
Efficient Reinforcement Learning with Multiple Reward Functions
for Randomized Controlled Trial Analysis

Daniel J. Lizotte† danjl@umich.edu
Michael Bowling‡ bowling@cs.ualberta.ca
Susan A. Murphy† samurphy@umich.edu

†University of Michigan, Ann Arbor, MI 48109 USA ‡University of Alberta, Edmonton, AB T6G 2R3 Canada

Abstract

We introduce new, efficient algorithms for
value iteration with multiple reward func-
tions and continuous state. We also give
an algorithm for finding the set of all non-
dominated actions in the continuous state
setting. This novel extension is appropriate
for environments with continuous or finely
discretized states where generalization is re-
quired, as is the case for data analysis of ran-
domized controlled trials.

1. Introduction

We begin with a motivating example. Reinforcement
learning methods (Pineau et al., 2007) have been used
in evidence-based medicine to analyze multi-stage ran-
domized controlled trials (Murphy et al., 2007; Zhao
et al., 2009). These trials are designed to investigate
the relative effectiveness of different sequences of treat-
ments with respect to patient outcomes. A patient’s
progression through the trial is divided into stages,
each of which consists of random assignment to a treat-
ment followed by monitoring of the patient’s condition.
The patient observations collected during each stage
are very rich and commonly include several continu-
ous variables related to symptoms, side-effects, and
treatment adherence, for example.

To analyze these data using reinforcement learning
methods, we consider each treatment as an action,
and use the patient observations to define the resulting
state and reward. Thus for the ith patient we obtain a
trajectory si1, a

i
1, r

i
1, s

i
2, a

i
2, r

i
2, ..., s

i
T , a

i
T , r

i
T . These re-

defined data are treated as sample trajectories from
the uniform random policy. We then apply batch off-

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

policy reinforcement learning methods to learn an op-
timal policy that can be used to select treatments for
future patients.

One difficulty with using trial data to formulate a re-
inforcement learning problem is that there is no obvi-
ously correct reward function. There are many possi-
ble reward functions one could define, since each pa-
tient record includes several different measurements of
that patient’s overall well-being. For example, data
typically include a measure of the severity of the symp-
toms the patient is experiencing, as well as a measure
of the severity of the side-effects caused by the current
treatment. These different possible reward functions
are typically at odds with one another to some de-
gree, and will therefore induce different optimal poli-
cies. For example, a policy that minimizes expected
symptom measurement will tend to choose more ag-
gressive drugs that are very effective but have a more
severe side-effect profile. On the other hand, a policy
that minimizes expected side-effect measurements will
choose drugs that are less effective but have a milder
side-effect profile.

In clinical practice, patients, doctors, and families de-
cide on a treatment based on preferences that are not
known to us at the time of data analysis. Continuing
our example, these preferences may lean more toward
symptom reduction or side-effect reduction, depend-
ing on the situation. However, treatment decisions
are not usually influenced exclusively by one consid-
eration or the other. We are interested in efficient
algorithms that can compute the optimal policy for a
range of tradeoffs between reward functions to inves-
tigate how our tradeoff—and therefore our choice of
reward function—influences the optimal policy.

Previous work on multiple-reward problems (Barrett
& Narayanan, 2008) considered a small number of dis-
crete states in a framework where the model is known.
This setting does not match our application, since we

Efficient RL with Multiple Reward Functions for RCT Analysis

have real-valued patient observations and a finite data
set. In this work, we introduce a new algorithm that
is asymptotically more time- and space-efficient than
the Barrett & Narayanan approach, and we describe
how it can be directly applied to batch data. We
then show how our algorithm can be extended to the
continuous-state setting using linear function approxi-
mation, a case where the previous approach is not ap-
plicable, and we give an algorithm for finding the set
of all non-dominated actions in the continuous-state
setting. Throughout this paper we will focus on the
case of two reward functions, parameterizing the trade-
off with a scalar δ ∈ [0, 1]. While this is sufficient to
model our symptoms-versus-side-effects example, we
conclude by discussing how our approach can be gen-
eralized to more than two reward functions.

2. Background

We consider sets of MDPs that all have the same state
space, action space, and state transition function, but
whose expected reward functions are parameterized by
a scalar δ ∈ [0, 1]. The parameter δ determines the
expected reward function r as follows:

r(s, a, δ) , (1− δ) · r(0)(s, a) + δ · r(1)(s, a). (1)

Each fixed δ identifies a single MDP. This parameter-
ized expected reward function induces a corresponding
parameterized optimal1 state-action value function in
the usual way via the Bellman equation:

Q(s, a, δ) = r(s, a, δ) + Es′|s,a[max
a

Q(s′, a, δ)]. (2)

We will also refer to the optimal state value function
V (s, δ) = maxaQ(s, a, δ).

For each patient, we take an action at each timepoint
t = 1, 2, ..., T , after which they are no longer under
our care. Because we are in this finite-horizon setting,
we consider a separate rt, Qt, and Vt function for each
time-point (Bertsekas & Tsitsiklis, 1996), and we have
QT (s, a, δ) ≡ rT (s, a, δ). In this framework, “value
iteration” algorithms proceed by first determining the
value function for time T , and then receding to the
beginning of time using the recurrence Qt(s, a, δ) =
rt(s, a, δ) + Es′|s,a[Vt+1(s′, δ)].

3. Value Functions for All Tradeoffs:
Discrete State Space

In the discrete state-space setting, the optimal state-
action value function Vt(s, δ) is piecewise linear in the

1Throughout this work, all Q- and V-functions are ei-
ther optimal or estimates of optimal. We omit the usual ∗

superscript throughout, and mark estimates with a hat .̂

tradeoff parameter δ. We use a piecewise linear spline
to exactly represent Vt(s, δ) for each state and time-
point, which allows us to exactly compute value back-
ups for all δ more efficiently than the point-based rep-
resentations of Barrett and Narayanan (2008). Our
representation also allows identification of the set of
dominated actions, i.e. the actions that are not opti-
mal for any (s, δ) pair.

Value backups require two operations: maximization
over actions, and expectation over future states. Al-
though we are interested in settings with continuous
states and linear value function approximators, the
tools and concepts we need to achieve this are appli-
cable and more easily presented in the discrete state
setting. We begin by considering discrete states, and
generalize our approach in Section 4.

3.1. Maximization

First, we describe how to take a function QT (s, a, ·)
and produce an explicit spline-representation of
VT (s, ·) by maximizing over a. In Section 3.3, we
show how this can be accomplished at earlier time-
points t < T using a divide-and-conquer approach.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R
0

R
1

(0.2,0.7)

(0.5,0.6)

(0.8,0.2)

(0.3,0.4)

Q−function: Point Representation

0.2

0.4

0.6

0.7

0 0.25 0.5 0.75 1

0.2

0.3

0.5

0.8

Q−function: Line Representation

δ

(1
 −

 δ
)

R
0
 +

 δ
 R

1

(a) (b)

Figure 1. Computing V from Q for all δ by convex hull.

The Q-function QT (s, a, δ) for the last timepoint is
equal to the terminal expected reward function rT ,
which is linear in δ for each action as defined in (1).
To represent QT (s, a, δ), we maintain a list of linear
functions, one for each action. Figure 1(a) shows an
example Q-function for a fixed state at time T . There
are four actions, three of which are optimal for some
δ and one which is not optimal for any δ. Each of
these linear functions can be represented by a list
of tradeoffs (i.e. [0, 1]) together with a list of their
corresponding values (i.e. [r(s, a, 0), r(s, a, 1)]) at the
tradeoff points. Each can also be represented by a
point (r(s, a, 0), r(s, a, 1)) in the plane, as shown in
Figure 1(b). These two equivalent representations of-
fer an important conceptual and computational in-
sight that is well-established in the multi-criterion op-

Efficient RL with Multiple Reward Functions for RCT Analysis

timization literature (Ehrgott, 2005): The set of ac-
tions that are optimal for some δ ∈ [0, 1] are exactly
those actions whose line-representations lie on the up-
per convex envelope of the Q-functions, and equiva-
lently, whose point-representations lie on the upper-
right convex hull of the set of Q-pairs. In general, we
can recover the actions that are optimal on δ ∈ [δ1, δ2]
by finding the upper-right convex hull of the points
{(r(s, ai, δ1), r(s, ai, δ2)) : i ∈ {1...|A|} }. This equiva-
lence is important because the time complexity of the
convex hull operation on n points in two dimensions is
O(n log n) – as fast as sorting.

We make use of this equivalence to construct our
spline-representation of VT (s, ·). Commonly-used con-
vex hull routines produce output that is ordered, so
that it is easy to recover the list of actions that are op-
timal for some δ, along with the values of δ where the
optimal action changes. These values are the “knots”
in our spline-representation. We denote the list of
knots of a piecewise linear function f(·) by ∆(f(·)).
The output of a convex hull algorithm is an ordered
list of points of the form (r(s, a, 0), r(s, a, 1)), which in
this case is [(0.8, 0.2), (0.5, 0.6), (0.2, 0.7)]. We know
from the order of this list that the second knot in
VT (s, ·) (after δ = 0) occurs where the lines repre-
sented by (0.8, 0.2) and (0.5, 0.6) intersect. Thus we
can compute that the line represented by (0.8, 0.2)
is maximal from δ = 0 to δ = 0.428.. where it in-
tersects the line represented by (0.5, 0.6). The inter-
section point δ× of two lines on the interval [δ1, δ2]
with end-point function values [y1, y2] and [z1, z2] is
δ× = δ1 + (δ2 − δ1) · (y1 − z1)/(y1 − y2 + z2 − z1).

After finding the knots, we represent the piecewise
linear value function in Figure 1(a) by the knot-list
∆(VT (s, ·)) = [0.00, 0.428.., 0.75, 1.00] and value-list
[0.80.., 0.54.., 0.58.., 0.70..], rather than by the list of
points. This allows us to more efficiently evaluate
V (s, δ) = maxaQ(s, a, δ): To evaluate V (s, δ), we use
binary search to find the largest knot less than δ. This
tells us which line is maximal for this δ. We then eval-
uate only the maximal line at δ, so that evaluating
V (s, ·) takes O(log |∆(V (s, ·))|) time, i.e. the time for
the cost of the search, rather than the O(|∆(V (s, ·))|)
time it would take to maximize over all lines at δ.

3.2. Expectation

We now demonstrate how to efficiently compute a
spline-representation of QT−1(s, a, δ) = rT−1(s, a, δ)+
Es′|s,a[VT (s′, δ)] using the spline-representation of VT .
To do so, we must evaluate expectations of VT over
sets of possible future states.

Consider a two-state example where we take the expec-

0.2

0.6

0.7

0 0.25 0.5 0.75 1

0.2

0.5

0.8

V−function: Max−Of−Lines Representation

δ

(1
 −

 δ
)

R
0
 +

 δ
 R

1

0.5

0.8

0 0.25 0.5 0.75 1

0.6

0.7

V−function: Max−Of−Lines Representation

δ

(1
 −

 δ
)

R
0
 +

 δ
 R

1

0.35

0.5
0.55
0.6

0.7
0.75

0 0.25 0.5 0.75 1

0.4
0.45

0.55
0.6

0.7
0.75

Mean V−function: Max−Of−Lines Representation

δ

(1
 −

 δ
)

R
0
 +

 δ
 R

1

(a) (b) (c)

Figure 2. Computing expectations using unions of spline-
representations. Graphs (a) and (b) show value functions
in terms of δ at two different states. Graph (c) shows the
expected value function if the two states are each reached
with probability 0.5.

tation Es′|s,a[VT (s′, δ)]. Suppose there are two reach-
able states s′1 and s′2, and that the probability of ar-
riving in state s′i is given by θi. Since each VT (s′i, δ) is
linear over the intervals between its own knots, these
two functions are simultaneously linear over the in-
tervals between ∆(VT (s′1, ·)) ∪∆(VT (s′2, ·)), and their
average is linear over the same intervals. Therefore
this expectation is itself a piecewise linear function of
δ with knot-list ∆(VT (s′1, ·))∪∆(VT (s′2, ·)), and we can
compute its spline-representation by constructing the
value-list for Es′|s,a[VT (s′, δ)]. The new value-list is[∑

i

θiVT (s′i, δ) : δ ∈ ∆(VT (s′1, ·)) ∪∆(VT (s′2, ·))

]
.

(3)
Let di = |∆(VT (s′i, ·))|. This construction uses O(d1 +
d2) space and requires O(d1 + d2) evaluations of VT .

We contrast this with the approach of Barrett and
Narayanan (2008). The expectation can also be com-
puted using the point-based representation in Fig-
ure 1(b): Let Ψi be the set of points in the point-
based representation of V (s′i, ·). One can compute an
expected value function by constructing a set of points

{(θ1a1, θ1b1) + (θ2a2, θ2b2)}
s.t. (a1, b1) ∈ Ψ1, (a2, b2) ∈ Ψ2

(4)

and then taking the upper-right portion of the convex
hull of this set. Recovering the knot-list and value-list
will result in exactly the same function as the method
described above. Barrett and Narayanan (2008) ad-
vocate this procedure and prove its correctness; how-
ever, they note that the set given in (4) has |Ψ1||Ψ2|
points that must be constructed and fed into the con-
vex hull algorithm. Since di = |Ψi|+ 1, computing the
expectation in this way will take O(d1d2) space and
O(d1d2 log d1d2) time, which is much less efficient than
our O(d1 + d2) spline-representation based approach.

Efficient RL with Multiple Reward Functions for RCT Analysis

3.3. Value Backups for t < T − 1

The maximization procedure in Section 3.1 relies on
the linearity of QT (s, a, ·). However, for t < T ,
Qt(s, a, ·) is non-linear in general. We now show how
to compute Vt and Qt from Vt+1 by decomposing
Qt(s, a, ·) into linear pieces and applying the expecta-
tion and maximization operations to each piece. Recall

Qt(s, a, δ) = rt(s, a, δ) + Es′|s,a[Vt+1(s′, δ)]. (5)

For a fixed state s and action a at time T , we have
shown by construction that Es′|s,a[VT (s′, ·)] is con-
vex and piecewise linear when we have discrete states.
By definition, rt(s, a, δ) is linear in δ for all s, a, t.
Thus their positive-weighted sum, i.e. QT−1, is con-
vex and piecewise linear in δ. It follows by induction
that Qt(s, a, δ) is convex piecewise linear in δ for all
t ∈ 1, ..., T . To compute Qt from Vt+1, we first iden-
tify the knots in Es′|s,a[Vt+1(s′, δ)] and store them;
this is done in the same way as for t + 1 = T . We
then compute the sum of the expected future value
plus the immediate expected reward evaluated at each
of the stored knots. (The immediate expected reward
is linear in δ and so does not contribute additional
knots.) To compute Vt(s, ·) = maxj Q(s, aj , ·), we take
the maximum over actions of these piecewise linear
Q-functions using Algorithm 2. First, we decompose
the problem of finding maxj Qt(s, a

j , ·) for δ ∈ [0, 1]
into sub-problems of finding maxj Qt(s, a

j , ·) over in-
tervals of δ where we know the Qt(s, a

j , ·) are simul-
taneously linear. The ends of these intervals are given
by
⋃
j ∆(Qt(s, a

j , ·)). Next, we apply the convex hull
algorithm to each of these intervals to recover any ad-
ditional knots in maxiQt(s, a

j , ·).

The full backup procedure is described in Algorithm 1.
In the case where the state transition model of
the MDP is not known, note that we can estimate
P (s′|s, a) from data and the algorithm remains un-
changed. Also, in practice, we can avoid running the
convex hull algorithm over every interval by check-
ing each interval’s end points: If for some j we find
that Qt(s, a

j , ·) is maximal at both ends of an in-
terval over which the Qt(s, a

j , ·) are all linear, then
maxj Qt(s, a

j , ·) has no knots inside the interval.

3.4. Complexity of Qt(s, a, ·) and Vt(s, ·)

Suppose there are |S| states and |A| actions. For any
fixed s and a, the final Q-function QT (s, a, ·) has 2
knots, δ = 0 and δ = 1. Applying Algorithm 2 to
these functions generates at most |A| − 1 new internal
knots, and therefore VT (s, ·) has at most (|A| − 1) + 2
knots. To compute QT−1(s, a, ·), we take the expecta-
tion of VT (s, ·) over future states. Since V (s, ·) might

Algorithm 1 Value Backup - Finite State Space

/* A
∪← B means A← A ∪B */

∀(s, δ), VT+1(s, δ) , 0. ∀s, ∆(VT+1(s, ·)) , {0, 1}.
for t = T downto 1 do

for all s ∈ S do
for all a ∈ A do

∆(Qt(s, a, ·))← {}
for all s′ ∈ S do

∆(Qt(s, a, ·))
∪← ∆(Vt+1(s′, ·))

end for
for all δ ∈ ∆(Q(s, a, ·)) do
Qt(s, a, δ)← r(s, a, δ) +∑

s′ P (s′|s, a) · Vt+1(s′, δ)
end for

end for
Compute ∆(Vt(s, ·)) by applying Algorithm 2
to Qt(s, a, ·), a ∈ A

end for
end for

Algorithm 2 Max of Convex Piecewise Linear Fns.

/* A
∪← B means A← A ∪B */

input Convex piecewise linear functions
fi(·), i = 1..k defined on [δ0, δ1].

∆all =
⋃k
i=1 ∆(fi(·))

∆out = ∆all

for i = 2 to |∆all| do
if argmaxj fj(∆

all
i−1) 6= argmaxj fj(∆

all
i) then

∆out ∪← ∆(maxj fj(δ), δ ∈ (∆all
i−i,∆

all
i))

end if
end for

have different internal knots for every s, QT−1(s, a, ·)
may have as many as |S|(|A| − 1) + 2 knots. However,
for a fixed s, these knots will be the same for all a.
Thus, computing VT−1(s, ·) using Algorithm 2 adds at
most |A| − 1 new knots between each pair of existing
knots, for a total of (|A| − 1|)(|S|(|A| − 1) + 1) + 2. In
general, Qt(s, a, ·) may have O(|S|T−t|A|T−t) knots,
and Vt(s, ·) may have O(|S|T−t|A|(T−t)+1) knots.

To compute the expectation Es′|s,a[Vt+1(s′, δ)] at time

t, our approach requires O(|S|T−t|A|(T−t)+1) for each
state, for a total of O(|S|(T−t)+1|A|(T−t)+1) time. In
contrast, the Barrett & Narayanan approach requires
O(|S|2·(T−t)+1|A|2·(T−t)+1 log |S|2·(T−t)+1|A|2·(T−t)+1)
for each of log2 |S| pairs of piecewise linear functions.

3.5. Identifying Non-Dominated Actions

We have shown how to exactly represent the V and Q
functions for all s, a, and δ at all time points when

Efficient RL with Multiple Reward Functions for RCT Analysis

states are discrete, and we have shown how to identify
all actions that are optimal for some δ at a particular s.
This representation allows us to identify which actions
are non-dominated for any δ by enumerating s.

4. Value Functions for All Tradeoffs:
Linear Function Approximation

When analyzing multistage clinical trial data, assum-
ing a small or finite state space is unreasonable. For
example, patient observations will be many-valued if
they come from a survey instrument that measures
symptom severity, or real-valued if they come from a
lab test that measures an enzyme level. Furthermore,
we typically have a limited number of trajectories, and
we therefore need to generalize across states in order to
estimate state-action values without overfitting. Here,
we demonstrate how our previously developed algo-
rithms for value backups over all tradeoffs can be ex-
tended to the case where we have a continuous state
variable and a value function estimated using linear
value function approximation. We also show how to
efficiently identify all non-dominated actions in this
setting. Again, we begin by considering the value at
time T , which has the simplest form, and later describe
how to compute value functions at earlier timepoints.

Suppose that rT (s, a, 0) and rT (s, a, 1) are each linear
functions of s. At time T , from (1), we have

QT (s, a, δ) = (1−δ)·(βaT00 +βaT01 s)+δ·(βaT10 +βaT11 s) (6)

where the coefficients βaT00 , β
aT
01 , β

aT
10 , β

aT
11 define the

state-action value function at time T . For each ac-
tion, QT (·, a, ·) is bilinear in s and δ, and VT (·, ·) =
maxaQT (·, a, ·) is piecewise bilinear in s and δ.

Recall we have a set of N trajectories of the form

si1, a
i
1, r

(0)i
1 , r

(1)i
1 , si2, a

i
2, r

(0)i
2 , r

(1)i
2 , ..., siT , a

i
T , r

(0)i
T , r

(1)i
T .

To estimate QT (s, a, 0) and QT (s, a, 1) using ordinary
least-squares regression, we find the Na

T trajectories
in our dataset where aT = a, and we construct a
design matrix and target vectors

Xa
T =


1 s1T
1 s2T
...

...

1 s
Na

T

T

 , ra,(j)T =


r
(j)1
T

r
(j)2
T
...

r
(j)Na

T

T

 (7)

for j = 0 and j = 1. We then estimate parameters

[β̂aT00 , β̂
aT
01]T = (Xa

T
TXa

T)−1Xa
T
Tr
a,(0)
T (8)

[β̂aT10 , β̂
aT
11]T = (Xa

T
TXa

T)−1Xa
T
Tr
a,(1)
T . (9)

These estimated parameters are then substituted into
definition (6), giving Q̂T (s, a, 0) and Q̂T (s, a, 1). To

construct any other estimate Q̂T (s, a, δ), we could con-

struct a scalar reward using r
(0)
T , r

(1)
T , and δ, and solve

[β̂aTδ0 , β̂
aT
δ1]T = (Xa

T
TXa

T)−1Xa
T
T((1− δ)r(0)T + δr

(1)
T)
(10)

= (1− δ)[β̂aT10 , β̂aT11]T + δ[β̂aT10 , β̂
aT
11]T.

(11)

Thus we need to solve for the regression coefficients
only at δ = 0 and δ = 1, after which we can produce
Q̂T (s, a, δ) for any δ by combining these coefficients.
Therefore, for t = T , it is straightforward to exactly
solve for the Q̂T we would estimate for every state s
and every tradeoff δ simultaneously.

Figure 3. Diagram of the regions in (s, δ) space where dif-
ferent actions are optimal at time T . In this example, the
state space is {s ∈ [−6, 6]}.

4.1. Maximization

For any fixed value of s and any action a, Q̂T (s, a, δ) is
a linear function of δ, and we can use the convex hull
method to identify the actions that maximize value,
as well as to recover the knots in the piecewise linear
V̂T (s, ·). Figure 3 is an illustration of the pieces of a
hypothetical V̂T that is a maximization over 10 actions.
Each number in the figure marks the region where that
action is optimal at time T . For example, a vertical
slice at s = −4 of the value function has three linear
pieces where actions 10, 1, and 7 are optimal.

Whereas in the discrete case we represent VT (s, ·) sep-
arately for each nominal state s in the MDP, in the
continuous case we represent V̂T (s, ·) for each observed

Efficient RL with Multiple Reward Functions for RCT Analysis

state s1T , ..., s
N
T , i.e. we represent a one-dimensional

vertical slice of the value function for each of the siT .
For i ∈ 1, ..., N , we apply Algorithm 2 to construct a
spline-representation for V̂T (siT , ·).

4.2. Regression of Value on s

At stage T − 1, the parameters of our estimate
Q̂T−1(s, a, δ) are formed as follows:

[β̂
a(T−1)
δ0 , β̂

a(T−1)
δ1]T = (Xa

T−1
TXa

T−1)−1Xa
T−1

Ty
a,(δ)
T−1
(12)

where

y
a,(δ)
t = ((1− δ)ra,(0)t + δr

a,(1)
t) + v̂at+1(δ) (13)

and

v̂at (δ) =


V̂t(s

1
t , δ)

V̂t(s
2
t , δ)
...

V̂t(s
Na

t−1

t , δ)

 (14)

for t ∈ {1, ..., T}. Here the siT are taken from trajec-
tories that match aiT−1 = a. The components of the

vector y
a,(δ)
(T−1) are not linear in δ, so for t < T , solv-

ing the regression only for δ = 0 and δ = 1 does not
completely determine Q̂t(s, a, ·). However, the com-

ponents of y
a,(δ)
(T−1) are each piecewise linear in δ. We

determine the intervals over which the components are
simultaneously linear and then explicitly represent the
state-value function at the endpoints of these intervals.
This procedure is analogous to that of Section 3.2, but
in the continuous case, expectation is replaced by re-
gression. The output is a list of knots together with a

list of parameter pairs (β
a(T−1)
δ0 , β

a(T−1)
δ1), each given

by (Xa
(T−1)

TX
a(T−1)
(T−1))−1Xa

(T−1)
Ty

a,(δ)
(T−1).

4.3. Value Backups for t < T − 1

Section 4.2 relies on the linearity of Q̂T (s, a, ·). How-
ever, for t < T , Q̂t(s, a, ·) is non-linear in general. We
now demonstrate how to compute V̂t and Q̂t from V̂t+1

when t < T − 1. To compute Q̂t(s, a, δ) from V̂t+1, we
first identify the intervals of δ where the components

of ŷ
a,(δ)
t are simultaneously linear and store them; this

is done in the same way as for t + 1 = T . We then

compute the regression coefficients of y
a,(δ)
t on Xa

t as
in (12) for each δ in the stored knots, resulting in a
piecewise bilinear function Q̂t(s, a, δ). To then com-
pute V̂t(s

i
t, ·) = maxj Q̂t(s

i
t, a

j , ·) for each sit in our
dataset, we apply Algorithm 2 for each sit. This entire
procedure is described in Algorithm 3.

Algorithm 3 Value Backup - Infinite State Space

∀(s, δ), V̂T+1(s, δ) , 0. ∀s, ∆(V̂T+1(s, ·)) , {0, 1}.
for t = T downto 1 do

for all a ∈ A do
∆Q̂t
a ← {}

for all (st, at, st+1) ∈ D s.t. at = a do

∆Q̂t
a ← ∆Q̂t

a ∪∆(V̂t+1(st+1, ·))
end for
for all δ ∈ ∆Q̂t

a do

y
a,(δ)
t = ((1− δ)ra,(0)t + δr

a,(1)
t) + v̂at+1(δ)

[β̂atδ0, β̂
at
δ1]T = (Xa

t
TXa

t)−1Xa
t
Ty

a,(δ)
t

end for
end for
for all sit ∈ D do

Compute ∆(V̂t(s
i
t, ·)) by Algorithm 2

end for
end for

4.4. Non-convexity of Q̂t(·, aj , ·)

Note that for t < T , the resulting Q̂t(·, aj , ·) are not
necessarily convex in δ. In the discrete case, we know
by construction that the QT (s, a, ·) are linear and that
therefore VT (s, ·) is convex and piecewise linear. It
follows that each QT−1(s, a, ·) is also convex because
each is a positive weighted sum of the convex VT (s, ·).
In the regression case, the Q̂T−1(s, a, ·) are a weighted

sum of the y
a,(δ)
T−1 which depend on V̂T (siT , ·):

Q̂T−1(s, a, ·) = [1, s] · (Xa
T−1

TXa
T−1)−1Xa

T−1
Ty

a,(δ)
T−1

(15)

= w(s)T · ya,(δ)T−1 . (16)

Here, w(s) is a vector that depends on s and on
the data, but does it not depend on δ. Elements of
w(s) can be negative. Therefore, although each ele-

ment of y
a,(δ)
T−1 is convex and piecewise linear in δ, the

Q̂t(s, a, ·) may not be convex for t < T . This non-
convexity means that both the algorithm by Barrett
& Narayanan (2008), as well as important algorithms
from the POMDP literature (e.g. Pineau et al. 2003)
that operate on convex piecewise linear value func-
tions, are not directly applicable in our setting.

4.5. Complexity of Q̂t(s, a, ·) and V̂t(s, ·)

Suppose there are N trajectories and |A| actions.
The terminal estimated Q-function Q̂T (s, a, ·) has two
knots, one at δ = 0 and one at δ = 1. The ter-
minal value function V̂T (siT , ·) is constructed at N

points by applying Algorithm 2 to the Q̂T (siT , a, ·)
for each observed state s1T , s

2
T , ..., s

Na
T

T . Each result-

Efficient RL with Multiple Reward Functions for RCT Analysis

Table 1. Knot counts and timings for computing Q̂(s, a, ·).
Results are over 1000 randomly generated datasets using
N = 1290, |A| = 3, T = 3.

Min Med Max Bound

Knots in Q̂2 687 790 910 3870

Knots in Q̂1 2814 3160 3916 ≈ 1.5 · 107

Time (s) for Q̂2 3.17 3.26 3.44 -

Time (s) for Q̂1 5.46 5.73 6.55 -

ing V̂T (siT , ·) has at most |A| − 1 new internal knots,
and therefore at most (|A| − 1) + 2 knots. To com-
pute Q̂T−1(·, a, ·), we use regression with targets con-
structed from V̂T (siT , ·), where the observed states
siT come from tuples where aiT−1 = a. There are

Na
T−1 such observed states. Thus each Q̂T−1(·, a, ·)

has at most Na
T−1(|A| − 1) + 2 knots. The union

of their knot-lists has (
∑
a∈AN

a
T−1(|A| − 1)) + 2 =

N(|A| − 1) + 2 knots. Computing V̂T−1(siT−1, ·) us-
ing Algorithm 2 adds at most |A| − 1 new knots be-
tween each pair of knots in the union, for a total of
(|A|−1|)(N(|A|−1)+1)+2 knots. In general, Q̂t(s, a, ·)
may have up to O(NT−t|A|T−t) knots, and V̂t(s, ·)
may have up to O(NT−t|A|(T−t)+1) knots. To com-
pute the expectation described in Section 4.2 at time
t, our approach requires O(NT−t|A|(T−t)+1) for each
trajectory, for a total of O(N (T−t)+1|A|(T−t)+1) time.

To show that our approach is computationally prac-
tical, we construct an example that is representa-
tive of the clinical trial data we encounter. We use
1290 trajectories across three timepoints, and three
actions per time point. This mimics a simplified ver-
sion of STAR*D, of one of the largest randomized trial
datasets currently available (Rush et al., 2004). Ta-
ble 1 shows the number of knots and the computation
time to represent Q̂(s, a, ·). Experiments were run on
1000 simulated datasets using Matlab 2009a on an 8-
processor 3.0 GHz Xeon machine. In our example, the
actual number of knots needed to represent a single
Q̂t(s, a, ·) was much lower than the worst case bound.
Computation time was on the order of seconds and
thus feasible for our purposes.

4.6. Identifying Non-Dominated Actions

We now show how to identify all of the non-dominated
actions in the linear function approximation setting.
In our Figure 3 example, only actions 1, 4, 6, 7, 8,
9, and 10 are represented in the diagram because it
happens that these are the only actions that are non-
dominated, i.e. that are estimated to be optimal for
some (s, δ) pair. Actions 2, 3, and 5 were not estimated
to be optimal for any combination of s and δ. We begin

by considering sets of dominated and non-dominated
actions at time T . (To save space we will not always
write the T subscript.) To analytically identify these
sets of actions, we analyze the boundaries between the
bilinear regions where one action has higher value than
another. These boundaries occur where QT (·, a1, ·) =
QT (·, a2, ·) for various actions a1 and a2, i.e. where

(1− δ) · (βa100 + βa101s) + δ · (βa110 + βa111s) =

(1− δ) · (βa200 + βa201s) + δ · (βa210 + βa211s)
(17)

which describes the hyperbola

δ =
(βa200 + βa201s)− (βa100 + βa101s)[

(βa110 + βa111s)− (βa100 + βa101s) +

(βa200 + βa201s)− (βa210 + βa211s)

] . (18)

Along these boundaries, “triple-points” occur at (s, δ)
points where three or more actions are simultaneously
optimal. Consider three actions a1, a2, a3. The triple
points for these actions occur at s values given by

as2 + bs+ c = 0 (19)

where

a = (βa201 − β
a1
01)(βa111 − β

a1
01 + βa311 − β

a3
01)−

(βa301 − β
a1
01)(βa111 − β

a1
01 + βa211 − β

a2
01)

b = (βa201 − β
a1
01)(βa110 − β

a1
00 + βa310 − β

a3
00)−

(βa301 − β
a1
01)(βa110 − β

a1
00 + βa210 − β

a2
00)

c = (βa200 − β
a1
00)(βa110 − β

a1
00 + βa310 − β

a3
00)−

(βa300 − β
a1
00)(βa110 − β

a1
00 + βa210 − β

a2
00)

.

After solving for (19) for s, we can substitute the re-
sult into (18) to recover the corresponding δ. At the
solution points, either all of a1, a2 and a3 are optimal,
or none of them are. Knowing the location of these
triple-points is useful for determining if an action is
dominated for all (s, δ), as we now demonstrate.

Lemma 1. If action a is optimal at time T for some
point (s, δ) but is not optimal for any (s, δ) on the
boundary of the domain, then a is optimal for some
(s, δ) that is a triple-point.

Proof. Suppose a is optimal for some (s, δ) in the do-
main but is not optimal for any (s, δ) on the boundary
of the domain. Further suppose that a is not optimal
at any triple-point. Then the region where a is opti-
mal must be completely enclosed by the region where
a single other action a′ is optimal. However, by Equa-
tion (18), the boundary between the regions where a is
superior to a′ and vice-versa has infinite extent in both
s and δ, and therefore must intersect the boundary of
the domain of (s, δ), since a is optimal for some (s, δ)
by assumption. Thus we have a contradiction.

Efficient RL with Multiple Reward Functions for RCT Analysis

From Lemma 1 we know that to find all actions that
are optimal for some (s, δ) we need only check the
boundaries and the triple points. The boundaries can
be checked using Algorithm 2. (Note that because
V (s, ·) is bilinear in δ and in s, we can also use Al-
gorithm 2 to identify for any fixed δ the actions that
are optimal for some s.) We can then enumerate the(|A|

3

)
triple-points and check them to detect any regions

that do not intersect a the boundary of the domain,
like that of action 1 in Figure 3 where we have identi-
fied the triple-points with white dots. This procedure
reveals all actions that are optimal for some (s, δ), and
thereby identifies any actions that are not optimal for
any (s, δ). Checking the

(
10
3

)
intersections in the ex-

ample takes approximately 0.06 seconds using Matlab
2009b on a 3.0 GHz Xeon processor. While we have
described the process for bilinear functions, we can im-
mediately extend this algorithm for piecewise bilinear
functions by applying it between pairs of knots.

5. Extensions to Higher Dimensions

Although the presented algorithms are sufficient for
handling the quality and quantity of data often found
in the analysis of randomized clinical trials, it is inter-
esting to consider extending the approaches to higher
dimensions. Extending Algorithm 3 to accommodate
more than one state variable is trivial; each regres-
sion simply results in more β̂ coefficients at each knot.
Accommodating more reward functions will be more
challenging. In our setting, Q̂t(s, a, ·) is piecewise lin-
ear but not convex in δ. For d reward functions and
tradeoffs δ = δ1, ..., δd on the (d − 1)-simplex, we will
represent the (d − 1)-dimensional regions over which
Q̂t(s, a, ·) is linear, along with its value within each
region. For d = 3 we anticipate using triangulation
algorithms that require O(n log n) time for n knots.

We conjecture that an analogue of Lemma 1 holds
in higher dimensions, and that identifying all non-
dominated actions for more state variables and/or re-
ward functions will require computing intersections of
hyperboloids in higher dimensions. For p state vari-
ables and d reward functions, we would need to find
all points where p+ d actions are simultaneously opti-
mal. This will not have a closed-form solution, and will
require numerical methods for zeros of polynomials.

6. Conclusion

Data analysis of multi-stage randomized clinical trials
is challenging because the priorities of future users of
the analysis are unknown. A policy learned for pa-
tients who desire very low symptom levels may not

be useful for patients who prefer to have few side-
effects. We have shown how uncertainty about these
future priorities can be expressed as a set of possi-
ble MDPs that are defined by a convex set of re-
ward functions. We discussed algorithms for simul-
taneously solving all MDPs in this set. We intro-
duced a new algorithm that is asymptotically more
time- and space-efficient than previous approaches in
the discrete-state case, and showed how it can be
extended to the continuous-state setting using linear
function approximation. We also gave an algorithm
for finding the set of all non-dominated actions in the
continuous-state setting. This novel extension is ap-
propriate for environments where we must estimate
state-action value functions from data, as when ana-
lyzing randomized controlled trials.

References

Barrett, L. and Narayanan, S. Learning all optimal
policies with multiple criteria. In Proceedings of the
25th International Conference on Machine Learning
(ICML 2008), 2008.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic
Programming, chapter 2.1, pp. 12. Athena Scien-
tific, 1996.

Ehrgott, Matthias. Multicriteria Optimization, chap-
ter 3. Springer, second edition, 2005.

Murphy, S. A., Oslin, S. W., Rush, A. John, and
Zhu, J. Methodological challenges in constructing
effective treatment sequences for chronic psychiatric
disorders. Neuropsychopharmacology, 32:257–262,
2007.

Pineau, J., Gordon, G., and Thrun, S. Point-based
value iteration: An anytime algorithm for POMDPs.
In International Joint Conference on Artificial In-
telligence (IJCAI), pp. 1025–1032, 2003.

Pineau, J., Bellemare, M. G., Rush, A. J., Ghizaru,
A., and Murphy, S. A. Constructing evidence-based
treatment strategies using methods from computer
science. Drug and Alcohol Dependence, 88(Suppl 2):
S52–S60, May 2007.

Rush, A. J., Fava, M., Wisniewski, S. R., Lavori,
P. W., Trivedi, M., Sackeim, H. A., and et al. Se-
quenced treatment alternatives to relieve depression
(STAR*D): rationale and design. Controlled Clini-
cal Trials, 25(1):119–42, Feb 2004.

Zhao, Y., Kosorok, M. R., and Zeng, D. Reinforcement
learning design for cancer clinical trials. Statistics
in Medicine, 28:3294–3315, 2009.

