CMPUT 675: Approximation Algorithms Winter 2005
Lecture 21: April 1

Lecturer: Mohammad R. Salavatipour Scribe: Xiaozhen Niu

21.1 PCP Theorem

To be consistent with the PCP definition later on, we give a slightly modified definition for class NP which
is clearly equivalent to the original one:

Definition 21.1 A language L is € NP if and only if there is a deterministic polynomial time verifier (i.e.
algorithm) V that takes an input x and a proof y with |y| = |z|° for a constant ¢ > 0 and it satisfies the
following:

e Completeness: if € L = 3y such that V(z,y) = 1.

e Soundness: if v ¢ L = Vy, V(z,y) =0.

Now we define probabilistic verifiers that are restricted to look at (query about) only a few bits of the alleged
proof y and make their decision based on those few bits instead of reading the whole proof.

Definition 21.2 A (r(n),b(n))-restricted verifier is a randomized verifier that uses at most r(n) random
bits. It runs in probabilistic polynomial time and reads/queries at most b(n) bits of the proof.

Finally we provide the main definition of a language € PCP. This definition is for PCP; 1 (r(n), b(n)).

Definition 21.3 A language L is € PCP(r(n),b(n)) if and only if there is a (r(n), b(n))-restricted verifier
V' such that given an input & with length || = n and a proof 7, it satisfies the following:

o Completeness: if € L = 3 a proof m such that Pr[V (z,7) =1] = 1.
e Soundness: ifv ¢ L = Vr, Pr[V(z,m) =1] < 1.

The probabilities in completeness and soundness given in definition above are 1 and %, respectively. A more
general definition of PC'P languages is by allowing these probabilities be some other constant values:

Definition 21.4 For 0 < s < ¢ < 1, a language L is € PCP, s(r(n),b(n)) if and only if there is a
(r(n),b(n))-restricted verifier V such that given an input x with length |x| = n and a proof ©, it satisfies the
following:

o Completeness: if t € L = 3 a proof w such that Pr[V (z,7) =1] > C.

o Soundness: if v ¢ L = Vr, Pr[V(z,m) =1] < S.

21-1

21-2 Lecture 21: April 1

In the more general definition of PC'P language, we need to have the following restrictions on parameters:
e cand s are constants and 0 < S < C < 1. This is to make sure the verifier can give a correct answer
with higher probability than a wrong answer.
e r(n) and b(n) are at most polynomial, this is to make sure the verifier runs in polynomial.
e Proofs are at most 2"(") bits long. The reason is that the verifier V uses at most r(n) random bits, so
it can access at most 27(™) positions, and it must be able access to any position of the proof.
Now we give the first lemma about PCP:

Lemma 21.5 PCP, ,(O(logn,n°V) C NP

Proof: Let L be a language in PCP, ;(O(logn,n®")) with a verifier V. We construct a non-deterministic
polytime Turing machine M for L. Starting with an input x, M guesses a proof 7 and simulates V on all
20(en) — pO() pogsible random bits. M accepts the proof « if at least a fraction ¢ of all these runs accept,
rejects otherwise. Thus:

o if z € L = V(z,m) accepts with Prob > C = at least a fraction ¢ of random bits cause the verifier V'
accept = M accepts.

e if x € L = the verifier accepts with Prob < s < ¢ = for only a fraction < ¢ of random bits the verifier
V accepts = M rejects.

Since there are O(n®™")) random bits and each simulation takes polytime, the running time of M is polytime.
Therefore we get PC Pc,s(O(logn,n®1)) C NP, and finished the proof. [|

A trivial observation about PCP is that if we do not read any random bits then it can be written as
PCP, ,(0,n°M), this is just the same definition as N P. Therefore we get NP C PCP, ,(0,n°(1")). Combined
with the lemma we just proved, we conclude that PCP, ,(O(logn,n®")) = NP,

The remarkable PCP theorem, which is the least obvious (and probably the most difficult) result in computer
science, proved by Arora and Safra [aroral] and Arora, Lund, Motwani, Sudan, and Szegedy [arora2] states:

Theorem 21.6 (PCP Theorem) NP = PCPI,%(O(log n,0(1))

Basically, this miraculas theorem says that for every problem in NP there is a verifier that queries only
a constant number of bits of the proof (regardless of the length of the proof) and with sufficiently high
probability gives a correct answer whether the proof is correct or not.

21.2 Hardness of MAX-3SAT

Starting from the PCP theorem, we show that approximating MAX-3SAT within some constant factor is
NP-hard.

Theorem 21.7 For some absolute constant € > 0, there is a gap-introducing reduction from SAT to MAX-
3SAT such that it transforms a boolean formula ¢ for SAT to a boolean formula v with m clauses for
MAX-8SAT such that:

Lecture 21: April 1 21-3

o if ¢ is satisfiable, then OPT (¢) = m.
e if ¢ is a NO-instance, then OPT(¢) < (1 — e)m.

Corollary 21.8 Approzimating MAX-3SAT with a factor better then (1 — €) is NP-hard for some constant
€>0.

Proof of Theorem 21.7: Since SAT is a NP problem, by PCP theorem, we know that it has a PC'P; 1 (O(logn, n@M
verifier V. Let us assume that it is PCPI,%(dlog n, k) where d and k are some constants.

Let r1,...,7,a be all the possible random bits (of length dlogn) that can be given as seed to verifier V. We
will construct a formula f; for every possible random bit r;. Thus we will have formulas f1,..., fha.

For any particular choice of random bits, the verifier can be considered to evaluate a boolean binary decision
tree of height at most k. This tree contains at most 2* variables and therefore, the total number of variables
that we will have over all boolean formulas fi,..., f,a will be 2n. These variables correspond to the set
of all possible positions that the verifier may read. We call this set of possible positions B.

This decision tree can be encoded as a boolean formula with at most 2* variables and 2% clauses each of
length k. Think of every leaf is a variable and every path from root to leaf forms a clause.

Figure 1 shows an example. Here suppose k = 2 and we have a fixed random bit string. Based on the first
random bit the position we read from the proof is z;, if it returns 0 we get the second random bit and based
on that we read position zy, else if z; was 1 we read position z;. So we can use four variables T, Ty, ;, 2
to form a formula encoding this tree: (Z; A Tx) V (z; A z7). It is easy to see that the formula is satisfied if
and only if the path that the verifier traverses on the tree ends at an “accept” leaf. Any truth assignment
to the variables i.e. any proof, will give a unique path for each decision tree. If for a fixed random bit string
and a proof (truth assignment) the path ends in an “accept” it means that the verifier accepts the proof,
otherwise it rejects the proof.

X_j

Reject Accept Reject Accept

Figure 21.1: Example of decision tree

Alternately we can say that acceptance/rejection of V' is a function of ¢, r and the k bits V reads. Given ¢,
for any r; we can consider the restriction of this function to the k bits of the proof. This is our function f;
and it can be computed in polynomial time.

If ¢ is a YES-instance, = there is a truth assignment that works/accpets with probability of 1 (i.e., for any
random bits it will accept) = the corresponding truth assignment will give a path from root to an “accept”
leaf in every decision tree (corresponding to a random bit string); so it satisfies all formulas fi,..., fra.

21-4 Lecture 21: April 1

If ¢ is a NO-instance = for any proof (truth assignment) V accepts with probability < % (this is from the
PCP definition) = for at least half of the decision trees, the truth assignment will give a root to leaf path
that ends in “reject”, i.e. the formula is not satisfied. Therefore, among all n? formulas, at least %d of them
are not satisfied.

Now on we can transform all formulas fi,..., f,a into 3-CNF formulas fi,..., f/, such that that f; is
satisfiable if and only if f; is. During the transformation (it is polynomial time) there will be some new
disjoint variables created for each formula, however the number of these new variables is polynomial-bounded.
In addition, the size of f] is at most k times of the size of f;. This transformation is basically the Karp
reduction used to prove NP-completeness of 3SAT from SAT and can be found in any standard text book
(e.g. see the text book) It has the property that if f; is satisfied then all the 3-clauses of f] are satisfied and
if f; is not satisfied then at least one 3-clause of f; is not satisfied.

d
Let F = |JI_, f}, the size of F (total number of clauses) is at most k2% x n¢. So the number of clauses that

are not satisfiable in F' (if ¢ is a No instance) is at least ”z—d; the ratio of the number of clauses that are not

. . d /o . .
satisfied over the total number of clauses is k;ind = 2wt then at most a (1 — ;) fraction of F is

satisfied. -

This theorem shows how to derive a gap-introducing reduction from SAT to Max-3SAT. Interestingly, we
can also derive the PCP theorem assuming the existence of such a reduction. The basic idea was explained in
the previous lecture. There we showed how to derive a version of PCP theorem, assuming a gap-introducing
reduction from SAT to Max-3SAT. These two results show that PCP theorem is equivalent to saying that
Max-3SAT is not approximable within some constant factor > 1 unless P=NP.

References

[1] S. Arora and S. Safra, Probabilistic checking of proofs: a new characterization of NP, J. ACM, 45(3):501-
555, 1998. Earlier version in Proc. of IEEE FOCS 1992, pp 2-12.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and intractability of approxi-
mation problems, J. ACM, 45(1):70-122, 1998. Earlier version in Proc. IEEE FOCS 1992, pp 13-22.

