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Abstract

Extracting a map from a stream of experience is a key prob-
lem in robotics and artificial intelligence in general. We pro-
pose a technique, called subjective mapping, that seeks to
learn a fully specified predictive model, or map, without the
need for expert provided models of the robot’s motion and
sensor apparatus. We briefly overview the recent advance-
ments presented elsewhere (ICML, IJCAI, and ISRR) that
make this possible, examine its significance in relationship
to other developments in the field, and outline open issues
that remain to be addressed.

Introduction
Mapping is a foundational problem of robotics. It com-
monly involves estimating the position of obstacles in the
environment through the use of a range sensor, or land-
marks through a vision-based sensor. In its most general
form, though, mapping can be viewed as the construction of
a predictive model of the environment. For example, maps
containing the positions of obstacles allow a robot to pre-
dict future range readings as it navigates. Using a map with
landmarks, a robot can predict that a sequence of actions
will result in some target landmark being visible with high
probability. When viewed in this general form, mapping is a
foundational problem for the entire AI enterprise.

Recent advancements in robotic mapping have advocated
a probabilistic approach to the problem (Thrun, Burgard, &
Fox 2005), where uncertainty is represented explicitly with
probability distributions. In this paradigm, a complete pre-
dictive model is specified through two probability distribu-
tions: a motion model and a sensor model. Let xt be the
robot’s state at time t, at be the robot’s action leading to
t, and zt its observation at t. The motion model speci-
fies the probability distribution p(xt|xt−1, at) and the sen-
sor model p(zt|xt). The traditional formulation of mapping
has assumed that much of these models are already specified
and known a priori. This has proven to be very successful
for many robot platforms and environments where rigorous
models are well known. For the general AI problem, though,
such nearly complete models are not likely to be available.
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We propose an approach to mapping which requires no
a priori knowledge of models. This short paper will out-
line this approach and the recently developed techniques that
make it possible, as well as examine its significance for the
broader artificial intelligence endeavor. We first introduce
the basic principles of subjective mapping. We then briefly
discuss the recently developed algorithm called action re-
specting embedding (Bowling, Ghodsi, & Wilkinson 2005),
and its extensions (Wilkinson, Bowling, & Ghodsi 2005;
Bowling et al. 2005), which form the crux of the subjec-
tive mapping approaching. We then discuss how subjective
mapping relates to other recent advances in artificial intel-
ligence. We finally outline what open issues remain to be
addressed.

Subjective Mapping
Consider the motion and sensor models described above.
These models can be seen as connecting the subjective quan-
tities of actions and observations to the robot’s state repre-
sentation, which is traditionally an objective quantity. For
example, robot state may be defined as the position (x,y)
and orientation (θ) from a fixed origin with units in me-
ters and radians. We call such a representation objective
because it is independent of the robot itself, i.e., regardless
of whether the robot is differential drive, omnidirectional,
legged, equipped with sonar, laser, or camera. The motion
model, then, provides the connection between the robot’s
subjective actions, e.g., wheel velocities, and their effect on
position and orientation. Likewise, the sensor model pro-
vides the connection between the robot’s position and its
subjective observations, e.g., range readings from a sonar
or camera images.

The goal of subjective mapping is to extract fully specified
motion and sensor models only from a stream of experience.
This is accomplished by removing the requirement of an ob-
jective state representation. In fact, a key problem in sub-
jective mapping is extracting an appropriate representation
from a stream of subjective experience. It is clear that any
extracted representation won’t correspond to objective quan-
tities such as meters, since it is the expert provided models,
which provided such a translation, that are being replaced.
Such a subjective representation, though, can still form the
basis of fully specified motion and sensor models and so de-
fine a complete predictive model.



Good Representations. Before discussing a technique for
extracting a state representation from experience, we first
examine the properties of a good representation. Or, why
is (x,y, θ) such a commonly chosen objective representa-
tion? We propose that three key components are desirable in
a representation. First, it should be low dimensional. This
is desirable both from a computational viewpoint and that
of Occam’s razor, suggesting simpler models are more of-
ten correct. Second, it should be a sufficient representation
for describing the robot’s observations. Hence, it is a nat-
ural representation for defining a sensor model. Third, the
robot’s actions in the representation should correspond to
simple transformations. Hence, it is a natural representation
for the motion model.

Notice that the first two desirable properties are exactly
the goals of the well-studied problem of dimensionality re-
duction. In fact, dimensionality reduction has become a
common preprocessing step of high-dimensional sensors in
robotics. Dimensionality reduction alone, though, fails to
find representations where actions are simple transforma-
tions making the result a poor representation for mapping.
We have proposed a new technique for dimensionality re-
duction, which respects actions in order to extract a repre-
sentation meeting all three properties of good representa-
tions. We very briefly describe this result in the next section
along with details of how the representation can be used as
the basis for constructing motion and sensor models.

Action Respecting Embedding
Suppose we have a stream of experience from a robot: ob-
servations, z1 . . . , zn, and associated actions, a2, . . . , an. In
this work, it is assumed that actions come from a small
discrete set of uninterpreted labels. The goal is to find
a low dimensional representation of zi, which we’ll write
Φ(zi) ≡ xi for which actions correspond to simple trans-
formations. In other words, we want to extract a useful map
representation, based on the above principles, strictly from a
stream of experience.

Recently, nonlinear dimensionality reduction techniques
have been successfully used to map a high-dimensional
dataset into a smaller dimensional space. Semidefinite Em-
bedding (SDE) is one such technique (Weinberger & Saul
2004). SDE learns a kernel matrix, which represents a non-
linear projection of the input data into a more linearly dis-
tributed representation. It then uses Kernel PCA, a gen-
eralization of principle components analysis using feature
spaces represented by kernels, to extract a low-dimensional
representation of the data (Schölkopf & Smola 2002). The
kernel matrix K is learned in SDE by solving a semidefinite
program with a simple set of constraints. The most impor-
tant constraints encode the common requirement in dimen-
sionality reduction that the non-linear embedding should
preserve local distances. In other words, nearby points in
the original input space should remain nearby in the result-
ing feature representation. The optimization maximizes the
trace of K, i.e., the variance of the learned feature represen-
tation, which should minimize its dimensionality.

SDE, like other dimensionality reduction techniques, ig-
nores our action labels and so won’t necessarily find a low-

Table 1: Algorithm: Action Respecting Embedding (ARE).

Algorithm: ARE(|| · ||, (z1, . . . , zn), (a1, . . . , an−1))

Construct neighbors, N , with local metric || · ||.

Maximize Tr(K) subject to K � 0,
P

ij Kij = 0,
∀ij Nij > 0 ∨ [NT N ]ij > 0 ⇒

Kii − 2Kij + Kjj ≤ ||zi − zj ||2 , and
∀ij ai = aj ⇒

K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1) =
Kii − 2Kij + Kjj

Run Kernel PCA with learned kernel, K.

dimensional space where actions have a simple interpreta-
tion. The recent Action Respecting Embedding (ARE) algo-
rithm extends SDE to make use of the action labels (Bowl-
ing, Ghodsi, & Wilkinson 2005). The ARE approach is to
constrain a semidefinite optimization to only consider rep-
resentations where actions correspond to simple transforma-
tions. In particular, the actions in the chosen representation
must be distance-preserving transformations: those consist-
ing only of rotation and translation. Therefore, for any two
inputs, zi and zj , the same action from these inputs must pre-
serve their distance in the learned feature space. For action
a, let fa be the transformation corresponding to that action
in the chosen representation. For fa to be distance preserv-
ing in the representation defined by Φ the following must
hold,
∀i, j ||fa(Φ(zi))− fa(Φ(zj))|| = ||Φ(zi)−Φ(zj)||. (1)

Now, consider the case where ai = aj = a. Then,
fa(Φ(zi)) = Φ(zi+1) and fa(Φ(zj)) = Φ(zj+1), and Con-
straint 1 becomes,

||Φ(zi+1)− Φ(zj+1)|| = ||Φ(zi)− Φ(zj)||. (2)
In terms of the kernel matrix, this can be written as:

∀i, j ai = aj ⇒
K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1) =
Kii − 2Kij + Kjj (3)

Notice that this constraint is linear in the entries of the ker-
nel matrix. ARE simply adds Constraint 3 into SDE’s usual
constraints to arrive at the optimization and algorithm shown
in Table .

Results. Figure 1 shows one example of an ARE discov-
ered representation along with the representation extracted
with SDE. The domain used is IMAGEBOT, where a robot
is moving an observable image patch around a larger im-
age. The robot’s trajectory in objective coordinates corre-
sponds to an “A” shape, which is largely mirrored in the ARE
representation. ARE is also able to determine that pairs of
actions are inverses and the pairs are orthogonal, moving
along independent dimensions. Dimensionality reduction
alone extracted a topologically correct representation, but
it’s clear that finding a model of the robot’s actions in this
space would be nigh impossible. The original work should
be consulted for complete details and further results (Bowl-
ing, Ghodsi, & Wilkinson 2005).
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Figure 1: Results of Action Respecting Embedding (ARE)
and Semidefinite Embedding (SDE) on extracting a repre-
sentation from a single “A” shaped trajectory.

Extensions. ARE takes a stream of subjective experience
and extracts a representation appropriate for mapping, which
is implicitly encoded in the extracted trajectory, x1, . . . , xn.
A fully specified model requires motion and sensor models
that make use of this representation. In an extension of the
original work, we showed how the action transformations
could be extracted by solving an extended orthonormal Pro-
crustes problem (Wilkinson, Bowling, & Ghodsi 2005). We
also showed how the action models were accurate enough to
allow for planning in the extracted representation. In a sec-
ond extension, we described a procedure for using the trajec-
tory and action transformations to construct a fully specified
probabilistic model, which could then be used for localiza-
tion (Bowling et al. 2005). These past publications should
be consulted for more details and results.

Related Work
We now explore the relationship of this work to other re-
cent developments in robotics and learning. We also briefly
discuss the potential implications for the broader field of AI.

SLAM. Simultaneous localization and mapping (SLAM)
is the problem of tracking both uncertainty in the robot’s
pose as well as uncertainty in the location of obstacles
and landmarks (Thrun, Burgard, & Fox 2005). It is the
quintessential example of objective mapping where the
robot’s state representation is given, along with partially
specified models, i.e., the entire motion model and the sen-
sor’s noise model is commonly considered known. In many
cases, where the robot and environment is well studied and
predictable, this has proven to be a very effective approach.
If the robot’s locomotion or sensing apparatus, or even the
environment, is not known a priori there can be no partially
specified models. Simultaneous localization and mapping
with a completely unknown robot is perhaps the “Grand
SLAM” challenge, and it’s not clear how current objective
mapping approaches could handle the complete absence of
models and remain objective. As the models are provid-
ing the critical connection between subjective and objective
quantities it may, in fact, be impossible.

Predictive Representations of State. New models of dy-
namical systems have recently been proposed in the rein-

forcement learning community (Littman, Sutton, & Singh
2002). Predictive state representations (PSRs) are one
such model for discrete action and observations, where
state is represented as predictions on possible future action-
observation sequences. It has been shown that such rep-
resentations are capable of compactly representing a large
range of systems (Singh, James, & Rudary 2004) and also
can be learned from a stream of interaction with the sys-
tem (Wolfe, James, & Singh 2005).

The goals of PSRs and subjective mapping are very sim-
ilar. Both strive to discover an appropriate state represen-
tation from only subjective experience. Both learn a fully
specified predictive model using the discovered representa-
tion. PSRs, though, are addressing a much more challenging
problem due to an impoverished set of observations: possi-
bly only two discrete observations for a complicated multi-
dimensional state space. In subjective mapping, and robotics
in general, robot sensations are not lacking for distinguish-
able features. Even two seemingly “identical” hallways may
have subtle identifying features in a high-dimensional sen-
sor like a camera (e.g., office numbers, lighting differences,
or wall scuffs). The problem is often more of identifying
salient features in the high-dimensional space, rather than
discovering new features based on future predictions. This
is not to say that state aliasing cannot be handled with the
described subjective mapping approach, which will be dis-
cussed later, but just that it may not be as critical.

Other Areas of AI. Although inspired by the problem of
reducing the amount of expert knowledge required for robot
mapping, the subjective mapping approach is addressing a
fundamental problem of AI. How can an agent extract a
model of the world from only subjective experience? The
reformulation of the problem to one of dimensionality re-
duction opens up a number of possible connections with
other fields of artificial intelligence. In particular, adding
constraints that encode temporal interrelationships is a pow-
erful and general idea. It can break the locality assump-
tions which has been observed to be a limitation with exist-
ing non-linear dimensionality reduction techniques (Bengio
& Monperrus 2005). Many fields that already make use of
techniques for reducing dimensionality, such as natural lan-
guage, bionformatics, or computer vision, may also be able
to benefit from introducing appropriate “action respecting
constraints” on the low dimensional representation.

It would be amiss to neglect mentioning the insightful
work of Pierce and Kuipers’ (1997), which aimed to achieve
a similar goal of mapping without the requirement of expert
provided models. At the lowest level they use an application
of dimensionality reduction to identify the principal compo-
nents of action. Learning in these local spaces are then used
to find homing sequences and path following behaviors that
allow the construction of a global topological map. The sub-
jective mapping approach seeks instead to construct a global
geometric map. Not only is this more aligned with the highly
successful probabilistic robotics paradigm, it also removes
the need for homing sequences to reacquire the robot’s po-
sition to keep location uncertainty local. On the other hand,
the low-level decomposition of the action space might com-



plement the subjective mapping approach very well.

Open Issues
There are a number of open issues that make this work, while
highly promising, admittedly preliminary.

Scalability. The key limitation of the current formula-
tion of subjective mapping is the computational cost of ac-
tion respecting embedding, which is needed to discover the
state representation. Although the ARE optimization is a
semidefinite program and is therefore convex, it is both time
and memory intensive to solve even small problems (i.e.,
with sequences of length one hundred or less) using stan-
dard toolbox solvers. Since convex programming is a very
active area of research in optimization, we can expect the
time complexity to improve in coming years. Even so, it is
still likely efficiency improvements are needed to make ARE
practical for robotic and general AI applications.

A special purpose solver that takes advantage of the in-
herent structure in the constraints is one possibility. Since
the constraints are growing quadratically with the length of
the sequence, a more efficient approach to addressing these
constraints would result in huge gains in efficiency. Rep-
resentation alignment is another possibility making use of
a divide-and-conquer approach. Long trajectories could be
broken into overlapping shorter trajectories, and a represen-
tation discovered for each. A more efficient global optimiza-
tion problem could then be constructed that found a way to
“stitch” the overlapping local representations into a single
consistent global representation.

State Aliasing. As mentioned above, state aliasing is not
as problematic when working with high-dimensional sens-
ing apparatus as is commonly faced in the POMDP or PSR
framework. The subjective mapping optimization, though,
still has the power to handle some amounts of aliasing.
The distance preserving constraints imply that the same ac-
tion from the same state will have the same effect, modulo
noise. If ARE incorrectly collapses two distinct states to-
gether then their future states when taking the same action
sequence must also be the same, even if the associated ob-
servations differ dramatically. Hence, the optimization is
implicitly trading off the penalty in separating two states
with similar observations for the penalty of collapsing two
states with very different observations. Further investigation
is still needed to explore the practicalities of this tradeoff
inherent in the optimization. For example, if state aliasing
is not given a large enough penalty any data stream can be
explained as a single dimensional trajectory through time
where actions have no effect and no state is ever revisited.

Continuous Action Spaces. Currently the constraints
used in ARE require actions to be discrete labels. A more
natural representation of action is as a continuous vec-
tor. Re-encoding the distance preserving constraints of
ARE for continuous actions is non-trivial, but Pierce and
Kuipers’ (1997) work on finding an orthonormal basis for
actions is a promising possibility.

Obstacles and Costs. Although we have described how
a fully specified predictive model can be constructed from

experience, an open issue is how this model can be used.
The common use of a map in robotics is navigation, where
a path, i.e., sequence of actions, is planned to reach some
goal location. Path planning is made difficult by obstacles or
traversal costs for various regions of the state space, which
are detected by local sensors on the robot (e.g., a bump sen-
sor for identifying obstacles, or an energy expenditure mea-
surement.) Since an objective representation is no longer
maintained, it is not obvious how to incorporate these lo-
cal traversal costs sensors into the “map”. As with objective
mapping it is critical that costs are generalized beyond sim-
ple point observations, but subjective spaces will likely have
to rely more heavily on adaptive techniques to learn the ex-
tent of such generalizations.

Conclusion
This paper has given a brief overview of recent develop-
ments toward the goal of subjective mapping, which seeks to
construct predictive models of the world from only subjec-
tive experience. This is a foundational problem for robotics
and artificial intelligence in general. We outlined both con-
nections to other recent developments in the field and open
issues that still need to be addressed.
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