
Scalable Learning in Stochastic Games

Michael Bowling and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh PA, 15213-3891

Abstract

Stochastic games are a general model of interaction between
multiple agents. They have recently been the focus of a great
deal of research in reinforcement learning as they are both
descriptive and have a well-defined Nash equilibrium solu-
tion. Most of this recent work, although very general, has
only been applied to small games with at most hundreds of
states. On the other hand, there are landmark results of learn-
ing being successfully applied to specific large and complex
games such as Checkers and Backgammon. In this paper we
describe a scalable learning algorithm for stochastic games,
that combines three separate ideas from reinforcement learn-
ing into a single algorithm. These ideas are tile coding for
generalization, policy gradient ascent as the basic learning
method, and our previous work on the WoLF (“Win or Learn
Fast”) variable learning rate to encourage convergence. We
apply this algorithm to the intractably sized game-theoretic
card game Goofspiel, showing preliminary results of learn-
ing in self-play. We demonstrate that policy gradient ascent
can learn even in this highly non-stationary problem with si-
multaneous learning. We also show that the WoLF principle
continues to have a converging effect even in large problems
with approximation and generalization.

Introduction
We are interested in the problem of learning in multiagent
environments. One of the main challenges with these en-
vironments is that other agents in the environment may be
learning and adapting as well. These environments are,
therefore, no longer stationary. They violate the Markov
property that traditional single-agent behavior learning re-
lies upon.

The model of stochastic games captures these problems
very well through explicit models of the reward functions
of the other agents and their affects on transitions. They
are also a natural extension of Markov decision processes
(MDPs) to multiple agents and so have attracted interest
from the reinforcement learning community. The prob-
lem of simultaneously finding optimal policies for stochastic
games has been well studied in the field of game theory. The
traditional solution concept is that of Nash equilibria, a pol-
icy for all the players where each is playing optimally with

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

respect to the others. This concept is a powerful solution
for these games even in a learning context, since no agent
could learn a better policy when all the agents are playing
an equilibria.

It is this foundation that has driven much of the re-
cent work in applying reinforcement learning to stochastic
games (Littman 1994; Hu & Wellman 1998; Singh, Kearns,
& Mansour 2000; Littman 2001; Bowling & Veloso 2002a;
Greenwald & Hall 2002). This work has thus far only been
applied to small games with enumerable state and action
spaces. Historically, though, a number of landmark results in
reinforcement learning have looked at learning in particular
stochastic games that are not small nor are the state easily
enumerated. Samuel’s Checkers playing program (Samuel
1967) and Tesauro’s TD-Gammon (Tesauro 1995) are suc-
cessful applications of learning in games with very large
state spaces. Both of these results made generous use of
generalization and approximation, which have not been used
in the more recent work. On the other hand, both TD-
Gammon and Samuel’s Checkers player only used determin-
istic strategies to play competitively, while Nash equilibria
often require stochastic strategies.

We are interested in scaling some of the recent techniques
based on the Nash equilibria concept to games with in-
tractable state spaces. Such a goal is not new. Singh and col-
leagues’ also described future work of applying their simple
gradient techniques to problems with large or infinite state
and action spaces (Singh, Kearns, & Mansour 2000). This
paper examines some initial results in this direction. We first
describe the formal definition of a stochastic game and the
notion of equilibria. We then describe one particular very
large, two-player, zero-sum stochastic game, Goofspiel. Our
learning algorithm is described as the combination of three
ideas from reinforcement learning: tile-coding, policy gra-
dients, and the WoLF principle. We then show results of our
algorithm learning to play Goofspiel with self-play. Finally,
we conclude with some future directions for this work.

Stochastic Games
A stochastic gameis a tuple(n,S,A1...n, T,R1...n), where
n is the number of agents,S is a set of states,Ai is the set of
actions available to agenti (andA is the joint action space
A1×. . .×An), T is a transition functionS×A×S → [0, 1],
andRi is a reward function for theith agentS × A → <.

This looks very similar to the MDP framework except we
have multiple agents selecting actions and the next state and
rewards depend on the joint action of the agents. Another
important difference is that each agent has its own separate
reward function. The goal for each agent is to select actions
in order to maximize its discounted future rewards with dis-
count factorγ.

Stochastic games are a very natural extension of MDPs
to multiple agents. They are also an extension of matrix
games to multiple states. Two example matrix games are
in Figure 1. In these games there are two players; one se-
lects a row and the other selects a column of the matrix. The
entry of the matrix they jointly select determines the pay-
offs. The games in Figure 1 are zero-sum games, so the row
player would receive the payoff in the matrix, and the col-
umn player would receive the negative of that payoff. In the
general case (general-sum games), each player would have
a separate matrix that determines their payoffs.

(
1 −1
−1 1

) (0 −1 1
1 0 −1
−1 1 0

)
Matching Pennies R-P-S

Figure 1: Matching Pennies and Rock-Paper-Scissors matrix
games.

Each state in a stochastic game can be viewed as a matrix
game with the payoffs for each joint action determined by
the matricesRi(s, a). After playing the matrix game and
receiving their payoffs the players are transitioned to another
state (or matrix game) determined by their joint action. We
can see that stochastic games then contain both MDPs and
matrix games as subsets of the framework.

Stochastic Policies. Unlike in single-agent settings, de-
terministic policies in multiagent settings can often be ex-
ploited by the other agents. Consider the matching pen-
nies matrix game as shown in Figure 1. If the column
player were to play either action deterministically, the row
player could win every time. This requires us to consider
mixed strategies and stochastic policies. A stochastic pol-
icy, ρ : S → PD(Ai), is a function that maps states to
mixed strategies, which are probability distributions over the
player’s actions.

Nash Equilibria. Even with the concept of mixed strate-
gies there are still no optimal strategies that are independent
of the other players’ strategies. We can, though, define a no-
tion of best-response. A strategy is abest-responseto the
other players’ strategies if it is optimal given their strategies.
The major advancement that has driven much of the devel-
opment of matrix games, game theory, and even stochastic
games is the notion of a best-response equilibrium, orNash
equilibrium(Nash, Jr. 1950).

A Nash equilibrium is a collection of strategies for each of
the players such that each player’s strategy is a best-response
to the other players’ strategies. So, no player can do better

by changing strategies given that the other players also don’t
change strategies. What makes the notion of equilibrium
compelling is that all matrix games have such an equilib-
rium, possibly having multiple equilibria. Zero-sum, two-
player games, where one player’s payoffs are the negative of
the other, have asingleNash equilibrium.1 In the zero-sum
examples in Figure 1, both games have an equilibrium con-
sisting of each player playing the mixed strategy where all
the actions have equal probability.

The concept of equilibria also extends to stochastic
games. This is a non-trivial result, proven by Shapley (Shap-
ley 1953) for zero-sum stochastic games and by Fink (Fink
1964) for general-sum stochastic games.

Learning in Stochastic Games. Stochastic games have
been the focus of recent research in the area of reinforce-
ment learning. There are two different approaches be-
ing explored. The first is that of algorithms that explic-
itly learn equilibria through experience, independent of the
other players’ policy (Littman 1994; Hu & Wellman 1998;
Greenwald & Hall 2002). These algorithms iteratively es-
timate value functions, and use them to compute an equi-
librium for the game. A second approach is that of best-
response learners (Claus & Boutilier 1998; Singh, Kearns,
& Mansour 2000; Bowling & Veloso 2002a). These learn-
ers explicitly optimize their reward with respect to the other
players’ (changing) policies. This approach, too, has a
strong connection to equilibria. If these algorithms converge
when playing each other, then they must do so to an equilib-
rium (Bowling & Veloso 2001).

Neither of these approaches, though, have been scaled
beyond games with a few hundred states. Games with a
very large number of states, or games with continuous state
spaces, make state enumeration intractable. Since previ-
ous algorithms in their stated form require the enumera-
tion of states either for policies or value functions, this is
a major limitation. In this paper we examine learning in a
very large stochastic game, using approximation and gener-
alization techniques. Specifically, we will build on the idea
of best-response learners using gradient techniques (Singh,
Kearns, & Mansour 2000; Bowling & Veloso 2002a). We
first describe an interesting game with an intractably large
state space.

Goofspiel
Goofspiel (or The Game of Pure Strategy) was invented by
Merrill Flood while at Princeton (Flood 1985). The game
has numerous variations, but here we focus on the simple
two-player,n-card version. Each player receives a suit of
cards numbered1 throughn, a third suit of cards is shuf-
fled and placed face down as the deck. Each round the next
card is flipped over from the deck, and the two players each
select a card placing it face down. They are revealed si-
multaneously and the player with the highest card wins the
card from the deck, which is worth its number in points. If

1There can actually be multiple equilibria, but they will all
have equal payoffs and are interchangeable (Osborne & Rubinstein
1994).

the players choose the same valued card, then neither player
gets any points. Regardless of the winner, both players dis-
card their chosen card. This is repeated until the deck and
players hands are exhausted. The winner is the player with
the most points.

This game has numerous interesting properties making it
a very interesting step between toy problems and more re-
alistic problems. First, notice that this game is zero-sum,
and as with many zero-sum games any deterministic strat-
egy can be soundly defeated. In this game, it’s by simply
playing the card one higher than the other player’s deter-
ministically chosen card. Second, notice that the number
of states and state-action pairs grows exponentially with the
number of cards. The standard size of the gamen = 13 is so
large that just storing one player’s policy orQ-table would
require approximately 2.5 terabytes of space. Just gather-
ing data on all the state-action transitions would require well
over1012 playings of the game. Table 1 shows the number
of states and state-action pairs as well as the policy size for
three different values ofn. This game obviously requires
some form of generalization to make learning possible. An-
other interesting property is that randomly selecting actions
is a reasonably good policy. The worst-case values of the
random policy along with the worst-case values of the best
deterministic policy are also shown in Table 1.

This game can be described using the stochastic game
model. The state is the current cards in the players’ hands
and deck along with the upturned card. The actions for a
player are the cards in the player’s hand. The transitions fol-
low the rules as described, with an immediate reward going
to the player who won the upturned card. Since the game has
a finite end and we are interested in maximizing total reward,
we can set the discount factorγ to be 1. Although equi-
librium learning techniques such as Minimax-Q (Littman
1994) are guaranteed to find the game’s equilibrium, it re-
quires maintaining a state-joint-action table of values. This
table would require20.1 terabytes to store for then = 13
card game. We will now describe a best-response learn-
ing algorithm using approximation techniques to handle the
enormous state space.

Three Ideas – One Algorithm
The algorithm we will use combines three separate ideas
from reinforcement learning. The first is the idea of tile
coding as a generalization for linear function approximation.
The second is the use of a parameterized policy and learning
as gradient ascent in the policy’s parameter space. The final
component is the use of a WoLF variable learning rate to ad-
just the gradient ascent step size. We will briefly overview
these three techniques and then describe how they are com-
bined into a reinforcement learning algorithm for Goofspiel.

Tile Coding.
Tile coding (Sutton & Barto 1998), also known as CMACS,
is a popular technique for creating a set of boolean features
from a set of continuous features. In reinforcement learn-
ing, tile coding has been used extensively to create linear
approximators of state-action values (e.g., (Stone & Sutton
2001)).

Tiling One

Tiling Two

Figure 2: An example of tile coding a two dimensional space
with two overlapping tilings.

The basic idea is to lay offset grids or tilings over the mul-
tidimensional continuous feature space. A point in the con-
tinuous feature space will be in exactly one tile for each of
the offset tilings. Each tile has an associated boolean vari-
able, so the continuous feature vector gets mapped into a
very high-dimensional boolean vector. In addition, nearby
points will fall into the same tile for many of the offset grids,
and so share many of the same boolean variables in their re-
sulting vector. This provides the important feature of gen-
eralization. An example of tile coding in a two-dimensional
continuous space is shown in Figure 2. This example shows
two overlapping tilings, and so any given point falls into two
different tiles.

Another common trick with tile coding is the use of hash-
ing to keep the number of parameters manageable. Each
tile is hashed into a table of fixed size. Collisions are sim-
ply ignored, meaning that two unrelated tiles may share the
same parameter. Hashing reduces the memory requirements
with little loss in performance. This is because only a small
fraction of the continuous space is actually needed or visited
while learning, and so independent parameters for every tile
are often not necessary. Hashing provides a means for using
only the number of parameters the problem requires while
not knowing in advance which state-action pairs need pa-
rameters.

Policy Gradient Ascent

Policy gradient techniques (Suttonet al. 2000; Baxter &
Bartlett 2000) are a method of reinforcement learning with
function approximation. Traditional approaches approxi-
mate a state-action value function, and result in a deter-
ministic policy that selects the action with the maximum
learned value. Alternatively, policy gradient approaches ap-
proximate a policy directly, and then use gradient ascent
to adjust the parameters to maximize the policy’s value.
There are three good reasons for the latter approach. First,
there’s a whole body of theoretical work describing conver-
gence problems using a variety of value-based learning tech-
niques with a variety of function approximation techniques
(See (Gordon 2000) for a summary of these results.) Second,
value-based approaches learn deterministic policies, and as
we mentioned earlier deterministic policies in multiagent

n |S| |S ×A| SIZEOF(π orQ) VALUE(det) VALUE(random)
4 692 15150 ∼ 59KB −2 −2.5
8 3× 106 1× 107 ∼ 47MB −20 −10.5
13 1× 1011 7× 1011 ∼ 2.5TB −65 −28

Table 1: The approximate number of states and state-actions, and the size of a stochastic policy orQ table for Goofspiel
depending on the number of cards,n. The VALUE columns list the worst-case value of the best deterministic policy and the
random policy respectively.

settings are often easily exploitable. Third, gradient tech-
niques have been shown to be successful for simultaneous
learning in matrix games (Singh, Kearns, & Mansour 2000;
Bowling & Veloso 2002a).

We use the policy gradient technique presented by Sutton
and colleagues (Suttonet al. 2000). Specifically, we will
define a policy as a Gibbs distribution over a linear com-
bination of features, such as those taken from a tile coding
representation of state-actions. Letθ be a vector of the pol-
icy’s parameters andφsa be a feature vector for states and
actiona then this defines a stochastic policy according to,

π(s, a) =
eθ·φsa∑
b e
θ·φsb

.

Their main result was a convergence proof for the following
policy iteration rule that updates a policy’s parameters,

θk+1 = θk + αk
∑
s

dπk(s)
∑
a

∂πk(s, a)
∂θ

fwk(s, a). (1)

For the Gibbs distribution this is just,

θk+1 = θk + αk
∑
s

dπk(s)
∑
a

φsa · π(s, a)fwk(s, a) (2)

Here αk is an appropriately decayed learning rate and
dπk(s) is state s’s contribution to the policy’s overall
value. This contribution is defined differently depending
on whether average or discounted start state reward crite-
rion is used.fwk(s, a) is an independent approximation of
Qπk(s, a) with parametersw, which is the expected value
of taking actiona from states and then following the policy
πk. For a Gibbs distribution, Sutton and colleagues showed
that for convergence this approximation should have the fol-
lowing form,

fw(s, a) = w ·

[
φsa −

∑
b

π(s, b)φsb

]
.

As they point out, this amounts tofw being an approxi-
mation of the advantage function,Aπ(s, a) = Qπ(s, a) −
V π(s), whereV π(s) is the value of following policyπ from
states. It is this advantage function that we will estimate
and use for gradient ascent.

Using this basic formulation we derive an on-line version
of the learning rule, where the policy’s weights are updated
with each state visited. The total reward criterion for Goof-
spiel is identical to havingγ = 1 in the discounted setting.
So,dπ(s) is just the probability of visiting states when fol-
lowing policy π. Since we will be visiting states on-policy,

this amounts to updating weights in proportion to how of-
ten the state is visited. By doing updates on-line as states
are visited we can simply drop this term from equation 2,
resulting in,

θk+1 = θk + αk
∑
a

φsa · π(s, a)fwk(s, a). (3)

Lastly, we will do the policy improvement step (updat-
ing θ) simultaneously with the value estimation step (updat-
ing w). We will do value estimation using gradient-descent
Sarsa(0) (Sutton & Barto 1998) over the same feature space
as the policy. Specifically, if at timek the system is in state
s and takes actiona transitioning to states′ and then taking
actiona′, we update the weight vector,

wk+1 = wk + βk (r + γQwk(s′, a′)−Qwk(s, a)) (4)

The policy improvement step uses equation 3 wheres is the
state of the system at timek and the action-value estimates
from SarsaQwk are used to compute the advantage term,

fwk(s, a) = Qwk(s, a)−
∑
a

π(s, a|θk)Qwk(s, a).

Win or Learn Fast
WoLF (“Win or Learn Fast”) is a method for changing the
learning rate to encourage convergence in a multiagent re-
inforcement learning scenario (Bowling & Veloso 2002a).
Notice that the gradient ascent algorithm described does not
account for a non-stationary environment that arises with si-
multaneous learning in stochastic games. All of the other
agents actions are simply assumed to be part of the envi-
ronment and unchanging. WoLF provides a simple way to
account for other agents through adjusting how quickly or
slowly the agent changes its policy.

Since only the rate of learning is changed, algorithms
that are guaranteed to find (locally) optimal policies in non-
stationary environments retain this property even when us-
ing WoLF. In stochastic games with simultaneous learning,
WoLF has both theoretical evidence (limited to two-player,
two-action matrix games), and empirical evidence (exper-
iments in matrix games, as well as smaller zero-sum and
general-sum stochastic games) that it encourages conver-
gence in algorithms that don’t otherwise converge (Bowl-
ing & Veloso 2002a). The intuition for this technique is
that a learner should adapt quickly when it is doing more
poorly than expected. When it is doing better than expected,
it should be cautious, since the other players are likely to
change their policy. This implicitly accounts for other play-
ers that are learning, rather than other techniques that try to
explicitly reason about their action choices.

The WoLF principle naturally lends itself to policy gra-
dient techniques where there is a well-defined learning rate,
αk. With WoLF we replace the original learning rate with
two learning ratesαwk < αlk to be used when winning
or losing, respectively. One determination of winning and
losing that has been successful is to compare the value of
the current policyV π(s) to the value of the average policy
over timeV π̄(s). With the policy gradient technique above
we can define a similar rule that examines the approximate
value, usingQw, of the current weight vectorθ with the av-
erage weight vector over timēθ. Specifically, we are “win-
ning” if and only if,∑

a

π(s, a|θ)Qw(s, a) >
∑
a

π(s, a|θ̄)Qw(s, a). (5)

When winning in a particular state, we update the parame-
ters for that state usingαwk , otherwiseαlk.

Learning in Goofspiel
We combine these three techniques in the obvious way. Tile
coding provides a large boolean feature vector for any state-
action pair. This is used both for the parameterization of the
policy and for the approximation of the policy’s value, which
is used to compute the policy’s gradient. Gradient updates
are then performed on both the policy using equation 3 and
the value estimate using equation 4. WoLF is used to vary
the learning rateαk in the policy update according to the rule
in inequality 5. This composition can be essentially thought
of as an actor-critic method (Sutton & Barto 1998). Here
the Gibbs distribution over the set of parameters is theactor,
and the gradient-descent Sarsa(0) is thecritic. Tile-coding
provides the necessary parameterization of the state. The
WoLF principle is adjusting how the actor changes policies
based on response from the critic.

The main detail yet to be explained and where the algo-
rithm is specifically adapted to Goofspiel is in the tile cod-
ing. The method of tiling is extremely important to the over-
all performance of learning as it is a powerful bias on what
policies can and will be learned. The major decision to be
made is how to represent the state as a vector of numbers and
which of these numbers are tiled together. The first decision
determines what states are distinguishable, and the second
determines how generalization works across distinguishable
states. Despite the importance of the tiling we essentially
selected what seemed like a reasonable tiling, and used it
throughout our results.

We represent a set of cards, either a player’s hand or the
deck, by five numbers, corresponding to the value of the card
that is the minimum, lower quartile, median, upper quartile,
and maximum. This provides information as to the general
shape of the set, which is what is important in Goofspiel.
The other values used in the tiling are the value of the card
that is being bid on and the card corresponding to the agent’s
action. An example of this process in the 13-card game is
shown in Table 2. These values are combined together into
three tilings. The first tiles together the quartiles describing
the players’ hands. The second tiles together the quartiles of
the deck with the card available and player’s action. The last
tiles together the quartiles of the opponent’s hand with the

card available and player’s action. The tilings use tile sizes
equal to roughly half the number of cards in the game with
the number of tilings greater than the tile sizes to distinguish
between any integer state values. Finally, these tiles were all
then hashed into a table of size one million in order to keep
the parameter space manageable. We don’t suggest that this
is a perfect or even good tiling for this domain, but as we
will show the results are still interesting.

Results
One of the difficult and open issues in multiagent reinforce-
ment learning is that of evaluation. Before presenting learn-
ing results we first need to look at how one evaluates learn-
ing success.

Evaluation
One straightforward evaluation technique is to have two
learning algorithms learn against each other and simply ex-
amine the expected reward over time. This technique is not
useful if one’s interested in learning in self-play, where both
players use an identical algorithm. In this case with a sym-
metric zero-sum game like Goofspiel, the expected reward
of the two agents is necessarily zero, providing no informa-
tion.

Another common evaluation criterion is that of conver-
gence. This is true in single-agent learning as well as mul-
tiagent learning. One strong motivation for considering this
criterion in multiagent domains is the connection of conver-
gence to Nash equilibrium. If algorithms that are guaran-
teed to converge to optimal policies in stationary environ-
ments, converge in a multiagent learning environment, then
the resulting joint policy must be a Nash equilibrium of the
stochastic game (Bowling & Veloso 2002a).

Although, convergence to an equilibrium is an ideal crite-
rion for small problems, there are a number of reasons why
this is unlikely to be possible for large problems. First, op-
timality in large (even stationary) environments is not gen-
erally feasible. This is exactly the motivation for exploring
function approximation and policy parameterizations. Sec-
ond, when we account for the limitations that approximation
imposes on a player’s policy then equilibria may cease to ex-
ist, making convergence of policies impossible (Bowling &
Veloso 2002b). Third, policy gradient techniques learn only
locally optimal policies. They may converge to policies that
are not globally optimal and therefore necessarily not equi-
libria.

Although convergence to equilibria and therefore conver-
gence in general is not a reasonable criterion we would still
expect self-play learning agents to learn something. In this
paper we use the evaluation technique used by Littman with
Minimax-Q (Littman 1994). We train an agent in self-play,
and then freeze its policy, and train a challenger to find that
policy’s worst-case performance. This challenger is trained
using just gradient-descent Sarsa and chooses the action
with maximum estimated value withε-greedy exploration.
Notice that the possible policies playable by the challenger
are the deterministic policies (modulo exploration) playable
by the learning algorithm being evaluated. Since Goofspiel

My Hand 1 3 4 5 6 8 11 13
Quartiles * * * * *

Opp Hand 4 5 8 9 10 11 12 13
Quartiles * * * * *

Deck 1 2 3 5 9 10 11 12
Quartiles * * * * *

Card 11
Action 3



〈1, 4, 6, 8, 13〉 ,
〈4, 8, 10, 11, 13〉 ,
〈1, 3, 9, 10, 12〉 ,

11, 3www� (Tile Coding)

TILES ∈ {0, 1}106

Table 2: An example state-action representation using quartiles to describe the players’ hands and the deck. These numbers are
then tiled and hashed with the resulting tiles representing a boolean vector of size106.

is a symmetric zero-sum game, we know that the equilib-
rium policy, if one exists, would have value zero against its
challenger. So, this provides some measure of how close the
policy is to the equilibrium by examining its value against
its challenger.

A second related criterion will also help to understand the
performance of the algorithm. Although policy convergence
might not be possible, convergence of the expected value of
the agents’ policies may be possible. Since the real desir-
ability of policy convergence is the convergence of the pol-
icy’s value, this is in fact often just as good. This is also one
of the strengths of the WoLF variable learning rate, as it has
been shown to make learning algorithms with cycling poli-
cies and expected values converge both in expected value
and policy.

Experiments
Throughout our experiments, we examined three different
learning algorithms in self-play. The first two did not use the
WoLF variable learning rate, and instead followed a static
step size. “Fast” used a large step sizeαk = 0.16; “Slow”
used a small step sizeαk = 0.008; “WoLF” switched be-
tween these learning rates based on inequality 5. In all ex-
periments, the value estimation update used a fixed learning
rate ofβ = 0.2. These rates were not decayed, in order to
better isolate the effectiveness apart from appropriate selec-
tion of decay schedules. In addition, throughout training and
evaluation runs, all agents followed anε-greedy exploration
strategy withε = 0.05. The initial policies and values all
begin with zero weight vectors, which with a Gibbs distri-
bution corresponds to the random policy, which as we have
noted is reasonably good.

In our first experiment we trained the learner in self-play
for 40,000 games. After every 5,000 games we stopped the
training and trained a challenger against the agent’s current
policy. The challenger was trained on 10,000 games using
Sarsa(0) gradient ascent with the learning rate parameters
described above. The two policies, the agent’s and its chal-
lenger, were then evaluated on 1,000 games to estimate the
policy’s worst-case expected value. This experiment was re-
peated thirty times for each algorithm.

The learning results averaged over the thirty runs are
shown in Figure 3 for card sizes of4, 8, and13. The baseline
comparison is with that of the random policy, a very compet-
itive policy for this game. All three learners improve on this
policy while training in self-play. The initial dips in the8
and13 card games are due to the fact that value estimates
are initially very poor making the initial policy gradients not
in the direction of increasing the overall value of the policy.
It takes a number of training games for the delayed reward
of winning cards later to overcome the initial immediate re-
ward of winning cards now. Lastly, notice the affect of the
WoLF principle. It consistently outperforms the two static
step size learners. This is identical to affects shown in non-
approximated stochastic games (Bowling & Veloso 2002a).

The second experiment was to further examine the issue
of convergence and the affect of the WoLF principle on the
learning process. Instead of examining worst-case perfor-
mance against some fictitious challenger, we now examine
the expected value of the player’s policywhile learningin
self-play. Again the algorithm was trained in self-play for
40,000 games. After 50 games both players’ policies were
frozen and evaluated over 1,000 games to find the expected
value to the players at that moment. We ran each algorithm
once on just the13 card game and plotted its expected value
over time while learning.

The results are shown in Figure 4. Notice that expected
value of all the learning algorithms seem to have some os-
cillation around zero. We would expect this with identical
learners in a symmetric zero-sum game. The point of inter-
est though is how close these oscillations stay to zero over
time. The WoLF principle causes the policies to have a more
constant expected value with lower amplitude oscillations.
This again shows that the WoLF principle continues to have
converging affects even in stochastic games with approxi-
mation techniques.

Conclusion
We have described a scalable learning algorithm for stochas-
tic games, composed of three reinforcement learning ideas.
We showed preliminary results of this algorithm learning in
the game Goofspiel. These results demonstrate that the pol-

n = 4

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

0 10000 20000 30000 40000

V
al

ue
 v

. W
or

st
-C

as
e

O
pp

on
en

t

Number of Training Games

WoLF
Fast
Slow

Random

n = 8

-10

-9

-8

-7

-6

-5

-4

-3

-2

0 10000 20000 30000 40000

V
al

ue
 v

. W
or

st
-C

as
e

O
pp

on
en

t

Number of Training Games

WoLF
Fast
Slow

Random

n = 13

-26

-24

-22

-20

-18

-16

-14

-12

0 10000 20000 30000 40000

V
al

ue
 v

. W
or

st
-C

as
e

O
pp

on
en

t

Number of Training Games

WoLF
Fast
Slow

Random

Figure 3: Worst-case expected value of the policy learned in
self-play.

Fast

-15

-10

-5

0

5

10

15

0 10000 20000 30000 40000

E
xp

ec
te

d
V

al
ue

 W
hi

le
 L

ea
rn

in
g

Number of Games

Slow

-15

-10

-5

0

5

10

15

0 10000 20000 30000 40000

E
xp

ec
te

d
V

al
ue

 W
hi

le
 L

ea
rn

in
g

Number of Games

WoLF

-15

-10

-5

0

5

10

15

0 10000 20000 30000 40000

E
xp

ec
te

d
V

al
ue

 W
hi

le
 L

ea
rn

in
g

Number of Games

Figure 4: Expected value of the game while learning.

icy gradient approach using an actor-critic model can learn
in this domain. In addition, the WoLF principle for encour-
aging convergence also seems to hold even when using ap-
proximation and generalization techniques.

There are a number of directions for future work. Within
the game of Goofspiel, it would be interesting to explore
alternative ways of tiling the state-action space. This could
likely increase the overall performance of the learned policy,
but would also examine how generalization might affect the
convergence of learning. Might certain generalization tech-
niques retain the existence of equilibrium, and is the equilib-
rium learnable? Another important direction is to examine
these techniques on more domains, with possibly continu-
ous state and action spaces. Also, it would be interesting
to vary some of the components of the system. Can we use
a different approximator than tile-coding? Do we achieve
similar results with different policy gradient techniques (e.g.
GPOMDP (Baxter & Bartlett 2000)). These initial results,
though, show promise that gradient ascent and the WoLF
principle can scale to large state spaces.

References
Baxter, J., and Bartlett, P. L. 2000. Reinforcement learning
in POMDP’s via direct gradient ascent. InProceedings
of the Seventeenth International Conference on Machine
Learning, 41–48. Stanford University: Morgan Kaufman.

Bowling, M., and Veloso, M. 2001. Rational and con-
vergent learning in stochastic games. InProceedings of
the Seventeenth International Joint Conference on Artifi-
cial Intelligence, 1021–1026.

Bowling, M., and Veloso, M. 2002a. Multiagent learning
using a variable learning rate.Artificial Intelligence. In
Press.

Bowling, M., and Veloso, M. M. 2002b. Existence
of multiagent equilibria with limited agents. Technical
report CMU-CS-02-104, Computer Science Department,
Carnegie Mellon University.

Claus, C., and Boutilier, C. 1998. The dynamics of rein-
forcement learning in cooperative multiagent systems. In
Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence. Menlo Park, CA: AAAI Press.

Fink, A. M. 1964. Equilibrium in a stochasticn-person
game. Journal of Science in Hiroshima University, Series
A-I 28:89–93.

Flood, M. 1985. Interview by Albert Tucker. The Princeton
Mathematics Community in the 1930s, Transcript Number
11.

Gordon, G. 2000. Reinforcement learning with function
approximation converges to a region. InAdvances in Neu-
ral Information Processing Systems 12. MIT Press.

Greenwald, A., and Hall, K. 2002. Correlated Q-learning.
In Proceedings of the AAAI Spring Symposium Workshop
on Collaborative Learning Agents. In Press.

Hu, J., and Wellman, M. P. 1998. Multiagent reinforce-
ment learning: Theoretical framework and an algorithm.
In Proceedings of the Fifteenth International Conference

on Machine Learning, 242–250. San Francisco: Morgan
Kaufman.
Kuhn, H. W., ed. 1997.Classics in Game Theory. Prince-
ton University Press.
Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. InProceedings of the
Eleventh International Conference on Machine Learning,
157–163. Morgan Kaufman.
Littman, M. 2001. Friend-or-foe Q-learning in general-
sum games. InProceedings of the Eighteenth International
Conference on Machine Learning, 322–328. Williams Col-
lege: Morgan Kaufman.
Nash, Jr., J. F. 1950. Equilibrium points inn-person games.
PNAS36:48–49. Reprinted in (Kuhn 1997).
Osborne, M. J., and Rubinstein, A. 1994.A Course in
Game Theory. The MIT Press.
Samuel, A. L. 1967. Some studies in machine learning
using the game of checkers.IBM Journal on Research and
Development11:601–617.
Shapley, L. S. 1953. Stochastic games.PNAS39:1095–
1100. Reprinted in (Kuhn 1997).
Singh, S.; Kearns, M.; and Mansour, Y. 2000. Nash con-
vergence of gradient dynamics in general-sum games. In
Proceedings of the Sixteenth Conference on Uncertainty in
Artificial Intelligence, 541–548. Morgan Kaufman.
Stone, P., and Sutton, R. 2001. Scaling reinforcement
learning toward Robocup soccer. InProceedings of the
Eighteenth International Conference on Machine Learn-
ing, 537–534. Williams College: Morgan Kaufman.
Sutton, R. S., and Barto, A. G. 1998.Reinforcement Learn-
ing. MIT Press.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning
with function approximation. InAdvances in Neural Infor-
mation Processing Systems 12. MIT Press.
Tesauro, G. J. 1995. Temporal difference learning and
TD–Gammon.Communications of the ACM38:48–68.

