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[S=N
b Peck oo vandom . Aom o universal  hash eam(\ﬂ K: U—oN

while He totul # & collisions by W is >3N, resample b
DV’ L= {xeg{ l«up(}] we lkvew > ("i)é%/\/
3) For cad (€[N}, droose o dable £ Sze 4L and pick
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