
The Alberta Workloads for the SPEC CPU 2017
Benchmark Suite

José Nelson Amaral∗, Edson Borin†, Dylan Ashley∗, Caian Benedicto†, Elliot Colp‡,
João Henrique Stange Hoffmam†, Marcus Karpoff∗, Erick Ochoa∗, Morgan Redshaw¶, Raphael Ernani Rodrigues§

∗ Department of Computing Science, University of Alberta, Edmonton, AB, Canada.
† Instituto de Computação, Universidade de Campinas, Campinas, SP, Brazil.

‡ Bioware, Edmonton, AB, Canada.
§ Microsoft, Redmond, WA, USA.
¶ DeepMind, London, UK.

Abstract—A proper evaluation of techniques that require
multiple training and evaluation executions of a benchmark, such
as Feedback-Directed Optimization (FDO), requires multiple
workloads that can be used to characterize variations on the
behaviour of a program based on the workload. This paper
aims to improve the performance evaluation of computer sys-
tems — including compilers, computer architecture simulation,
and operating-system prototypes — that rely on the industry-
standard SPEC CPU benchmark suite. A main concern with
the use of this suite in research is that it is distributed with
a very small number of workloads. This paper describes the
process to create additional workloads for this suite and offers
useful insights in many of its benchmarks. The set of additional
workloads created, named the Alberta Workloads for the SPEC
CPU 2017 Benchmark Suite1 is made freely available with the goal
of providing additional data points for the exploration of learning
in computing systems. These workloads should also contribute to
ameliorate the hidden learning problem where a researcher sets
parameters to a system during development based on a set of
benchmarks and then evaluates the system using the very same
set of benchmarks with the very same workloads.

Index Terms—benchmarking; performance evaluation; work-
loads; Feedback Directed Optimization (FDO); CPU

I. INTRODUCTION

The measurement of performance using the Standard Per-
formance Evaluation Corporation (SPEC) Central Process-
ing Unit (CPU) benchmark suite follows a long-established
methodology. The goal that guides the curation of the SPEC
CPU benchmark suite is the comparison of commercially
available computing systems. Therefore, the SPEC Open Sys-
tems Group (OSG) has established a rigorous review process
that must be followed in order for results to be published as
sanctioned by the SPEC organization. However, that suite is
also extensively used to estimate performance variations due to
the application of ideas proposed in the areas of compilation,
computer architecture, software stack, and others.

One (mis)use of the SPEC CPU benchmark suite, that has
been of great concern for many years, is for the evaluation of
code transformations that rely on a technique called Feedback-
Directed Optimization (FDO). FDO can be static or dynamic

1https://webdocs.cs.ualberta.ca/∼amaral/
AlbertaWorkloadsForSPECCPU2017/

and it is used mostly in compilation systems. Static FDO con-
sists of collecting information from instrumented executions
of a program. These executions are performed ahead of time
and the collected information is then used to produce a new
binary for the program. This binary can then be used to execute
the same program with many different workloads. Dynamic
FDO collects information from a program while the program
is executing and uses such information to change the execution
of the program. Dynamic FDO can be used for dynamic “just-
in-time” (JIT) compilation [14], for selection amongst multiple
versions of statically generated code, or for dynamic binary
recompilation. While static FDO has not taken hold in the
market, dynamic FDO is prevalent in commercial products.
Dynamic FDO originally became popular with Java JIT com-
pilers and today it is used for many dynamic programming
languages.

An important issue with the use of the SPEC CPU bench-
mark suite for evaluation of proposed FDO-based ideas is that
the SPEC Open Systems Group (OSG) publishes only two
workloads for most benchmarks2: one workload that is called
the train workload and another that is called the reference
workload.3 Partially because of the availability of only two
workloads for each of the benchmarks in this widely used suite
— compounded with the naming of one of them as a “train”
workload — a methodology became prevalent in the literature:
(1) obtain profiling data from a single instrumented run using
the train workload; (2) recompile the benchmark using the
profiling data with FDO enabled; (3) measure performance
using the reference workload. Often the publication of results
obtained with this methodology are accompanied with claims
that the FDO technique studied is expected to yield the
performance changes observed in the experiment.

A critical view of this FDO-evaluation method leads to im-

2A benchmark, understood as a “mark on a bench” is the combination of
a program with a specific workload. However, following common practice,
benchmark in this paper can also mean the program used to produce the
benchmark without a specific workload.

3The SPEC CPU suite also includes a test input for each benchmark, but
this test input yields very short runs that are only meant to check that the
system is working rather than for performance measurement.



portant methodology questions. Can a single training-workload
execution of each benchmark program capture the expected
behaviour of the program when executing with other work-
loads? The answer to this question is likely to be different
for each specific benchmark. The behaviour of the program
during a single execution with a given workload can be thought
of as a point in a high-dimensional space. Therefore the
single-training-workload experiment has attempted to perform
machine learning by observing a single point in the space,
building a model of the behaviour of the program on that
point, and then evaluating this model on a, hopefully distinct,
single point of the space. Such a learning strategy is known
to be inappropriate because it leads to bias towards the point
used for training. If the training point and the evaluation point
happen to exhibit similar behaviour, this practice may lead
to overfitting. If the behaviour of the program at these two
points is very distinct, it will be difficult to learn anything
relevant from the learning attempt; in other words, FDO will
fail. To make matters worse, in some cases the evaluation
point is not distinct from the training point. In the case of
the SPEC benchmarks, seldom do researchers examine how
the train and reference workloads were selected. Our own
investigation and conversations with SPEC CPU 2000 and
SPEC CPU 2006 benchmark program authors revealed that,
in some cases, the train and the reference workloads were,
on purpose, selected to be a subset of each other. Thus the
performance of many FDO techniques has, unwittingly, been
predicted from an experiment that used essentially the same
workload for training and for evaluation.

Even when FDO is not used, often the evaluation of comput-
ing systems suffers from an issue that we call hidden learning
which consists on the researchers or developers tunning the
system to select an appropriate set of static parameters and
threshold values using a set of benchmarks from a given
suite. After this period of ad-hoc tuning, or learning, often the
constructed prototypes are evaluated using the same bench-
marks and these benchmarks are often executed with the very
same workloads that were used for tuning the prototype. An
evaluation performed using such a methodology may fail to
predict the expected performance of the proposed system “out
in the wild” when it has to execute applications that were
not used for the tuning or even when executing the same
benchmarks with a different set of workloads.

Condensed versions, sometimes called kernels, of bench-
marks are sometimes captured to accelerate simulation-based
performance prediction. Again, the computer architecture
community often uses a single workload — the reference
input in the case of the SPEC CPU benchmark suite — to
create these kernels [12], [15], [22]. However, for benchmarks
whose behaviour changes with the workload, the goal of
characterizing program behaviour cannot be attained through a
single execution of the program. Using MiBench, a benchmark
suite formed by much simpler programs compared with the
SPEC CPU 2017 suite, Breughe et al. observed that processor
customization was largely insensitive to the workloads used in
the program [7]. The study summarized in this paper indicates

that this observation may be true for some, but not all, the
programs in the SPEC CPU 2017 suite.

Often, when issues concerning variation of program be-
haviour with workloads are raised during the discussion of
a research manuscript under evaluation, there is an argument
that the authors of the research are limited by the unavailability
of additional workloads for the benchmarks. Studies that do
focus on various workloads use simpler programs [11]. To
help address this shortcoming, in the past several years the
University of Alberta has functioned as a supporting contrib-
utor to the development of the SPEC CPU 2017 benchmark
suite. During this period we have worked both independently,
with the members of the OSG CPU subcommittee, and with
benchmark authors, to create additional workloads for pro-
grams included in the SPEC CPU 2017 suite. In the process
we have made several contributions to the development of
the benchmarks themselves, and have also discovered that for
some of the programs included in the suite it was possible
to create a system to automatically generate new workloads.
The availability of such tools will advance performance-based
system research by allowing researchers to create as many
workloads as is required for their experimental methodology.

This paper describes the effort to develop the Alberta Work-
loads for the SPEC CPU 2017 suite, an enterprise that took
many years and involved many people. Additional contribu-
tions, not described here, were made to the development of the
SPEC CPU 2017 suite. Our team helped clarify the behaviour
of several of the benchmark candidates with the workloads that
were under consideration for these candidates. In some cases
our contribution lead to changes in the benchmark candidate
programs themselves, in others it contributed to the decision
of the SPEC OSG CPU subcommittee to abandon some of the
candidates, and in others it contributed to important changes
in the workloads distributed with the benchmark suite.

We also offer a method to summarize the sensitivity of
benchmark behaviour to workload that attempts to characterize
the influence of the workloads on the behaviour of the bench-
marks and to estimate the influence of different compilers
on these results. Section II reviews the use of Feedback-
Directed Optimization. Section III presents some main dif-
ferences between SPEC CPU 2006 and 2017. Section IV
presents the Alberta Workloads. Section V summarizes the
major variances in benchmark behaviour due to workloads.
Section VI discusses related work. Section VII discusses
research questions that could be addressed with the Alberta
Workloads.

II. FEEDBACK-DIRECTED OPTIMIZATION

FDO in practice has to overcome two important challenges:
(1) the observation interference problem; and (2) the mapping
of feedback collected on an old version of code to a newer
version. Profiling not only generates overhead, but it may
change the very behaviour of the program that it attempts to
observe. The classical solutions to overcome this challenge
are to either use sampled profiling for online FDO [20] or to
collect information with a separate execution. Limited progress



has been made toward mapping of profiling information be-
tween different versions of a program [10], [24], [25].

FDO gained mainstream usage and acceptance with the fo-
cus on microarchitecture features when studying applications
that execute in large data centres. Kanev et al. used continuous
profiling, where a small fraction of a large data centre is
randomly selected for profiling each day [18]. Profiling data
is collected from a brief period of time in each of the sampled
executions. They report great diversity in workload behaviour
and confirm the importance of cache performance for overall
performance of applications. Applying a similar sampling
methodology, but using instrumented binaries for profiling,
Chen et al. made the deployment of FDO-optimized binaries
in google servers much more prominent [8].

III. FROM SPEC CPU 2006 TO SPEC CPU 2017

The set of programs included in the SPEC CPU INT 2017
suite is fairly consistent with the programs included in the
SPEC CPU INT 2006 suite. The intent of Table I is to offer a
quick visual parallel between the two suites. The Intel Core i7-
6700K running at 4.2 GHz was selected to display the times
because at the time of writing these were the only official
submissions to the SPEC webpage that presented results to
the same machine with the same configuration.4

A similar comparative table between the SPEC CPU FP
2006 and the SPEC CPU FP 2017 is not included because
of space constraints, but a comparative analysis reveals that
there were more significative changes in the floating-point
applications in the suite with eight new benchmarks introduced
in 2017 and eleven of the 2006 benchmarks not making into
the newer suite. Areas of applications no longer represented in
the suite include quantum chemistry, quantum physics, linear
programming, structural mechanics, and speech recognition.
New areas that were introduced in the SPEC CPU 2017
suite include optical tomography for biomedical imaging, 3D
rendering and animation, atmosphere and ocean modelling,
image manipulation, and molecular dynamics.

IV. THE ALBERTA WORKLOADS

The Alberta workloads for the SPEC CPU 2017 benchmark
suite were generated by one of the following methods:

• Some benchmarks use workloads contained in files that
are publicly available online. For this type of benchmark,
publicly available resources were downloaded and are
used as new workloads. E.g. for 502.gcc r, some of the
workloads are from the “Large single compilation-unit C
programs” website [21].

• In some cases, publicly available resources can be used
to create new workloads but are not suitable to in-
clude in the new workloads without modification. For
this type of benchmark, multiple online resources were

4The actual results can be found in the SPEC
website at https://www.spec.org/cpu2006/
results/res2015q4/cpu2006-20151019-37701.html and
https://www.spec.org/cpu2017/results/res2017q2/
cpu2017-20161026-00029.html

combined and/or modified to produce a workload. E.g.,
for 523.xalancgmk r, unsuitable XML files that led to
running time that were too short in comparison with the
refrate workload were found on XML benchmarks
(XSLTMark and XMark). The solution was to combine
several of these XML files into a single workload to
approximate the execution time of the refrate workload.

• For some benchmarks, a script is included to automate
the generation of workloads based on resources that can
be found online.

• For some types of workloads, it is possible to generate a
program that can procedurally generate new workloads.
E.g. a significant programming effort went into automat-
ing the creation of workloads for 505.mcf r.

• Inputs for some benchmarks are not widely available
online, but it is possible to manually generate workloads
for such programs after reading the documentation.

A. Workloads for the SPEC CPU INT 2017 Suite

The Alberta Workloads provide new workloads to all but
one, 500.perlbench_r, of the benchmarks in the SPEC
CPU INT 2017. 500.perlbench_r is a a stripped-down
version of the Perl interpreter. It accepts Perl scripts as
inputs and thus a simple way to create new workloads
would be to collect open-source Perl applications. However,
all applications that we found contain dependencies that
require the integrated compilation of C code to work. The
500.perlbench_r benchmark was not designed to support
extending Perl to use C libraries. The search process analyzed
the following Perl scripts and frameworks: Perl Defence
Blaster, Perl Racer and Perl Arena, BioPerl, Catlyst, and
Dancer.
502.gcc_r: The input to this benchmark is a single

file that must be preprocessed.5 Most interesting C programs
are distributed as multiple files and multiple directories and
are compiled with elaborate make files. Simply concatenating
the individual files into a single one and feeding it to the
preprocessor is most likely to result in an incorrect workload.
There are likely to be name collisions between identifiers
used in different files. Moreover, preprocessing logic may
produce wrong code when simply concatenated into a single
file. The main challenges to automatically generate single-
file workloads for the gcc benchmark include tracking all
files and external declaration, name-mangling the identifiers
to avoid collision, and properly handling preprocessing logic.
The Alberta workloads include a tool named OneFile that
can be used to combine multiple-file C source code into a
single compilation unit that is suitable for the gcc benchmark.
OneFile is provided “as is” and may require human in-
tervention to transform more complex applications. However,
it was used to generate workloads for three substantial code
bases: mcf, lbm, and johnripper. The new workloads also
include existing single-file C codes that are publicly available
and these new ones generated with the OneFile tool.

5The generated workloads used gcc version 4.8.4 on Ubuntu 14.04 for
preprocessing.



Application Area SPEC 2017 SPEC 2006 SPEC 2017 Time SPEC 2006 Time
Perl interpreter 500.perlbench_r 400.perlbench 542 425
Compiler 502.gcc_r 403.gcc 518 346
Route planning 505.mcf_r 429.mcf 633 333
Discrete event simulation 520.omnetpp_r 471.omnetpp 787 483
SML to HTML conversion 523.xalancbmk_r 483.xalancbmk 323 221
Video compression 525.x264_r 464.h264ref 379 575
AI: α− β tree search 531.deepsjeng_r 458.sjeng 373 562
AI: Sudoku recursive solution 548.exchange3_r 498
Data compression 557.xz_r 401.bzip2 532 681
AI: Go game playing 541.leela_r 445.gobmk 586 506
Search Gene Sequence 456.hmmer 202
Physics: Quantum Computing 462.libquantum 65
AI: path finding algorithm 473.astar 461
Arithmetic Average of Times 517 405

TABLE I: Evolution from SPEC CPU 2006 to SPEC CPU 2017. Times, in seconds, are for official results submitted to the
SPEC website for an ASUS Z170MPLUS motherboard with Intel Core i7-6700K running at 4.2 GHz running 8 copies of the
benchmark.

505.mcf_r: Extensive development was dedicated to
produce suitable new inputs for the this benchmark. This
benchmark is based on the commercial program MCF de-
signed to schedule the movement of vehicles transitioning
between the end of one route and the start of another route in
a transportation system. These transitions are called deadhead
routes. The objective of the program is to minimize costs
and to keep the vehicle fleet size to a minimum. Löbel
describes the minimum cost flow (MCF) problem and explains
the data structures and the interface provided by the imple-
mentation [19]. A workload consists of specification for the
number of routes and deadhead routes as well as start and
end time for routes and costs for deadhead routes. Generating
consistent data for mcf is rather challenging — our initial
effort failed badly and led the benchmark to failed states.
The workload generator for this benchmark included with the
Alberta Workloads automatically generates a map for a city
with various levels of density and connectivity and also uses
a circadian cycle to schedule the number of buses running
throughout the day. Based on this generated map the generator
then creates schedules that are consistent with the constraints
expected by the benchmark.

Given that the generation of workloads is completely
automatic and based on a random seed and some parameters,
researchers can generate as many workloads as they wish.
Three new automatically generated workloads are included
in the Alberta Workloads. Each workload defines a different
single-depot vehicle scheduling problem.

520.omnetpp_r: A workload for this benchmark is a
NEtwork Description (.ned) file in the NED language and a
configuration file. The existing train and ref inputs distributed
with the SPEC CPU INT 2017 suite change the amount
of time that the simulation is run, but do not change the
network configuration. The Alberta Workloads include seven

new workloads that simulate different network topologies: line
topology, ring topology, star topology, tree topology, and three
random topologies with 9, 18, and 27 edges.
523.xalancbmk_r: This benchmark is a program that

transforms XML data. Thus one may naively assume that
new workloads can be created simply by gathering XML data
files which are plentiful. However, in order to create a valid
workload one also needs to provide a .xls file that describes,
in a Xalan-specific language, the transformation to be done to
the XML file. Few existing XML files have a corresponding
.xls file. The Alberta Workloads include five new workloads
from XSLT benchmarks (XSLTMark and XMark) that were
based on files from the repository for XT-Speedo, an XSLT
benchmarking framework.6 For the XSLTMark benchmark,
after examining the format of the XML file, we created a
script to produce new random XML files with different sizes
but with the same format so that they could be processed with
the same .xls file. The XMark benchmark includes twenty
short queries, but two of those require XSLT 2.0, which is
not supported by the 523.xalancbmk_r benchmark. Thus,
to create a suitable workload, we combined the remaining
eighteen queries.
525.x264_r: This is a video-encoding program and

one could naively think that all we need to do to generate
additional workloads is to collect some videos. But reality
is a bit more complex. The benchmark requires the video
to be in .264 format and, in order to use a validation tool
created for the benchmark, the resolution must be 1280x720.
The workload must also include a control file and Truevision
Graphics Adapter (TGA) versions of the interval of frames to
be dumped. These versions can be generated by first running
the benchmark with the --dumptga option.

Three programs are executed for each workload. First,
the input video is decoded using the ldecod_r program.

6https://github.com/Saxonica/XT-Speedo



Next, the video is encoded again using the x264_r program.
Finally, the output is validated using the imagevalidate_r
program, which compares frames extracted from the video. A
workload also includes several parameters such as the video
frame where the encoding should start, the number of frames
to be encoded, the interval between frames that are output by
the benchmark, and others. The Alberta Workloads include
a script to generate new workloads that, given a video input
and parameters, does most of the work needed to create a
new workload. This script encodes the video and creates a
grayscale version of the video both in one and in two passes.
The Alberta Workloads also include ten new workloads with
high-definition videos that are in the public domain and were
encoded to the x264 video format using the script provided.
531.deepsjeng_r: This benchmark is a chess-playing

and analysis engine that performs an α-β tree search. An
input to 531.deepsjeng_r is a chess position in the
standard Forsyth-Edwards Notation (FEN) with optional Ex-
tended Position Description (EPD) tags and the depth to which
this position should be analyzed (ply depth). The Alberta
Workloads include an script to generate workloads for this
benchmark through the use of 946 positions from the Arasan
chess program’s test suite.7 The inputs to this script are the
number of board positions to include per workload and a range
from which the ply depth for each position will be randomly
chosen. The Arasan chess positions can easily be replaced with
a different set of chess positions by simply replacing the file
read by the script. The Alberta Workloads include nine new
workloads, each one containing eight chess positions with ply
depths varying from 11 to 16.
541.leela_r: This benchmark takes as input an

incomplete game of Go described as the state of the board
and plays the game to the end performing a fixed number
of simulations per move. The nine additional workloads
provided with the Alberta Workloads are randomly selected
sets of Go positions taken from the No-Name Go Server’s
archive.8 Each of the new workloads contains exactly
six Go positions. Moves are culled from the end of the
game to ensure that the algorithm plays the game to its
completion. The size of the board and number of moves
culled vary between the new workloads. The Alberta
Workloads also include a script that randomly selects Smart
Game Format (SGF) games from the sgf directory and
removes moves from the end of the games so that the games
are incomplete. There are three board sizes to choose from
and the number of moves to be removed can also be specified.

548.exchange2_r: This benchmark is a Sudoku puz-
zle generator. The input to the benchmark is a collection
of valid Sudoku puzzles, each puzzle represented by 81
characters. These puzzles are used as seeds for the generation
of new puzzles with identical clue patterns. The benchmark is
distributed with a collection of 27 puzzles to be used as seeds.

7http://www.arasanchess.org/tests.html
8https://github.com/zenon/NNGS_SGF_Archive

For the generation of additional workloads we attempted to
use different sets of seed puzzles but that led the benchmark
execution to be too short — even when the seed puzzles were
rated at the highest level of difficulty by Sudoku generators.
Thus the ten additional workloads provided also use the 27
seeds distributed with the benchmark. The Alberta Workloads
also include a script that, given the number of puzzles to
process per workload, randomly chooses from a file containing
seeds. In the distribution the same seeds distributed with
the SPEC CPU 2017 benchmarks are used, but a different
collection of seeds can be used by replacing a file.
557.xz_r: This benchmark is a file compressor that

uses the LZMA2 compression algorithm. The input to this
benchmark is a file stored in compressed format. The execution
of the benchmark encompasses decompressing the file content
to memory, compressing, and then decompressing it again.
For benchmarking purposes, it is a common practice to repeat
the content of a file multiple times to increase the running
time of the compression algorithm. The contribution of the
Alberta team to this benchmark was significant because the
team discovered that a memoization feature in this benchmark
has non-trivial effect on the portions of the program code
that are executed. The LZMA compression uses a method
called “sliding-window compression” that maintains a buffer
split into two parts: the dictionary and the look-ahead buffer.
The encoding algorithm searches the dictionary for the longest
possible match for the data currently in the look-ahead buffer.
When a match is found, its length, position relative to the start
of the dictionary, and following byte are written to the output
stream. Thus, creating a workload by repeating the content
of a file that is short enough to be captured as an entry in
this dictionary greatly skews the execution from the com-
pression portion of the algorithm to dictionary lookups. This
observation led to improvements in the workloads distributed
with the SPEC CPU 2017 benchmark suite. The Alberta
Workloads include eight new workloads to this benchmark.
These workloads were designed to provide workloads with
both very compressible files and not very compressible files
and also files that are smaller and larger than the dictionary.

B. Workloads for the SPEC CPU FP 2017 Suite

The Alberta Workloads provide new workloads for six out
of fourteen benchmarks in the SPEC CPU FP 2017 suite.
507.cactuBSSN_r: This benchmark solves Einstein

equations in a vacuum using the EinsteinToolkit. The gener-
ation of additional workloads consists of changing computa-
tional parameters to the solver. These parameters are provided
in a file. The seven new workloads were generated following
suggestions for parameter setting from the benchmark authors.
511.povray_r: This is a ray-tracing program. The

seven new workloads aim to exercise different portions of
the program by including different rendering methods and
parameters. The new workloads can be organized into three
categories. The collection workloads represent real-world
uses of POV-Ray and exercise the rendering of moderately
complex geometry made up of simple primitives. The lumpy



workloads render a single object placed over a checkered plane
and illuminated by two spotlights. These workloads tend to
put more stress on the processor’s floating-point unit. The
primitive workloads render some geometric primitives that
are built into POV-Ray. These workloads emphasize rendering
techniques such as reflection, refraction, and camera lens
aperture.
519.lbm_r: This benchmark simulates incompressible

fluids in 3D using the Lattice Boltzmann Method. A workload
for this benchmark consists of an ASCII file describing objects
that occupy the channel that the fluids flow through and some
command-line arguments that specify the number of steps to
be simulated and the type of simulation step used. The Alberta
Workloads include twenty-four new workloads generated by
varying the shape and size of the objects, the object density
and the parameter for the simulation.
521.wrf_r: This benchmark is a numerical weather

prediction system. Each workload is formed by a file generated
by the original Weather Research and Forecasting (WRF)
program on an input data set. These input data sets are
typically captured during major weather disruption events. The
workload also needs a file with parameters that specify how the
weather prediction system will run. The twelve new workloads
included in the Alberta Workloads were generated by running
the original version of WRF (version 3.1.1) on two different
data sets from the hurricane Katrina and from the typhoon
Rusa obtained from the Center for Atmospheric Research
website.9 Workload’s parameters — such as the micro physics,
the long-wave radiation, the land surface temperature, and
the boundary-level scheme — are set through command-line
arguments. The Alberta Workloads include a script that assists
in the generation of new workloads from a WRF input dataset.
This script allows for the easy manipulation of different
physics options for the weather prediction.
526.blender_r: This benchmark creates 3D images

through rendering, modelling, and simulating of material prop-
erties. A workload consists of a .blend file that describes
a scene to be rendered. However, not all .blend files are
suitable workloads for the benchmark because a subset of
features is supported. Also, some .blend files are simply
resources for other .blend files and are not meant to be
rendered. The Alberta Workloads supply a script that can be
used to identify .blend files that work with the benchmark
and a second script that can randomly select .blend files for
use in a workload. Thirteen new workloads, from the Crazy
Glue10 and Elephants Dream11 .blend files, are supplied
with the Alberta Workloads. They use .blend files that
have different maximum runtime memory, start rendering at
different frames, and also vary the number of frames rendered.
544.nab_r: This benchmark, named the Nucleic Acid

Builder, simulates forces at the molecular level. Each input
to this benchmark consists of a protein-data-bank file (pdb),

9http://www2.mmm.ucar.edu/wrf/users/download/free data.html
10http://www.weybec.com/portfolio-item/crazyglue
11https://orange.blender.org.

and a parameter file (prm) The seven new workloads model
forces in seven distinct proteins. The pdb files, which describe
the protein structure, were downloaded from the Brookhaven
Protein Data Bank.12

V. CHARACTERIZING BENCHMARK BEHAVIOUR

An important question is whether changing the workload
for a benchmark will change the behaviour of the benchmark.
This section presents results from three types of measurements.
The first is simply the execution time of the benchmarks
with each workload; the second one is the percentage of the
execution time that a benchmark spends in each of its sub-
routines; and the third one uses Intel’s top down methodology
to estimate how the application is utilizing available hardware
resources. The Alberta Workloads are distributed with an ex-
tensive amount of data and analysis from these measurements
and also includes a study of the variation in branch prediction,
cache/TLB performance, and execution time when different
compilers, with different levels of optimization, are used. Only
a sample of such data is included in this paper along with a
summarization of the data for comparison.

For all the results reported in this Section, the benchmarks
were compiled with GCC 4.8.4 at optimization level -O3,
and the execution times were measured for each workload
on machines with Intel Core i7-2600 processors at 3.4 GHz
and 8 GiB of memory running Ubuntu 14.04 LTS on Linux
kernel 3.16.0-76-generic. The data reported in this section
was generated with a development version of the SPEC CPU
benchmark suite labeled “kit 93”. With the exception of
526_blender, the benchmarks were compiled using GCC
4.8.2. at optimization level O3. The 526_blender bench-
mark was compiled using llvm with optimization level O3.
Details on versions of compiler and configuration machines
are available in each of the individual benchmark reports
distributed with the Alberta Workloads. The times reported
are the mean of three executions of the benchmark with
the same configuration. Three runs were selected because
of the total time required to run all the variations of each
benchmark for the entirety of the results reported with the
Alberta Workloads. The variance observed across these three
executions was minimal and do not affect the summarization
results presented in this paper. The raw execution times for
each run for these specific measurements are made available
with the Alberta Workloads.

A. Execution Time

The reports distributed with the Alberta Workloads contain
bar plots representing the mean and variance of the execution
time of each workload. Due to space constraints, this paper
only includes the mean of the time for three executions of
each benchmark when executing with the refrate workload in
the last column of Table II.

12http://www.rcsb.org/pdb/home/home.do



Benchmark # f b s r
µg(V ) µg(M)

refrate
workloads µg σg µg σg µg σg µg σg time (s)

502.gcc_r 19 23.4 1.2 33.6 1.2 11.9 1.2 29.5 1.1 5.1 25 281
505.mcf_r 7 14.1 1.8 44.9 1.3 15.3 1.6 19.8 1.2 6.9 1 324
507.cactuBSSN_r 11 20.4 1.7 42.8 1.4 0.2 1.3 31.0 1.1 17.1 1 355
510.parest_r 8 12.4 1.1 26.0 1.2 6.9 1.3 53.7 1.1 6.2 5 449
511.povray_r 10 9.4 1.7 39.7 1.5 8.8 2.2 32.7 1.4 9.2 66 535
519.lbm_r 30 1.9 1.8 61.2 1.1 0.4 3.3 34.1 1.3 27.4 59 260
520.omnetpp_r 10 9.1 1.2 64.7 1.1 8.1 1.1 17.4 1.2 6.8 17 577
521.wrf_r 16 7.1 1.4 54.9 1.1 4.3 1.3 32.2 1.0 7.8 4 904
523.xalancbmk_r 8 13.4 1.8 42.7 1.4 2.3 2.4 33.7 1.4 11.8 108 263
526.blender_r 16 17.1 1.6 25.9 1.4 11.3 1.8 41.1 1.1 6.7 44 162
531.deepsjeng_r 12 19.1 1.1 27.4 1.2 11.5 1.1 41.2 1.1 5.0 1 316
541.leela_r 12 16.9 1.1 23.0 1.1 27.6 1.1 32.2 1.0 4.3 1 484
544.nab_r 11 3.6 1.4 55.3 1.1 7.5 1.3 33.0 1.0 7.9 2 476
548.exchange2_r 13 13.9 1.0 22.4 1.0 5.1 1.1 58.6 1.0 5.9 1 920
557.xz_r 12 11.7 1.1 42.8 1.2 16.5 1.3 27.2 1.2 5.5 23 352

TABLE II: Number of workloads, geometric mean (expressed as a percentage) and geometric standard deviation of the fraction
of cycles attributed to front-end bound (f ), back-end bound (r), bad speculation (s), and retiring instructions (r), geometric
mean of the proportional variation, and arithmetic mean of the execution time from three executions of the benchmark with
the refrate workload.

B. Intel’s Top Down Methodology

The Intel’s Top-Down Methodology aims to show how well
a microprocessor’s pipeline resources are used when executing
the application[16]. To this end, the methodology monitors the
allocation of micro-ops and classify each cycle as:

• Front-end Bound: micro-ops could not be allocated
because the microprocessor front-end could not supply
enough micro-operations;

• Back-end Bound: micro-ops could not be allocated be-
cause there are not enough back-end resources available
to process the pending micro-operations;

• Bad Speculation: micro-ops were allocated, however,
they did not retire. This is mainly caused by bad specu-
lation;

• Retiring: micro-ops were allocated and retired.
This information is used to guide the developer to identify the
main sources of overhead in the program.

Typical graphs depicting the outcome of this methodology
are shown in Figure 1. A visual inspection of these graphs
indicates that changing the workloads has much more effect
on the proportion of micro-ops in each category for the
523.xalancbmk_r benchmark than for the 557.xz_r
benchmark. However, displaying and inspecting this type of
graph for all benchmarks with new workloads would not be
possible in this paper. Instead it is desirable to compute a sin-
gle number that gives a sense of the sensibility of a benchmark
program behaviour to changes in workload. For each workload
i this methodology yields four ratios: fi is the proportion of
cycles that are front-end bound; bi is the proportion of cycles
that are back-end bound, si is the proportion of cycles due
to bad speculation, and ri is the proportion of retired cycles.
To summarize the results into a single number for a given

benchmark we first compute the geometric mean for each
of the ratios over all the workloads for the benchmark. For
instance:

µg(f) =
n

√√√√ n∏
i=1

fi (1)

Then we compute the geometric standard deviation for each
rate over all the workloads. For example:

σg(f) = exp


√√√√∑n

i=1

(
ln fi

µg(f)

)2
n

 (2)

The goal now is to capture the proportional variation —
let’s call it V (f) for front-end bound — for each one of the
ratios. Instead of using the coefficient of variation, which is the
ratio between the standard deviation and the mean, we now
compute the ratio between the geometric standard deviation
and the geometric mean for each of the ratios, as illustrated in
Equation 3. This choice is made because the original values
are already ratios.

V (f) =
σg(f)

µg(f)
(3)

Finally, we compute the geometric mean of the proportional
variations to obtain a single variation number for the bench-
mark:

µg(V ) = 4
√
V (f)× V (b)× V (s)× V (r) (4)

The methodology described above is only intended as a
means to allow a summarization for a quick comparison
of overall variability of the behaviour of the benchmarks
when the workload is changed. This methodology is not
recommended to be used to make overarching claims about
such variability. The old maxim look into the data still applies.
Only a detail analysis of much more data than can be included



Fig. 1: Plotting of results from Intel Top-Down Methodology for the 523.xalancbmk_r (left) and the 557.xz_r (right)
benchmarks.

in this paper can support more general claims about such
variability.

Table II reports the geometric mean (µg) and the geometric
standard deviation (σg) for each of the four categories of
micro-ops in the Intel top-down methodology: front-end bound
(f ), back-end bound (b), bad speculation (s), and retiring (r).
The table also reports the geometric mean of the proportional
variation (µg(V )) for each benchmark. An examination of the
values of µg(V ) for the 523.xalancbmk_r and for the
557.xz_r and of the plots in Figure 1 provides anecdotal
indication that the value of µg(V ) could be used as a proxy
for the amount of behaviour variation between benchmarks.
However, a closer look at the data also reveals shortcomings
of this summarization method. A case in point is the data for
519.lbm_r. The issue here is that this benchmark has very
few micro-ops that are attributed to miss-speculation resulting
in a geometric mean of only 0.4%, or 0.004. Because of
these small numbers, and potentially also due to the sampling
of the counters used to collect the data for the Intel top-
down methodology, the geometric standard deviation for the
speculative execution is quite high (3.3). This combination of
low geometric mean and high geometric standard deviation
for a given category leads to a high value of µg(V ) that does
not appear to reflect, in comparison with other benchmarks,
the variability in the behaviour. Similar issues are observed
for 507.cactuBSSN_r.

C. Method Coverage

Another aspect of behaviour variation in a program is the
amount of time spent during the execution in each method.
We define method coverage as the percentage of execution
time spent in each method. The methodology described in
Section V-B is used to summarize method coverage simply by
replacing the methods executed in the program for fi, si, bi
and ri. Thus, let mj represent each method in the program
and let mi,j stand for the fraction of time spent in method j

when a benchmark is executed with workload i. Using similar
relations to the ones shown in Section V-B, we can compute,
for each method mj , the values of µg(mj), σg(mj), and
V (mj). Then, the single number that represents the variation
of behaviour in a given benchmark due to changes in the
fraction of time spent in each method because of changes to
workloads is given by the following geometric mean:

µg(M) = n

√√√√ k∏
j=1

V (mj) (5)

where k is the number of methods executed by the benchmark.
For values for µg(M) shown in Table II functions that account
for less than 0.05% of the time for all workloads are grouped
into an “others” category. To enable the computation of the
geometric mean the value 0.01 is added to the time fraction
of all functions that appear in the computation. Correlating
the values of µg(M) in Table II with the bar graphs in
Figure 2 provides anecdotal evidence that there is a correlation
between µg(M) and the variance in the time spent in different
methods when the workload changes. However the “look into
your data” maxim still stands: the high value of µg(M)
for 519.lbm_r appears to be due to a distinct time usage
in the SPEC test input in an otherwise fairly homogeneous
distribution of times for this benchmark.

VI. RELATED BENCHMARK STUDIES

The evaluation of FDO techniques using the SPEC CPU
suite that executed a single training run with the SPEC train
input and a single evaluation run with the SPEC ref input
led to two questions: (1) how much the reported perfor-
mance depended on that particular choice of workloads for
training and testing; and (2) how sensitive different bench-
mark programs could be to variations in workload. Berube
eventually demonstrated that for some benchmarks there is a
significant-enough sensitivity that published FDO performance
evaluations that do not take this sensitivity into account are



Fig. 2: Variation in function coverage with workload for the 531.deepsjeng_r (left) and the 557.xz_r (right) benchmarks.

meaningless [1], [3]. Berube and Amaral then proposed a
methodology for more appropriate evaluation of FDO using
benchmark suites [4]. That methodology requires that multiple
workloads be available for each benchmark used in the eval-
uation — a requirement fulfilled by the Alberta Workloads.
They also developed a methodology to cluster workloads for
sampling in a situation where a development group has too
many workloads [6]. Berube also contributed a methodology
to combine the information obtained from multiple profiling
executions to provide feedback to a compiler [2], [5].

Chen et al. introduce KDataSets, a suite with 1000 data
sets for 32 programs, most of them from the MiBench bench-
mark suite [9]. The main contrast with the work presented
here is that MiBench is an embedded benchmark suite with
much simpler benchmark programs than the SPEC CPU 2017
suite. Using Eeckhout’s Principal-Component-Analysis-based
methodology [13], Chen et al. conclude that it is possible
to find a near-optimal combination of compiler optimizations
across the data sets. The Alberta Workloads create the pos-
sibility for further analysis to determine if that conclusion
extends to the more complex programs in this suite. Another
analysis that could be extended is the correlation of program-
level behaviour by Jiang et al [17].

Phansalkar et al. presented a methodology to use
microarchitecture-independent characteristics to measure pro-
gram similarities and applied it to the SPEC CPU 2000 bench-
mark suite [23]. They found that the evolution of the SPEC
CPU benchmarks up to SPEC CPU 2000 have increased the
dynamic count of the instructions executed but that the static
count remained about the same, indicating that benchmarks
may execute more iterations through the same instructions.
They characterize the benchmarks by their instruction and
data locality, branch characteristics and instruction-level par-
allelism.

VII. WOULD-BE NICES

The availability of the Alberta Workloads, and scripts to
generate new workloads, for many of the benchmarks in the
SPEC CPU 2017 suite leads to many lines of questions and
possible research work. These include a complete characteri-
zation of the behaviour of the benchmarks with the variation

of workloads using either existing known techniques or new
ones that would be suitable for this set of benchmarks and
workload. It would be important to study how the many FDO
techniques described in the literature perform when they are
evaluated properly with a cross-validation methodology using
the multiple workloads now available. Similarly, it would be
nice to know if kernels created from SPEC benchmark suites to
allow faster simulation studies in computer architecture actu-
ally represent the range of behaviours of the benchmarks when
they are executed with multiple workloads. The likely answers
will be that for some benchmarks the profiles collected by
FDO would display significant variation and thus there will
be much more variation in performance due to FDO than
what has been reported in published papers. Similarly for the
kernels used to back up claims in computer architecture. But
for other types of programs, there are much smaller variations
in behaviour due to changes in workloads. It would be nice to
know which ones are which. It would also be nice to collect
further workloads for some of the benchmarks in the suite,
as well as to work on the ones from the SPEC CPU FP
2017 benchmark suite that were not included in the Alberta
Workloads.

VIII. CONCLUDING REMARKS

The main goal of this publication is to report on the
availability of the Alberta Workloads for the SPEC CPU
2017 Benchmark Suite in the hope that researchers start
using this resource to improve the performance evaluation of
techniques that rely on any type of learning. This includes
formal Feedback-Directed Optimization (FDO), which should
be evaluated using techniques such as cross validation, and
informal parameter settings in techniques where learning is not
formally described. There shall be interest also in industries
that are interested in stressing their software tool stack. The
original motivation for this work, many years ago, was a
frustration with discussions in program committees of very
high profile conferences where the argument was made that
FDO studies that used a single workload for training and a
single workload for testing — and for a while these two were
often the same — could be excused because the researchers



did not have access to multiple workloads for the published
benchmark programs. The Alberta Workloads are currently
available in a University of Alberta’s website13 and have also
been submitted to the SPEC Research Group so that they can
be archived directly in the spec.org website as one of the
SPEC Research Group tools.14

IX. ACKNOWLEDGEMENTS

The Alberta Workloads for the SPEC CPU 2017 would not
exist without the strong support from, and active collaboration
with, the SPEC Open Systems Group CPU working group.
Many individual members contributed and supported this
effort, including Cloyce Spradling, Jeff Reilly, John Henning,
James Bucek, Matthew Colgrove, Alan MacKay, Michael
Carroll. We also thank the SPEC Board of Directors from the
approval of the supporting status to the SPEC OSG CPU group
for the University of Alberta. Students that worked in this
project were supported by fellowships from the Natural Sci-
ences and Engineering Research Council (NSERC) of Canada
and by the Brazilian Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico (CNPq) through the Science Without
Borders program.

REFERENCES

[1] P. Berube. Aestimo a feedback-directed optimization evaluation tool.
Master’s thesis, University of Alberta, Edmonton, AB, Canada, Septem-
ber 2005.

[2] P. Berube. Methodologies for Many-Input Feedback-Directed Opti-
mization. PhD thesis, University of Alberta, Edmonton, AB, Canada,
September 2012.

[3] P. Berube and J. N. Amaral. Aestimo: A feedback-directed optimization
evaluation tool. In Intern. Symp. on Performance Analysis of Systems and
Software (ISPASS), pages 251–260, Austin, TX, March 2006. NSERC,
(iCore), IBM.

[4] P. Berube and J. N. Amaral. Benchmark design for robust profile-
directed optimization. In Standard Performance Evaluation Corporation
Benchmark Workshop, Austin, January 2007. Received Kaivalya Dixit
award, NSERC, (iCore).

[5] P. Berube and J. N. Amaral. Combined profiling: A methodology to
capture varied program behavior across multiple inputs. In Intern. Symp.
on Performance Analysis of Systems and Software (ISPASS), pages 210–
220, New Brunswick, NJ, USA, April 2012.

[6] P. Berube, J. N. Amaral, R. Ho, and R. Silvera. Workload reduction
for multi-input profile-directed optimization. In Intern. Symp. on Code
Generation and Optimization (CGO), pages 59–69, Seattle, WA, USA,
March 2009. (NSERC), AIF, iCore.

[7] M. Breughe, Z. Li, Y. Chen, S. Eyerman, O. Temam, C. Wu, and
L. Eeckhout. How sensitive is processor customization to the workload’s
input datasets? In Symposium on Application Specific Processors
(SASP), pages 1–7, June 2011.

[8] D. Chen, D. X. Li, and T. Moseley. AutoFDO: Automatic feedback-
directed optimization for warehouse-scale applications. In Intern. Symp.
on Code Generation and Optimization (CGO), pages 12–23, Barcelona,
Spain, 2016.

[9] Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam,
and C. Wu. Evaluating iterative optimization across 1000 datasets.
In Conference on Programming Language Design and Implementation
(PLDI), pages 448–459, Toronto, ON, Canada, 2010.

[10] R. Chouhan, S. Roy, and S. Baswana. Pertinent path profiling: Tracking
interactions among relevant statements. In Intern. Symp. on Code
Generation and Optimization (CGO), pages 1–12, Shenzen, China, 2013.

13https://webdocs.cs.ualberta.ca/∼amaral/
AlbertaWorkloadsForSPECCPU2017/

14https://research.spec.org/tools

[11] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and
S. Amarasinghe. Autotuning algorithmic choice for input sensitivity.
In Conference on Programming Language Design and Implementation
(PLDI), pages 379–390, Portland, OR, USA, 2015.

[12] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Designing
computer architecture research workloads. IEEE Computer, 36(2):65–
71, February 2003.

[13] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Quantifying
the impact of input data sets on program behavior and its applications.
Journal of Instruction-Level Parallelism (JILP), 1(33):1–33, April 2003.

[14] I. Gartley, V. Sundaresan, M. Pirvu, and N. Grcevski. Experiences
in designing a robust and scalable interpreter profiling framework. In
Intern. Symp. on Code Generation and Optimization (CGO), pages 1–10,
Shenzen, China, 2013.

[15] Q. Guo, T. Chen, Y. Chen, and F. Franchetti. Accelerating architectural
simulation via statistical techniques: A survey. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35(3):433–
446, March 2016.

[16] Intel. Tuning applications using a top-down microarchitecture analy-
sis method. https://software.intel.com/en-us/vtune-amplifier-help-tuning-
applications-using-a-top-down-microarchitecture-analysis-method. ac-
cessed October 2017.

[17] Y. Jiang, E. Zhang, K. Tian, F. Mao, M. Gethers, X. Shen, and Y. Gao.
Exploiting statistical correlations for proactive prediction of program
behaviors. In Intern. Symp. on Code Generation and Optimization
(CGO), pages 248–256, 2010.

[18] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G. Y. Wei, and D. Brooks. Profiling a warehouse-scale computer. In
International Symposium on Computer Architecture (ISCA), pages 158–
169, June 2015.

[19] A. Löbel. MCF: a network simplex implementation, January 2000.
http://www.zib.de/opt-long projects/Software/Mcf/latest/mcf-1.2.pdf.

[20] S. Mahlke, T. Moseley, R. Hank, D. Bruening, and H. K. Cho. Instant
profiling: Instrumentation sampling for profiling datacenter applications.
In Intern. Symp. on Code Generation and Optimization (CGO), pages
1–10, Shenzen, China, 2013.

[21] S. McCamant. Large single compilation-unit c programs.
http://people.csail.mit.edu/smcc/projects/single-file-programs/.

[22] A. K. Osowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark
workload for simulation-based computer architecture research. Com-
puter Architecture Letters, 1, June 2002.

[23] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John. Measuring pro-
gram similarity: Experiments with spec cpu benchmark suites. In Intern.
Symp. on Performance Analysis of Systems and Software (ISPASS), pages
10–20, March 2005.

[24] Z. Wang, K. Pierce, and S. McFarling. BMAT – a binary matching
tool for stale profile propagation. The Journal of Instruction-Level
Parallelism, 2, May 2000.

[25] M. Zhou, B. Wu, Y. Ding, and X. Shen. Profmig: A framework for
flexible migration of program profiles across software versions. In
Intern. Symp. on Code Generation and Optimization (CGO), pages 1–12,
Shenzen, China, 2013.


