
Monte Carlo Tree Search in Hex
Broderick Arneson, Ryan B. Hayward, Philip Henderson

IEEE Trans. on Comput’l Intel. and AI in Games (special issue: Monte Carlo Techniques and Computer Go)
vol 2 no 4 Dec 2010 251-257

Abstract— Hex, the classic board game invented by Piet
Hein in 1942 and independently by John Nash in 1948, has
been a domain of artificial intelligence research since Claude
Shannon’s seminal work in the 1950s.

Until the Monte Carlo Go revolution a few years ago, the
best computer Hex players used knowledge-intensive alpha-beta
search. Since that time, strong Monte Carlo Hex players have
appeared that are on par with the best alpha-beta Hex players.
In this paper we describe MoHex, the Monte Carlo Tree Search
Hex player that won gold in the 2009 Computer Olympiad.

Our main contributions to Monte Carlo Tree Search include
using inferior cell analysis and connection strategy computation
to prune the search tree. In particular, we run our random game
simulations not on the actual game position, but on a reduced
equivalent board.

I. I NTRODUCTION

Monte Carlo Tree Search (MCTS) is an exciting new
development in the field of automated game players, attaining
great success in a variety of games, most notably Go [10],
[11], [13], [25].

Hex is the classic board game invented by Piet Hein in
1942 and independently by John Nash in 1948 [19], [31].
Hex has been a domain of artificial intelligence research since
Claude Shannon’s seminal work in the 1950s [34].

Like Go, Hex has a large branching factor that limits
automated players to shallow or selective search. Unlike
Go programs, Hex programs have reasonably strong eval-
uation functions, and therefore straightforward alpha-beta
techniques have been successful [3], [6], [28].

We began experimenting with the possibility of an effec-
tive automated Hex player based on the MCTS framework in
early 2007. The resulting player, named MoHex, won silver
and gold respectively in the 2008 and 2009 Hex Computer
Olympiads [5], [6]. In the latter tournament MoHex was
undefeated.

In this paper we describe the framework of MoHex, with
particular emphasis on its algorithmic contributions which
exploit mathematical properties of Hex:

• MoHex uses proven knowledge in the MCTS tree to
prune inferior children, and

• MoHex computes Monte Carlo simulations from a re-
duced equivalent board, rather than the actual game
board.

In §II we review the rules of Hex, and algorithms for
finding inferior cells and connection strategies. In§III we
discuss previous automated Hex players and review the
success of alpha-beta based programs. In§IV we describe
the basic framework of MoHex. In§V we describe our
enhancements of MoHex, especially Hex-specific techniques

for pruning children in the MCTS tree, and for constructing
reduced but equivalent boards which improve and accelerate
MoHex’s game simulations. In§VI we analyze experimental
data which measures the effectiveness of our techniques and
the scaling of MoHex’s strength with greater computing
power. In §VII we analyze MoHex’s performance against
other automated Hex players. In§VIII we discuss the poten-
tial application of these techniques to related games, such
as Y and Havannah. In§IX we review MoHex’s current
limitations, and avenues for future research.

II. RULES AND ALGORITHMS OF HEX

A. Rules of Hex

Hex has simple rules: Black and White alternate turns, and
on each turn a player places a single stone of their colour
on any unoccupied cell. The winner is the player who forms
a chain of their stones connecting their two opposing board
sides. See Figure 1.

Fig. 1. An empty 5×5 Hex board and a game won by White.

It is never disadvantageous for players to have an extra
stone of their colour on the board, and Hex can never end in
a draw, so by Nash’s strategy-stealing argument Hex is a first-
player win on alln×n boards [31]. The first-player advantage
is considerable and when unrestricted usually leads to an
easy win, so Hex is often played with the swap rule: the first
player makes Black’s first move, and the second player then
chooses whether to play as Black or White. White makes the
next move, and the players alternate turns thereafter. This
variation is a second-player win, but in practice produces
closer games than without the swap rule.

Like Go, Hex can be played on anyn×n board. The
Computer Olympiad Hex tournaments use 11×11 boards.
Humans typically play on board sizes ranging from 11×11 to
19×19 [24], [27], with beginners often starting out on smaller
boards. Automated Hex solvers have solved all opening
moves on all board sizes up to and including 8×8 [21].

B. Inferior Cell Analysis

There are two main techniques in Hex inferior cell analy-
sis: fillin and move pruning.

Fillin is the process of adding to a Hex position a set of
stones that is guaranteed not to alter the position’s minimax

Fig. 2. Local fillin patterns. Top three patterns identify dead cells, and
can be filled in with stones of either player. Bottom three patterns identify
Black-captured regions, and can be filled in with Black stones.

value. There are two main categories of fillin: dead cells
and captured regions. Adead cellis a cell that is provably
useless for both players. Acaptured regionis a set of cells on
which one player has a second-player strategy that negates
any benefit their opponent might gain from playing in the
region. MoHex uses nineteen local patterns for identifying
dead cells and captured regions; some are shown in Figure 2.
MoHex also uses graph-theoretic algorithms and board de-
compositions to find larger classes of fillin configurations
[21].

Move pruningis the process of omitting from considera-
tion a legal move in the current game position. Combinatorial
game theory allows reversible moves to be bypassed, and
dominated moves to be pruned as long as some dominat-
ing move is considered [8]. This theory forms the basis
for pruning various forms of Hex cell, including vulnera-
ble, captured-reversible, fillin-dominated, and induced-path
dominated cells [15], [16], [18], [22], [23]. As with fillin,
MoHex uses (about 250) local patterns to find such cells.
See Figure 3.

Fig. 3. Local inferior cell patterns. Empty cells can be pruned from
consideration by Black based on their reversible/dominated relation to the
corresponding dotted cells.

C. Computing Connection Strategies

H-search is an algorithm that finds cell-to-cell connection
strategies in a given Hex position [2], [4]. Starting with
the base case of trivially connected adjacent cell pairs, H-
search inductively builds larger connections by combining
smaller ones in series and parallel until no further connection
strategies are found. H-search is known to be incomplete; in
particular, it misses some relatively simple connections with
overlapping substrategies that humans can easily detect. Thus
minor H-search extensions have been developed [20], [32].

A virtual connection(VC) is a second-player strategy for
connecting two endpoints, and avirtual semi connection(SC)
is a first-player strategy for connecting two endpoints. A
winning connectionis a strategy whose two endpoints are
opposing board sides. Thecarrier of a connection strategy
is the (minimal) set of empty cells required to carry out this
strategy. See Figure 4.

+

Fig. 4. A Black VC and a Black SC. Carriers are shaded, endpoints are
dotted, and the first move of the SC strategy is×.

If H-search finds a winning VC for either player, or a
winning SC for the player to move, then this player can win
by following the discovered connection strategy.

If H-search finds a winning SC for the player who just
moved, then the player to move need only consider moves
inside the carrier of this SC, since all other moves are
provably losing; that is, all moves outside the winning SC’s
carrier leave the opponent a winning SC on their next turn.
The mustplayfor the player to move is the intersection of
their opponent’s winning SC carriers. By the same reasoning,
all moves outside the mustplay are provably losing. See
Figure 5.

Fig. 5. Two White winning SC carriers and the corresponding mustplay
for Black.

H-search prunes many losing moves and produces perfect
endgame play, but is time-costly: efficient implementations
can compute the connection strategies for about 25 positions
per second on tournament-sized 11×11 boards.

III. A LPHA-BETA HEX PLAYERS

Together with E.F. Moore, Claude Shannon developed the
first automated Hex player in the 1950s, an electronic circuit
network which set positive charges for one player’s stones,
negative charges for the other player’s stones, and then
played at a certain saddle point. The computer played strong
opening moves but sometimes erred in tactical situations
[34]. Shannon also developed a computer to play Bird Cage,
now known as Bridg-it, a game similar to Hex. This circuit

network set the resistance of one player’s stones to zero, the
resistance of the other player’s stones to infinity, and then
played at a cell with greatest voltage drop [12].

In 2000 Hexy won the first Computer Olympiad Hex com-
petition [3]. Hexy’s evaluation function uses an augmentation
of Shannon’s Bird Cage circuit in which extra wires are
added which correspond to connections found by H-search
[2]. Hexy uses this evaluation function in a straightforward
alpha-beta search.

In 2003, 2004, and 2006 Six won the next three Computer
Olympiad Hex competitions [17], [29], [35]. Six significantly
refines the Hexy framework by improving H-search effi-
ciency via heuristic limits, restricting the alpha-beta branch-
ing factor, tuning the evaluation function, and using a small
amount of inferior cell analysis [28]. Six uses a truncated
2-ply alpha-beta search. Six is open source and has been
played by many humans. It is generally considered to be a
very strong, although not quite expert, player on board sizes
up to 11×11, with near-perfect play on board sizes up to
8×8 [27].

In 2008 Wolve won the fifth Computer Olympiad Hex
competition, defeating the previous champion four games to
zero [6]. Wolve was developed in conjunction with MoHex
and shares the same codebase. Wolve improves on Six’s
design by modifying the evaluation function, improving H-
search efficiency, using much more inferior cell analysis,
using an opening book generated by self-play, and using a
solver in parallel with the player. Like Six, the 2008 version
uses a 2-ply search. The 2009 version of Wolve searches to
4-ply when time allows.

In summary, computer players using alpha-beta search
have proven to be strong competitors against skilled human
players, and until 2008 dominated computer Hex competi-
tions.

IV. BASIC MOHEX FRAMEWORK

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a best-first search
algorithm that is guided by the outcome of random game sim-
ulations. The algorithm is composed of three basic phases:

1) tree traversalfrom the root to some leaf node,
2) random game simulationfrom the leaf node’s corre-

sponding game position, and
3) tree update using information from the simulated

game.

The basic algorithm is anytime, repeating these steps until
no more time remains. After the tree traversal phase, the
search tree is expanded by adding the children of the selected
leaf node. When MCTS terminates, the child with the largest
subtree (i.e. which produced the most simulations) is selected
as the best move.

MoHex’s MCTS is built on the codebase of Fuego, the Go
program developed by Martin M̈uller et al. at the University
of Alberta [10].

B. Tree Traversal and Update

MoHex uses the UCT framework combined with the all-
moves-as-first (AMAF) heuristic to select the best child
during tree traversal [14], [25]. Like Fuego, MoHex plays
strongest when it uses an exploration constant of zero,
effectively turning off UCT exploration and relying solely
on the AMAF heuristic to find strong candidate moves.

The tree update phase updates the win/loss statistics for
each move in the simulated game. Updates occur at each
node along the path from the leaf to the root, thereby
influencing leaf node selection in future tree traversals.

C. Random Game Simulation

Playing Hex until the board is completely filled results
in the same win/loss outcome as stopping once one player
has a winning chain, so the random game simulation need
not check for game termination after each move. Hence Hex
game simulations can be efficiently implemented: add all
empty cells to an array, shuffle them randomly, and play the
remaining moves in order. A consequence of this particular
implementation is that each legal move’s AMAF statistics
are updated after each game simulation.

Fig. 6. Bridge rollout pattern: if White plays one empty cell, Black plays
the other.

As with Go, it is beneficial to apply some knowledge
during simulated games [9]. MoHex uses a single pattern
during random game simulation: if a player probes any
opponent bridge, then the opponent always replies so as to
maintain the connection. See Figure 6. If multiple bridges
are probed simultaneously, then one such bridge is randomly
selected and then maintained.

Fig. 7. 4-3-2 VC rollout pattern: if White plays a shaded cell, Black
maintains the connection by playing the corresponding dotted cell.

Yopt, another MCTS Hex program, uses additional pat-
terns based on another commonly occurring VC [33]. See
Figure 7. However, in our tests MoHex showed no strength
gain from such patterns.

V. M OHEX ENHANCEMENTS

A. Tree Knowledge

Like many other MCTS players, MoHex uses knowledge-
intensive algorithms in important parts of the tree, as wellas
flags to indicate solved states [36].

Using a fixed “knowledge threshold”, if any node is visited
often enough during tree traversal, then both inferior cell
analysis and the H-search algorithm are run on that position.
There are two possible outcomes: either fillin or H-search
solves the position, or the position value is still unknown.

In the former case, all child subtrees are deleted, and
the tree node is marked such that any tree traversal that
encounters this node omits the random game simulation, and
simply updates its ancestor nodes using the correct outcome.

In the latter case, subtrees corresponding to moves that can
be eliminated via inferior cell analysis or mustplay results are
pruned from the tree.

Furthermore, for every tree node that surpasses the knowl-
edge threshold, its fillin computation is stored permanently
and applied to every tree traversal. Since fillin is computed
anew for each tree node, there can be disagreement between
the fillin of a node and its child, so the descendant node’s
fillin takes precedence, and any prior fillin knowledge is
ignored.

b

b

b

b b

b b

b

b b b

b

b b

b

b

b b b

1) Node reaches knowledge threshold; perform inferior cellanalysis and

H-search computations.

b

b

b

b b

b b

b

b b b

b

b b

b

2) Prune children that are inferior or outside of mustplay.

b

b

b

b b

b b b

3) Remove subtrees of all remaining children.

Fig. 8. Applying knowledge to the Monte-Carlo tree.

This fillin produces two benefits. Firstly, the random game
simulations are shorter (since the number of empty cells
has decreased), and thus allows more game simulations per
second. Secondly, the accuracy of the game simulations
should improve, since any resolved regions of the board are
guaranteed to have the correct outcome.

Although each child node corresponding to a fillin move
is deleted, a fillin move might still be available in some
child’s subtree, possibly yielding an illegal game sequence in

which a fillin move is played. To avoid this, each unpruned
child’s subtree is also deleted excepting their roots and all
relevant statistics (e.g. UCT and AMAF data). Note that any
subsequent tree expansions below the parent node will not
conflict with the fillin. See Figure 8.

The knowledge threshold is typically small (e.g. the 2009
Olympiad version had threshold 50), so the size of any
truncated subtree is small, and the subsequent loss of in-
formation is apparently more than compensated by the gain
in performance.

Fig. 9. A Hex position and its fillin reduced position.

For instance, consider the top Hex position in Figure 9. If
MoHex evaluates this position for Black without knowledge,
it consistently gets a score of 71-73% for 30s searches. By
applying knowledge in the Monte Carlo tree, fillin produces
the bottom Hex position in Figure 9, and the evaluation
scores plummet to 1–8% for 30s searches. This behaviour
also holds for other MCTS Hex players: this position was
taken from an olympiad game between Yopt and Wolve,
where Yopt’s evaluation score surpassed 90% in the endgame
despite its losing position.

B. Lock-Free Parallelization

MoHex uses the Fuego codebase, and so benefits from
Fuego’s lock-free parallel MCTS [10]. MoHex’s knowledge
computations are handled within this lock-free framework.
Thus it is possible for different threads to perform duplicate
knowledge computations concurrently, but this is extremely
rare in practice.

C. Parallel Solver

MoHex runs a Hex solver concurrently with the search.
This produces perfect play whenever the game position can
be solved quickly. This solver uses inferior cell analysis and
H-search in the same way as MoHex: to identify state values,
and prune inferior moves from consideration.

The solver is based on depth-first proof number (DFPN)
search, and so also relies on these knowledge computations
to restrict its branching factor and guide it to the strongest
moves [1], [30]. It also uses a move ordering heuristic to
temporarily prune the weaker moves of each node in the
DFPN search tree, gradually revealing them as their sibling
moves are proven to be losing. This technique reduces the
combinatorial explosion of large branching factors, and also
prevents the winning player from spending time exploring
(heuristically) weaker moves.

Our solver can solve all 8×8 openings in roughly 30 hours.
It has also solved over half of the 9×9 openings [7].

D. Time Management

Over thousands of games between strong players (i.e. any
of MoHex, Wolve, Six), the average 11×11 game length
is about 60 moves. Within a one-minute search, MoHex’s
solver usually computes the game’s value by move 35, and
almost always by move 45. This bounds the number of moves
MoHex needs to generate in a game. Hex tournaments allow
30 minutes per player, so MoHex can easily allot one minute
per move. In the 2009 Computer Olympiad, MoHex allotted
96 seconds per move.

VI. EXPERIMENTAL RESULTS

Because of the swap rule, an automated Hex player needs
to be able to respond competently to every opening move
the opponent might select. Thus our testing iterates over all
11×11 openings with the swap rule off, with each program
playing once as Black and once as White for every opening.
Thus one round consists of 11×11×2=242 games. In order
to reduce the standard error to a small percentage, we
typically run several rounds.

While this testing format is helpful in identifying weak-
nesses in our algorithm’s performance (e.g. openings where
we perform poorly as both Black and White), it signifi-
cantly dampens any strength gains obtained, as polarized
openings (i.e. openings easily won by Black or White) are
played twice, and essentially guarantee at least some wins
for the weaker player. Thus the Elo gains reported in our
experiments underrepresent the expected tournament play
Elo improvement.

A. Scaling

MCTS is a parallelizable anytime algorithm, so the scaling
of its performance with respect to time and number of threads
is important.

As with many other MCTS programs, MoHex’s strength
scales logarithmically versus time, with each doubling of the
game simulations producing roughly an additional 36 Elo of

strength: 8s/move MoHex defeats 1s/move MoHex 65.1% of
the time. See Figure 10.

 45

 50

 55

 60

 65

 70

 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

w
in

s

Number threads / time multiplier

single threaded
lock-free

locked

Fig. 10. Performance of locked, lock-free, and time-scaledsingle threaded
MoHex against single threaded 1s/move MoHex.

As with Fuego, the lock-free version of multithreaded
MoHex scales far better than the locked alternative. Indeed,
the change here is even more dramatic than that in Go —
scaling of the locked version is worse with two threads,
and performance actually degrades with only four threads
— presumably because the game simulations in Hex are so
much faster than in Go, and the threads spend most of their
time in the tree. See Figure 10.

B. Heuristic Techniques

Both the bridge pattern and AMAF heuristic give major
strength gains for MoHex. The bridge pattern produces a 105
Elo strength gain against a naive UCT implementation (with
an optimized exploration constant of 0.7), and this improved
version is surpassed by another 181 Elo by adding the AMAF
heuristic (and turning off UCT exploration). Based on the
scaling information above, this total strength gain is roughly
equivalent to a 250-fold increase in computing time. See
Figure 11.

Incrementally Added Feature Win % Elo gain
Bridge pattern 64.7%± 1.4% 105

AMAF heuristic 73.9%± 1.3% 181

Fig. 11. The bridge pattern and AMAF heuristic improve playing strength
by 286 Elo.

We tested many inferior cell analysis patterns as game
simulation patterns. Unfortunately, in all cases these patterns
gave MoHex no strength gain. This provides evidence that
provably correct information in game simulations can weaken
MCTS players.

C. Tree Knowledge

Adding tree knowledge to MoHex is roughly equivalent
to doubling the number of game simulations. The optimal
knowledge threshold seems to be 400 for the single threaded
version, and to decrease proportionally with the number of

 50

 55

 60

 65

 70

 75

 0 100 200 300 400 500 600 700 800 900 1000

P
er

ce
nt

ag
e

w
in

s

Knowledge threshold multiplied by number of threads

1 thread
2 thread
4 thread
8 thread

Fig. 12. Threaded 8s/move MoHex with knowledge against 2-ply Wolve.
A knowledge threshold of zero means that no knowledge is computed.

threads. A very low knowledge threshold can worsen perfor-
mance, due to the corresponding decrease in the number of
rollouts. See Figure 12.

D. Opening Book

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 1 2 3 4 5

P
er

ce
nt

ag
e

w
in

s

MoHex with 25k * 2^(x-1) Simulations / Move

no book
10k book
40k book

160k book

Fig. 13. MoHex with books of increasing size against 100k / move MoHex
with no book.

MoHex’s opening play can be inconsistent, perhaps be-
cause there is so little existing structure to guide the random
game simulations. We are investigating the construction ofan
opening book using Lincke’s method [26]. Our initial results
are promising, with an opening book for 9×9 Hex that was
constructed in a day producing gains of 85 Elo, which is
worth more than a doubling of simulations. As the book
size increases, the strength gains grow logarithmically. See
Figure 13.

VII. T OURNAMENT PERFORMANCE

As mentioned earlier, MoHex won gold in the 2009 Com-
puter Olympiad. Its opponents were Yopt, another MCTS-
based player, and the previous alpha-beta based champions
Wolve and Six. See§III. Although MoHex was undefeated,

it nevertheless had a few close games, three of which we
briefly examine here. See Figure 14.

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11
1

2
3

4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29

30
31

32

33
34

35

36

3738

39

40
41

42
43

44

4546

47

48
49

50

51

52

53
5455

5657
58

59
60

61
62

63

64
65

66
67

68

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

1

2

3
4

5
6

7
8

9
10

11
12

13
14

15

16
17

18

19

20

21
22

23

24

25

26

27

28
29

30

31

32

33
34

35

36 37

38

39 40

41

42

43
44

45
46

47
48

49

50

51

52
53

54

55

56
57

58

59
60

61
62

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11
1

2

3

4

5
6

7

8

9
10

11
12

13
14

15

16

17
18

19

20

21
22

23

24

2526

27
28

29
30

31
32

33

34

35
36

37 38

39
40

41 42

43

Fig. 14. MoHex 2009 Computer Olympiad games. From top to bottom,
opponents are Wolve, Six, and Yopt. MoHex is White in all games.

Against Wolve, MoHex’s evaluation was close to 50%
throughout the game, until its parallel solver indicated that
the game was won. Wolve’s move 37 looks weak — k2 seems
preferable to k3 — but Wolve had already lost the game at
that point.

Against Six, the game’s progression is surprising, since
MoHex’s opening play is weak and Six develops a strong
wall of influence within 19 moves. Nevertheless, MoHex
manages to play effectively, with an especially brilliant move
36. MoHex’s parallel solver generates moves 40 and beyond.
Post-game analysis revealed the game was close: MoHex
blundered on move 38 and Six blundered on move 39.

Against Yopt, the game is straightforward, with parallel

bridge structures and many probes of such connections. Post-
game analysis indicates that Yopt played winning moves 27
and 29, but that move 31 is a blunder: d4 loses while c4
wins. MoHex maintains its winning position from this point
on.

See the Olympiad report for further commentary [5].

A. Experimental Tournaments

Because Olympiad results are based on a very small sam-
ple size, we also ran our own tournaments between MoHex
and the two previous champions, Six and Wolve. These
tournaments omitted opening books and parallel solvers, so
that the results measure only the relative strength of each
player’s search engine. We did not run tests against Yopt
since this program is not publically available. The results
are summarized in Figure 15. Basically, MoHex dominates
Six and is evenly matched with Wolve.

Opponent MoHex Win %
Six 76.6± 3.6

Wolve 49.2± 3.2

Fig. 15. MoHex: performance against Six and Wolve.

VIII. A PPLICATION TO OTHER GAMES

The application of tree knowledge to MCTS, in particular
the use of fillin, can be generalized to other classical board
games. Most of Hex’s inferior cell analysis applies to Y (with
only minor modifications relating to the fact that board sides
are not owned by players in Y), and so a MCTS Y player
could likewise use fillin and inferior cell knowledge in its
Monte Carlo tree.

Fillin and inferior cell pruning can also be computed
for Havannah, but the existence of rings as a winning
condition (instead of just connecting paths, such as bridges
and forks) makes this process far less straightforward. Our
group has performed some initial research on this topic, but
no implementation of these ideas has yet been performed.
Due to the relative rarity of such patterns in Havannah, we
expect this knowledge to yield only a minor gain, although it
may be more useful in terms of improving a player’s parallel
solver.

For games like Go where such theoretical pruning is
extremely difficult and/or rare, perhaps heuristic fillin — such
as preventing simulated games from playing in the territory
of live groups and seki regions — could prove useful in
improving accuracy and speeding up simulated games.

IX. L IMITATIONS AND FUTURE WORK

Despite MoHex’s recent success, there are still many
aspects that can be improved.

MoHex does not fully exploit the connection strategies
it computes. Although H-search finds connection strategies,
MoHex uses this information only for pruning and endgame
play. In particular, simulated games do not use known
connection properties. As expected, the near-random games

usually do not maintain important connections, especially
when the carrier is large.

We have tested many algorithms that incorporate connec-
tion strategies into the simulations, including the following
two: heuristically select connections to maintain during the
simulation; at the root node, allow the choice of maintaining
some subset of a given list of connection strategies.

Unfortunately, all of these techniques greatly worsened
performance. The best variation to date involves using com-
mon responses in the Monte Carlo tree to guide the responses
in the simulated game; investigations are still ongoing.

Given the strength of our parallel solver, stronger inte-
gration of the solver and MCTS could produce even greater
benefits. Currently the solver indicates only whether the root
position has been solved; the solver could instead inform
MoHex of any tree nodes that it has solved. Furthermore,
it might be desirable for the search tree to indicate which
moves it currently prefers, thereby encouraging the solverto
explore the most pertinent lines.

Other possibilities include using the AMAF heuristic to
influence the random game simulations, ensuring that moves
perceived to be strong are played early in the simulation.
Also, heuristic initialization of moves in the Monte Carlo
tree may ensure that strong moves are always explored or
speedup the UCT convergence, although such methods have
not yet been successful in Monte Carlo Hex.

X. CONCLUSION

We have applied Monte Carlo Tree Search techniques to
produce an automated Hex player that is on par with the
best players produced via the classical alpha-beta approach.
The potential for further improvement remains, especially
in terms of better incorporating connection strategies in the
tree and game simulations, improved knowledge computation
in the tree (i.e. parallel solver updates), development of an
opening book, and improving simulation quality.

Acknowledgements

We are indebted to Sylvain Gelly of the MoGo team and
Martin Müller, Markus Enzenberger, David Silver of the
Fuego team for many useful discussions regarding Monte
Carlo Tree Search. We also thank Gábor Melis and Tristan
Cazenave for useful discussions regarding their respective
automated Hex players.

REFERENCES

[1] L. Victor Allis. Searching for Solutions in Games and Artificial Intel-
ligence. PhD thesis, University of Limburg, Maastricht, Netherlands,
1994.

[2] Vadim V. Anshelevich. The game of Hex: An automatic theorem
proving approach to game programming. InAAAI/IAAI, pages 189–
194, Menlo Park, 2000. AAAI Press / The MIT Press.

[3] Vadim V. Anshelevich. Hexy wins Hex tournament.ICGA Journal,
23(3):181–184, 2000.

[4] Vadim V. Anshelevich. A hierarchical approach to computer Hex.
Artificial Intelligence, 134(1–2):101–120, 2002.

[5] Broderick Arneson, Ryan B. Hayward, and Philip Henderson. MoHex
wins Hex tournament.ICGA Journal, 32(2):114–116, 2009.

[6] Broderick Arneson, Ryan B. Hayward, and Philip Henderson. Wolve
2008 wins Hex tournament.ICGA Journal, 32(1):49–53, March 2009.

[7] Broderick Arneson, Ryan B. Hayward, and Philip Henderson. Solving
Hex: Beyond humans. Accepted to Computers and Games, 2010.

[8] Elwyn Berlekamp, John H. Conway, and Richard K. Guy.Winning
Ways for Your Mathematical Plays, volume 1–4. A.K. Peters, 2nd
edition, 2000.

[9] Rémi Coulom. Computing Elo ratings of move patterns in the game
of Go. ICGA Journal, 30(4):198–208, December 2007.

[10] M. Enzenberger and M. M̈uller. Fuego homepage, 2008. Date of
publication: May 27, 2008. Date retrieved: March 14, 2010.

[11] D. Fotland. The Many Faces of Go, version 12, 2009. Date retrieved:
April 1, 2009.

[12] Martin Gardner.The 2nd Scientific American Book of Mathematical
Puzzles and Diversions, chapter 7, pages 78–88. Simon and Schuster,
New York, 1961.

[13] S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modificationof UCT
with patterns in Monte-Carlo Go, 2006. Technical Report RR-6062.

[14] Sylvain Gelly and David Silver. Combining online and offline
knowledge in UCT. In Zoubin Ghahramani, editor,ICML, volume
227 of ACM International Conference Proceeding Series, pages 273–
280. ACM, 2007.

[15] Ryan Hayward, Yngvi Bj̈ornsson, Michael Johanson, Morgan Kan,
Nathan Po, and Jack van Rijswijck. Solving7 × 7 Hex with
domination, fill-in, and virtual connections.Theoretical Computer
Science, 349(2):123–139, 2005.

[16] Ryan B. Hayward. A note on domination in Hex. Technical report,
University of Alberta, 2003.

[17] Ryan B. Hayward. Six wins Hex tournament.ICGA Journal,
29(3):163–165, 2006.

[18] Ryan B. Hayward and Jack van Rijswijck. Hex and combinatorics.
Discrete Mathematics, 306(19–20):2515–2528, 2006.

[19] Piet Hein. Vil de laere Polygon?Politiken, December 1942.
[20] Philip Henderson, Broderick Arneson, and Ryan Hayward. Hex,

braids, the crossing rule, and XH-search. In J. van den Herikand
P. Spronck, editors,ACG, volume 6048 ofLecture Notes in Computer
Science, pages 88–98. Springer, 2010.

[21] Philip Henderson, Broderick Arneson, and Ryan B. Hayward. Solving
8x8 Hex. In Craig Boutilier, editor,IJCAI, pages 505–510, 2009.

[22] Philip Henderson and Ryan B. Hayward. Probing the 4-3-2edge
template in Hex. In H. Jaap van den Herik, Xinhe Xu, Zongmin Ma,
and Mark H.M. Winands, editors,Computers and Games, volume 5131
of Lecture Notes in Computer Science, pages 229–240. Springer, 2008.

[23] Philip Henderson and Ryan B. Hayward. Captured-reversible moves
and star decomposition domination in Hex. Submitted to Integers,
2010.

[24] igGameCenter. www.iggamecenter.com/, 2009.
[25] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo plan-

ning. In Johannes F̈urnkranz, Tobias Scheffer, and Myra Spiliopoulou,
editors,ECML, volume 4212 ofLecture Notes in Computer Science,
pages 282–293. Springer, 2006.

[26] Thomas R. Lincke. Strategies for the automatic construction of
opening books. In T. Anthony Marsland and Ian Frank, editors,
Computers and Games, volume 2063 ofLecture Notes in Computer
Science, pages 74–86. Springer, 2000.

[27] Little Golem. www.littlegolem.net/jsp/, 2009.
[28] Gábor Melis. Six. six.retes.hu/, 2006.
[29] Gábor Melis and Ryan Hayward. Six wins Hex tournament.ICGA

Journal, 26(4):277–280, 2003.
[30] A. Nagai. Df-pn Algorithm for Searching AND/OR Trees and Its

Applications. PhD thesis, Dept. of Information Science, University
of Tokyo, Tokyo, Japan, 2002.

[31] John Nash. Some games and machines for playing them. Technical
Report D-1164, RAND, February 1952.

[32] Rune Rasmussen and Fréd́eric Maire. An extension of the H-search
algorithm for artificial Hex players. In Geoffrey I. Webb andXinghuo
Yu, editors,Australian Conference on Artificial Intelligence, volume
3339 ofLecture Notes in Computer Science, pages 646–657. Springer,
2004.

[33] Abdallah Saffidine. Utilization d’UCT au Hex. Technical report, Ecole
Normale Superieure de Lyon, 2008.

[34] Claude E. Shannon. Computers and automata.Proceedings of the
Institute of Radio Engineers, 41:1234–1241, 1953.

[35] Jan Willemson and Yngvi Björnsson. Six wins Hex tournament.ICGA
Journal, 27(3):180, 2004.

[36] Mark H. M. Winands, Yngvi Bj̈ornsson, and Jahn-Takeshi Saito.
Monte-Carlo tree search solver. In H. Jaap van den Herik, Xinhe
Xu, Zongmin Ma, and Mark H.M. Winands, editors,Computers and
Games, volume 5131 ofLecture Notes in Computer Science, pages
25–36. Springer, 2008.

