CMPUT 675: Approximation Algorithms Winter 2005

Lecture 19 : March 23
Lecturer: Mohammad R. Salavatipour Scribe: Xiaomeng WU

19.1 Analysis of k-Median Local Search Algorithm

Recall the k-Median problem defined last lecture:

Input:

e F, a set of facilities (|F| = n);
e C, a set of cities/clients/users, (|C| = m);
e Forall1 <i<n,1<j<m: Cj is the cost of connecting city j to facility i;

e k, the maximum number of facilities that we can open (there is no opening cost)
Goal:

e Find a subset S C F, with |S| < k, to be openned, and connect each city to an open facility such that
the total connection cost is minimized.

The algorithm presented was a local search algorithm. We can think of any solution as a {0,1}" vector with
exactly k£ ones. The neighborhood for a solution S will be the vectors with Hamming distance 2 from S, i.e.
they differ by a single swap operation. where a swap < s,s' > with s € S and s’ ¢ S yields S — s+ s'. The
algorithm is:

k-Median Local Search Algorithm
S « an arbitrary set of k facilities
while there is a swap operation op with cost(op(S)) < (1 — %)cost(S) do:
S + op(9)

return S

Here P(n,m) is some polynomial in terms of n and m and € is an arbitrarily small constant. The returned
solution will be within (1 + ¢€) of the local optimum and within (1 + €)a of the global optimum, for an a that
we show is 5.

By the condition of the while loop, we know that when the algorithm stops, the solution is not larger than
the local optimum by a factor larger than 1/(1— W) = 1+¢€' for some € which depends on € and p(n, m).
Therefore, if we show that the gap between the local optimum and global optimum is at most a then the
gap between our solution and the global optimum is at most (1 + €')a. Thus, to show the gap between local
optimum and global optimum, we assume that the condition of the while loop has changed to “do a swap if

cost(op(S)) < cost(S). So the algorithm stops when no swap improves the solution by any positive amount.
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Let S be the solution returned by this new local search and let O be an optimum solution. From the local
optimality of S, we know that

cost(S — s + 0) > cost(S) for all s € S,0 € O. (19.1)
Note that even if SN O # (), the above inequalities hold.

For each city j, s; and o; are the facilities connected/serving city j in S and O, respectively. Ng(s) is the
neighborhood of s in S; the set of cities connected to facility s in S. Similarly, No(0) is the neighborhood
of 0 in Oj; the set of cities connected to facility o in O. For:

ACS,Ns(A) = U Ns(s)
sEA

B CO,No(B) = | No(o)
o€EB

We say s € S is ‘bad’ if it captures some facility o € O, otherwise it is ‘good’. Now we have the following
claim:

Claim 19.1 Consider a facility o € O, there is a 1 — 1 and onto mapping «(Figure 19.1): No(0) = No(o)
that satisfies the following property: for any s € S, if s does not capture o, then w(N2) N N2 = (.

No(0)

Figure 19.1: The mapping m on Np(0). s does not capture o. s’ # s. 7w is a 1 — 1 onto mapping.

One such mapping 7 can be constructed as follows. Order the clients in No(o) as co,- .., ¢|ny(0)|—1 Such
that for every s € S with a nonempty N?, the clients in N7 are consecutive. Define m(¢;) = ¢;, where
j=(i+[|No(0)|/2]) mod (|[No(0)|) . That is, we map everything one half ahead.

To see such a mapping satisfies the above property, assume both ¢;, 7(c;) = ¢; € N¢ for some s, where
IN?| < [No(o)]/2. ¥ j = i+ |[No(0)|/2], then [N?| > j =i +1 = [[No(o)|/2] +1 > [|No(0)]/2]. It
j =i+ [INo()l/2) = INo(0)], then [N¢| > i = j + 1 = [No(0)| - LINo(0)|/2] +1 > [|No(0)|/2]. In both
cases, we have a contradiction.

Based on the notion of ”capture”, we can construct a bipartite graph H(S, O, E) (Figure 19.2) in this way:
for each facility in S, there is a vertex on the S-side, and for each facility in O, there is a vertex on the
O-side. An edge s;0; € E iff s; captures o;. H is called the capture graph, which has this property: each
vertex in O has degree at most 1, and vertices in S have degrees up to k (that is, 0, or > 1).

We now consider k swaps (one for each facility in O). If some bad facility s € S captures exactly one o € O,
then we consider the swap (s, 0).

Suppose [ facilities in S (and so I vertices in O) are not considered in such swaps, there must be > [/2
good facilities in S; because each facility out of these [ facilities in S is either good or captures at least two
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Figure 19.2: Capture graph H(S,0, E).

facilities in O. Now, consider [ swaps in which the remaining [ facilities in O get swapped with the good
facilities in S such that each good facility is considered in at most two swaps (Figure 19.3). The bad swaps
which capture at least two facilities in O are not considered in any swaps.

>=1/2 good facilities
Figure 19.3: k swaps considered in the analysis

These k swaps satisfy the following properties:

1. Each o € O is considered in exactly one swap.
2. Every facility that captures more than two is not in any swap.
3. Each good facility s € S is considered in at most two swaps.

4. If (s,0) is considered, then facility s does not capture any facility o’ # o.

Consider one of these k swaps (s, 0), we will show an upper bound on the increase in the cost by re-assigning
the cities in Np(0) U Ng(s) to the facilities in S — s + o as follows (Figure 19.4):

e (a) Every city j € No(0) is now assigned to o.

e (b) All the cities not in Ng(s) U Np(0) continue to be served by the same facility.
Consider a city j' € N, SOI for o' # 0. As s does not capture o, by the claim about mapping 7, we have that

7w(j') ¢ Ns(s). Let w(j') € Ns(s'). Note that the distance the city j' to the nearest facility in S —s + o is
at most cj . From triangle inequality, we have cjigr < ¢jror + Cr(jryor + Ca(jrysr = Ojr + Or(jry + Sr(jry-
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Figure 19.4: Reassigning the cities in Ng(s) U No(0)

Combining the inequality cost(S — s + 0) — cost(S) > 0, we have the summation:

> (0-9+ > (Oj + On(jy + Su(jy = Sj) > 0 (19.2)

JENo(0) JENs(s),j¢No (o)

As each facility o € O is considered in exactly one swap, the first term of above inequality added over
all k swaps gives exactly cost(O) — cost(S). For the second term, we will use the fact that each s € S is
considered in at most two swaps. Since S; is the shortest distance from city j to a facility in S, using triangle
inequality we get O; + Or(jy + Sx(j) > S;. Thus the second term added over all k£ swaps is no greater than
23 icc(O;j + Ox(jy + Sx(jy — Sj)- As mis al—1 and onto mapping, .. Oj = 3 ;cc On(j) = cost(O) and
> iec(Sa) —S;j) = 0. Thus, 237, (0 + On(j) + Sx(j) — Sj) = 4cost(O). Combining the two terms, we
get: cost(0) — cost(S) + 4cost(0O) > 0, that is, cost(S) < 5eost(0).

If p facilities can be swapped simultaneously instead of one swap, the locality gap is 3 + 2/p. The details
can be found in [AGKMMPO04].

References

AGKMMPO04 V. ArvA, N. GARG, R. KHANDEKAR, A. MEYERSON, K. MUNAGALA, AND V. PANDIT Local Search
Heuristics for k-Median and Facility Location Problmes. SIAM Journal of Computing, 33(3), 544-562,
2003.



