
3: pick an uncovered element e, raise ye until some set goes tight
4: pick all tight sets and update ~x
5: declare all the elements in those sets as covered
6: endwhile
7: output the set cover ~x

Theorem 4 This algorithm is an f -approximation for set cover.

Proof. Consider primal complementary slackness

if xSi
> 0 then

∑

e∈Si

ye = C (Si) (4.17)

4-6 Lecture 4, 5: Set Cover, LP Duality, 0-1 Kanpsack

No if we find a easible solution to primal LP ~x and dual LP ~y ensuring that ~x is integer (i.e each xSi
> 0 is 1)

then
if xSi

= 0 then
∑

e∈Si

ye = C (Si) (4.18)

and total cost will be

∑

Si

cSi
· xSi

=
∑

Si

xSi

(

∑

e∈Si

ye

)

(4.19)

≤
∑

e∈Si

ye
∑

Si:e∈Si

xSi
(4.20)

≤
∑

e∈Si

ye · f where f is frequency of element (4.21)

≤ f · optLP (4.22)

4.4 0-1 Knapsack

The 0-1 knapsack problem can be described as, given a set of items, each having value vi and weight wi and a
knapsack of capacity B, find a subset of items that fit into the knapsack while maximizing their total value, i.e.:

Input: Set of items {1, ..., n}, each item has value vi and a weight wi, we have a knapsack with capacity B,
vi, wi, B ∈ Z+.
Goal: Find a subset S of items such that

∑

i∈S vi is maximum and
∑

i∈S wi ≤ B.

Here we present an FPTAS for knapsack. Clearly, if the weight of a single item is larger than B we can ignore
that item. So let’s assume ∀i : wi ≤ B.

The obvious greedy algorithm is to sort in non-increasing order of vi
wi

and pick the objects in this order.
Unfortunately this greedy algorithm has a bad solution. In fact, knapsack is an NP-hard optimization problem.
First we present a dynamic Programming algorithm for knapsack. Let V be the largest value among all items
and OPT be the value of an optimum solution. Clearly OPT ≤ nV. We have an n×(nV +1) table A. Let A[i, v]
be the smallest weight of a subset of items from {1, . . . , i} such that the value of the items is exactly equal to
v, if no such set exists then A[i, v] =∞. Then A[1, v] is easy to compute for any value v ∈ {1, . . . , nV } and

A[i, v] =

{

min{A[i− 1, v], A[i− 1, v − vi] + wi} if vi < v
A[i − 1, v] O.W.

This leads to the following algorithm:

The running time of this algorithm is O(n2 ·V). But we know that knapsack is NP-hard. So have we proved that
P=NP?! This is NOT polynomial in the size of input because V is not polynomial in size of vi’s (represented
in binary). We only need logV bits to represent V , so n2V is exponential in V . This is polynomial only if
the input is given in unary representation. For this reason, we call this algorithm a pseudo-polynomial time
algorithm.

The main reason that Dynamic Programming is not polynomial time is that the values of items can be much
larger than n. If they were all polynomially bounded by n, then this algorithm would be polynomial time. We
are going to use this fact to design an FPTAS for knapsack. To do so, we are going to use only a polynomially
bounded segments of values that will depend on n and 1

ε
(the error parameter). Then we will find a solution

(in polynomial time) that is at least (1− ε).OPT using dynamic programming.

Lecture 4, 5: Set Cover, LP Duality, 0-1 Kanpsack 4-7

Dynamic Programming algorithm for Knapsack
V = max

1≤i≤n

Vi

for i = 1 to n do A[i, 0] = 0
for v = 1 to nV do

A[1, v] =

{

w1 if v1 = v
∞ otherwise

for i = 2 to n do
for v = 1 to nV do

if vi ≤ v then
A[i, v] = min{A[i− 1, v], A[i− 1, v − vi] + wi}

else
A[i, v] = A[i− 1, v]

Figure 4.1: Dynamic Programming Algorithm for Knapsack.

4.4.1 FPTAS algorithm for 0-1 Knapsack

FPTAS algorithm for knapsack

Let k = ǫV
n
.

for each item i let v
′

i =
⌊

vi
k

⌊

Run the above dynamic program with same weights wi but with value v
′

i.

Let S
′

be the solution of dynamic program, return S
′

Theorem 5 The above algorithm is an FPTAS for knapsack.

Proof. First note that the largest value V ′ in the new instance is

V
′

=

⌊

V

ǫV/n

⌋

(4.23)

=
n

ǫ
(4.24)

Thus the resulting time complexity of the algorithm is O
(

n3

ǫ

)

which is polynomial in both n and ǫ. Now we

prove the approximation ratio.

Let S be an optimum solution and opt be the value of S. For each item i: kv′i ≤ vi ≤ k(v′i + 1). Therefore:

vi − k ≤ kv′i (4.25)

and

vi ≥ kv′i (4.26)

So by (4.25): OPT =
∑

i∈S vi ≤ k.
∑

i∈S v′i + kn.

4-8 Lecture 4, 5: Set Cover, LP Duality, 0-1 Kanpsack

and we know that value of S
′

is the best under v
′

i. Now

∑

i∈S
′

vi ≥ k
∑

i∈S
′

v
′

i (4.27)

≥ k
∑

i∈S

v
′

i (4.28)

≥
∑

i∈S
′

vi − nk (4.29)

= opt− ǫV (4.30)

≥ opt (1− ǫ) , (4.31)

since V ≤ OPT and therefoer ǫV ≤ ǫOPT.

4.4.2 Pseudo polynomial time algorithms and strong NP hard problems

An algorithm has pseudo-polynomial time algorithm if its running time is polynomial when the input is repre-
sented in Unary. A problem is strongly NP-hard if it has no pseudo-polynomial time algorithm unless P=NP.
The following theorem establishes a connection between having an FTPAS and having a pseudo-polynomial
time exact algorithm.

Theorem 6 Let |I| be the size of input in binary, |Iu| be the size of instance I of problem Π represented in
unary. Suppose that I is an NP hard minimization problem s.t. the objective function is integer for any instance
I and opt (I) ≤ P (|Iu|) where P is some poly function. Then if Π has an FPTAS then it is not strongly NP
hard and has a pseudo polynomial time algorithm.

Proof. Let A be and FPTAS for problem Π with time Q (|I| , ǫ) which is polynomial time in both input size
and ǫ. Let ǫ = 1

P (|Iu|)
. Now the as it is assumed A is FPTAS thus

solution ≤ (1 + ǫ) opt (4.32)

=

(

1 +
1

P (|Iu|)

)

opt (4.33)

= opt +
opt

P (|Iu|)
(4.34)

< 1 + opt (4.35)

