IEEE Trans. on Comput'l Intel. and Al in Games (special issdente Carlo Techniques and Computer Go)
vol 2 no 4 Dec 2010 251-257

Monte Carlo Tree Search in Hex

Broderick Arneson, Ryan B. Hayward, Philip Henderson

for pruning children in the MCTS tree, and for constructing
reduced but equivalent boards which improve and accelerate
Abstract—Hex, the classic board game invented by Piet MoHex's game simulations. I§VI we analyze experimental
Hein in 1942 and independently by John Nash in 1948, has gata which measures the effectiveness of our techniques and

been a domain of artificial intelligence research since Clade ;) ; ;
Shannon’s seminal work in the 1950s. the scaling of MoHex’s strength with greater computing

Until the Monte Carlo Go revolution a few years ago, the POWer. In§VIl we analyze MoHex's performance against
best computer Hex players used knowledge-intensive alphzeta ~ other automated Hex players. §Wl1Il we discuss the poten-
search. Since that time, strong Monte Carlo Hex players have tial application of these techniques to related games, such

appeared that are on par with the best alpha-beta Hex players 35 y and Havannah. IfIX we review MoHex’s current
In this paper we describe MoHex, the Monte Carlo Tree Search limitations. and avenues for future research

Hex player that won gold in the 2009 Computer Olympiad.
Our main contributions to Monte Carlo Tree Search include 1

using inferior cell analysis and connection strategy compiation

to prune the search tree. In particular, we run our random game A. Rules of Hex

simulations not on the actual game position, but on a reduced . .
equivalent board. 9 P Hex has simple rules: Black and White alternate turns, and

on each turn a player places a single stone of their colour

I. INTRODUCTION on any unoccupied cell. The winner is the player who forms

Monte Carlo Tree Search (MCTS) is an exciting new? chain of their stones connecting their two opposing board
development in the field of automated game players, atginirfides. See Figure 1.

great success in a variety of games, most notably Go [10],
[11], [13], [25].

Hex is the classic board game invented by Piet Hein in
1942 and independently by John Nash in 1948 [19], [31].
Hex has been a domain of artificial intelligence researctesin

Claude Shannon’s seminal work in the 1950s [34].

Like Go, Hex has a large branching factor that limits
automated players to shallow or selective search. Unlike
Go programs, Hex programs have reasonably strong eval-

uation functions, and therefore straightforward alph&be gy,ne of their colour on the board, and Hex can never end in

techniques have been successful [3], [6], [28]. a draw, so by Nash’s strategy-stealing argument Hex is a first

We began experimenting with the possibility of an effecy, ,var \win on allnxn boards [31]. The first-player advantage

tive automated Hex player based on the MCTS framework i ¢,nsjderable and when unrestricted usually leads to an
early 2007. The r.esultl_ng player, named MoHex, won S'lveéasy win, so Hex is often played with the swap rule: the first
and gold respectively in the 2008 and 2009 Hex Computefiaver makes Black's first move, and the second player then
Olympiads [5], [6]. In the latter tournament MoHex WaSchooses whether to play as Black or White. White makes the

undefeated. _ _next move, and the players alternate turns thereafter. This
In this paper we describe the framework of MoHex, With 5 jation is a second-player win, but in practice produces

particular emphasis on its algorithmic contributions whic closer games than without the swap rule.
exploit mathematical properties of Hex: Like Go, Hex can be played on anyxn board. The
« MoHex uses proven knowledge in the MCTS tree t@Computer Olympiad Hex tournaments usex1l boards.
prune inferior children, and Humans typically play on board sizes ranging fronx11 to
« MoHex computes Monte Carlo simulations from a re-19x 19 [24], [27], with beginners often starting out on smaller
duced equivalent board, rather than the actual gandards. Automated Hex solvers have solved all opening
board. moves on all board sizes up to and including83[21].
In §ll we review the rules of Hex, and algorithms for))
finding inferior cells and connection strategies. §ii we B+ Inferior Cell Analysis
discuss previous automated Hex players and review theThere are two main techniques in Hex inferior cell analy-
success of alpha-beta based programs§l¥hwe describe sis: fillin and move pruning.
the basic framework of MoHex. I8V we describe our Fillin is the process of adding to a Hex position a set of
enhancements of MoHex, especially Hex-specific techniquesones that is guaranteed not to alter the position’s mixima

. RULES AND ALGORITHMS OFHEX

Fig. 1. An empty 55 Hex board and a game won by White.

It is never disadvantageous for players to have an extra

C
O0)
QU

O A virtual connection(VC) is a second-player strategy for
O‘@ connecting two endpoints, andsatual semi connectiofSC)
@ is a first-player strategy for connecting two endpoints. A

winning connectionis a strategy whose two endpoints are
O opposing board sides. Ttaarrier of a connection strategy

“O ‘ is the (minimal) set of empty cells required to carry out this

))
O‘O‘o OOO OO‘ strategy. See Figure 4.

Fig. 2. Local fillin patterns. Top three patterns identifyadecells, and
can be filled in with stones of either player. Bottom threegras identify
Black-captured regions, and can be filled in with Black stone

®

value. There are two main categories of fillin: dead cells

and captured regions. Aead cellis a cell that is provably Fio 4. A Black VC and a Black SC. Carri harles!, endpa
FP 1g. 4. ac and a blac . Carriers are snaded, entpare

usgless for both players. éaptured regionis a set of cells on dotted, and the first move of the SC strategyis

which one player has a second-player strategy that negates

any benefit their opponent might gain from playing in the | y_search finds a winning VC for either player, or a

region. MoHex uses ninetegn local patterns for i(.jent.ifyingvinning SC for the player to move, then this player can win
dead cells and captured regions; some are shown in F|gureb§ following the discovered connection strategy.
MoHex also uses graph-theoretic algorithms and board de- |t y_search finds a winning SC for the player who just

compositions to find larger classes of fillin configurations,gyed. then the player to move need only consider moves

[21]. inside the carrier of this SC, since all other moves are

_Move pruningis the process of omitting from considera-j yaply losing; that is, all moves outside the winning SC’s
tion a legal move in the current game position. Combinakoria g rier leave the opponent a winning SC on their next turn.

game theory allows reversible moves to be bypassed, affle mustplayfor the player to move is the intersection of
dominated moves to be pruned as long as some domingleir opponent's winning SC carriers. By the same reasoning

ing move is considered [8]. This theory forms the basig) moves outside the mustplay are provably losing. See
for pruning various forms of Hex cell, including vuInera—,:igure 5.

ble, captured-reversible, fillin-dominated, and indupath
dominated cells [15], [16], [18], [22], [23]. As with fillin,
MoHex uses (about 250) local patterns to find such cells.
See Figure 3.

for Black.

® O)
OO“ “‘ O‘O“ Fig. 5. Two White winning SC carriers and the correspondingstplay

Fig. 3. Local inferior cell patterns. Empty cells can be mdnfrom H h loSi d d f
consideration by Black based on their reversible/domiha&gation to the -search prunes many losing moves and produces perfect

corresponding dotted cells. endgame play, but is time-costly: efficient implementagion
can compute the connection strategies for about 25 position
) . i per second on tournament-sizedxitl boards.
C. Computing Connection Strategies
H-search is an algorithm that finds cell-to-cell connection
strategies in a given Hex position [2], [4]. Starting with Together with E.F. Moore, Claude Shannon developed the
the base case of trivially connected adjacent cell pairs, Hirst automated Hex player in the 1950s, an electronic dircui
search inductively builds larger connections by combiningetwork which set positive charges for one player’s stones,
smaller ones in series and parallel until no further corioect negative charges for the other player’s stones, and then
strategies are found. H-search is known to be incomplete; played at a certain saddle point. The computer played strong
particular, it misses some relatively simple connectioith w opening moves but sometimes erred in tactical situations
overlapping substrategies that humans can easily detegs T [34]. Shannon also developed a computer to play Bird Cage,
minor H-search extensions have been developed [20], [32how known as Bridg-it, a game similar to Hex. This circuit

IIl. ALPHA-BETA HEX PLAYERS

network set the resistance of one player’s stones to zezo, tB. Tree Traversal and Update

resistance of the other player's stones to infinity, and then \joHex uses the UCT framework combined with the all-
played at a cell with greatest voltage drop [12]. moves-as-first (AMAF) heuristic to select the best child
In 2000 Hexy won the first Computer Olympiad Hex com-jyring tree traversal [14], [25]. Like Fuego, MoHex plays
petition [3]. Hexy's evaluation function uses an augmeateat strongest when it uses an exploration constant of zero,
of Shannon's Bird Cage circuit in which extra wires aresffectively turning off UCT exploration and relying solely
added which correspond to connections found by H-searg the AMAF heuristic to find strong candidate moves.

[2]. Hexy uses this evaluation function in a straightfordiar The tree update phase updates the win/loss statistics for
alpha-beta search. each move in the simulated game. Updates occur at each
In 2003, 2004, and 2006 Six won the next three Computejode along the path from the leaf to the root, thereby

Olympiad Hex competitions [17], [29], [35]. Six significant influencing leaf node selection in future tree traversals.
refines the Hexy framework by improving H-search effi-
ciency via heuristic limits, restricting the alpha-betadzh- C. Random Game Simulation
ing factor, tuning the evaluation function, and using a $mal Playing Hex until the board is completely filled results
amount of inferior cell analysis [28]. Six uses a truncate¢h the same win/loss outcome as stopping once one player
2-ply alpha-beta search. Six is open source and has begss a winning chain, so the random game simulation need
played by many humans. It is generally considered to bert check for game termination after each move. Hence Hex
very strong, although not quite expert, player on boardssizgiame simulations can be efficiently implemented: add all
up to 11x11, with near-perfect play on board sizes up tempty cells to an array, shuffle them randomly, and play the
8x8 [27]. remaining moves in order. A consequence of this particular
In 2008 Wolve won the fifth Computer Olympiad Heximplementation is that each legal move’s AMAF statistics
competition, defeating the previous champion four games tre updated after each game simulation.
zero [6]. Wolve was developed in conjunction with MoHex
and shares the same codebase. Wolve improves on Six’s
design by modifying the evaluation function, improving H-
search efficiency, using much more inferior cell analysis,
using an opening book generated by self-play, and using a
solver in parallel with the player. Like Six, the 2008 versio Fig. 6. Bridge rollout pattern: if White plays one empty ¢@lack plays
uses a 2-ply search. The 2009 version of Wolve searchestlg other.
4-ply when time allows.] o o
In summary, computer players using alpha-beta searchS With Go, it is beneficial to apply some knowledge

have proven to be strong competitors against skilled hum&}ing simulated games [9]. MoHex uses a single pattern

players, and until 2008 dominated computer Hex competfufing random game simulation: if a player probes any
tions. opponent bridge, then the opponent always replies so as to

maintain the connection. See Figure 6. If multiple bridges
are probed simultaneously, then one such bridge is randomly

IV. BASIC MOHEX FRAMEWORK selected and then maintained.

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a best-first search
algorithm that is guided by the outcome of random game sim-
ulations. The algorithm is composed of three basic phases:

1) tree traversalfrom the root to some leaf node,
2) random game simulatiofrom the leaf node’s corre- Fig 7. 4-3-2 vC rollout pattern: if White plays a shaded c@lack

sponding game position, and maintains the connection by playing the correspondingedotell.
3) tree update using information from the simulated
game. Yopt, another MCTS Hex program, uses additional pat-

The basic algorithm is anytime, repeating these steps uni@if"s based on another commonly occurring VC [33]. See
no more time remains. After the tree traversal phase, tdgure 7. However, in our tests MoHex showed no strength
search tree is expanded by adding the children of the sdlec@@in from such patterns.
leaf node. When MCTS terminates, the child with the largest
subtree (i.e. which produced the most simulations) is tedec
as the best move. A. Tree Knowledge

MoHex’s MCTS is built on the codebase of Fuego, the Go Like many other MCTS players, MoHex uses knowledge-
program developed by Martin Wler et al. at the University intensive algorithms in important parts of the tree, as asll
of Alberta [10]. flags to indicate solved states [36].

V. MOHEX ENHANCEMENTS

Using a fixed “knowledge threshold”, if any node is visitedwhich a fillin move is played. To avoid this, each unpruned
often enough during tree traversal, then both inferior cetthild’s subtree is also deleted excepting their roots ahd al
analysis and the H-search algorithm are run on that positiorelevant statistics (e.g. UCT and AMAF data). Note that any
There are two possible outcomes: either fillin or H-searchubsequent tree expansions below the parent node will not
solves the position, or the position value is still unknown. conflict with the fillin. See Figure 8.

In the former case, all child subtrees are deleted, and The knowledge threshold is typically small (e.g. the 2009
the tree node is marked such that any tree traversal th@tympiad version had threshold 50), so the size of any
encounters this node omits the random game simulation, atrdncated subtree is small, and the subsequent loss of in-
simply updates its ancestor nodes using the correct outconfiermation is apparently more than compensated by the gain

In the latter case, subtrees corresponding to moves that darperformance.
be eliminated via inferior cell analysis or mustplay resaite
pruned from the tree.

Furthermore, for every tree node that surpasses the knowl-
edge threshold, its fillin computation is stored permaryentl
and applied to every tree traversal. Since fillin is computed

: QQQQOQQ
anew for each tree node, there can be disagreement between O O . .
the fillin of a node and its child, so the descendant node’s '.O.....O0.00o.......
fillin takes precedence, and any prior fillin knowledge isQo..(@@@.@.."
QO

ignored.

1) Node reaches knowledge threshold; perform inferior eeklysis and
H-search computations.

Fig. 9. A Hex position and its fillin reduced position.

For instance, consider the top Hex position in Figure 9. If
MoHex evaluates this position for Black without knowledge,
it consistently gets a score of 71-73% for 30s searches. By
applying knowledge in the Monte Carlo tree, fillin produces
the bottom Hex position in Figure 9, and the evaluation
scores plummet to 1-8% for 30s searches. This behaviour
also holds for other MCTS Hex players: this position was
taken from an olympiad game between Yopt and Wolve,

Fig. 8. Applying knowledge to the Monte-Carlo tree. where Yopt's evaluation score surpassed 90% in the endgame
despite its losing position.

This fillin produces two benefits. Firstly, the random game
simulations are shorter (since the number of.empt.y ceIE' Lock-Eree Parallelization
has decreased), and thus allows more game simulations per
second. Secondly, the accuracy of the game simulationsMoHex uses the Fuego codebase, and so benefits from
should improve, since any resolved regions of the board aFeiego’s lock-free parallel MCTS [10]. MoHex’s knowledge
guaranteed to have the correct outcome. computations are handled within this lock-free framework.

Although each child node corresponding to a fillin moveThus it is possible for different threads to perform dughca
is deleted, a fillin move might still be available in someknowledge computations concurrently, but this is extrgmel
child’s subtree, possibly yielding an illegal game seqeenc rare in practice.

3) Remove subtrees of all remaining children.

C. Parallel Solver strength: 8s/move MoHex defeats 1s/move MoHex 65.1% of

MoHex runs a Hex solver concurrently with the searchin€ time. See Figure 10.
This produces perfect play whenever the game position can
be solved quickly. This solver uses inferior cell analysid a .
H-search in the same way as MoHex: to identify state values,
and prune inferior moves from consideration. 65 B

The solver is based on depth-first proof number (DFPN) | f——1 %77
search, and so also relies on these knowledge computations
to restrict its branching factor and guide it to the stromges: °
moves [1], [30]. It also uses a move ordering heuristic tof
temporarily prune the weaker moves of each node in the s
DFPN search tree, gradually revealing them as their sibling
moves are proven to be losing. This technique reduces the
combinatorial explosion of large branching factors, arsbal

age

50

prevents the winning player from spending time exploring single hreaded o

(heuristically) weaker moves. sl— . - - - . ;"’Cked -
Our solver can solve all88 openings in roughly 30 hours. Number threads / time multipier

It has also solved over half of thex® openings [7]. Fig. 10. Performance of locked, lock-free, and time-scaiedle threaded

MoHex against single threaded 1s/move MoHex.
D. Time Management

Over thousands of games between strong players (i.e. any?S With Fuego, the lock-free version of multithreaded
of MoHex, Wolve, Six), the average ¥11 game length oHex scales far better than the locked alternative. Indeed
is about 60 moves. Within a one-minute search, MoHex¥1€ change here is even more dramatic than that in Go —
solver usually computes the game’s value by move 35, arsgaling of the locked version is worse with two threads,
almost always by move 45. This bounds the number of mové§d performance actually degrades with only four threads
MoHex needs to generate in a game. Hex tournaments allow Presumably because the game simulations in Hex are so
30 minutes per player, so MoHex can easily allot one minut@uch faster than in Go_, and the threads spend most of their
per move. In the 2009 Computer Olympiad, MoHex allottedime in the tree. See Figure 10.

96 seconds per move. B. Heuristic Techniques

VI. EXPERIMENTAL RESULTS Both the bridge pattern and AMAF heuristic give major

B fth | dH | e]s‘_:_}rength gains for MoHex. The bridge pattern produces a 105
ecause of the swap rule, an automated Hex player neggg, strength gain against a naive UCT implementation (with

to be able to re_spond competently to every opening moy optimized exploration constant of 0.7), and this impdove
the opponen.t mlghF select. Thus our tesmg iterates over ersion is surpassed by another 181 Elo by adding the AMAF
11x11 openings with the swap rule off, with each progranh,qyistic (and turning off UCT exploration). Based on the

playing once as Black and once as White for every Openlngcaling information above, this total strength gain is fdyg

Thus one round consists of £11x2=242 games. In order equivalent to a 250-fold increase in computing time. See
to reduce the standard error to a small percentage, we

. gure 11.
typically run several rounds.

While this testing format is helpful in identifying weak- [“Incrementally Added Feature Win % Elo gain
nesses in our algorithm’s performance (e.g. openings whefe Bridge pattern 64.7%+ 1.4% 105
we perform poorly as both Black and White), it signifi- AMAF heuristic 73.9%+ 1.3% | 181

cantly dampens any strength gains obtained, as polarized _ o _
openings (i.e. openings easily won by Black or White) arg;g.zéiel.Ell'he bridge pattern and AMAF heuristic improve phaystrength
played twice, and essentially guarantee at least some wins

for the weaker player. Thus the Elo gains reported in our e tested many inferior cell analysis patterns as game
experiments underrepresent the expected tournament play,jation patterns. Unfortunately, in all cases theseepas

Elo improvement. gave MoHex no strength gain. This provides evidence that
provably correct information in game simulations can weake

)) _ _ ~ MCTS players.
MCTS is a parallelizable anytime algorithm, so the scaling

of its performance with respect to time and number of threads: Tree Knowledge

is important. Adding tree knowledge to MoHex is roughly equivalent
As with many other MCTS programs, MoHex’s strengthto doubling the number of game simulations. The optimal

scales logarithmically versus time, with each doublinghaf t knowledge threshold seems to be 400 for the single threaded

game simulations producing roughly an additional 36 Elo ofersion, and to decrease proportionally with the number of

A. Scaling

™ it nevertheless had a few close games, three of which we
briefly examine here. See Figure 14.

70

65

Percentage wins
"

60

~

55

1thread —+—
2 thread +--%---
4 thread -t
81hre‘ad Bt

0 100 200 300 400 500 600 700 800 900 1000
Knowledge threshold multiplied by number of threads
Fig. 12. Threaded 8s/move MoHex with knowledge againsty2vigblve.
A knowledge threshold of zero means that no knowledge is cosap

50

threads. A very low knowledge threshold can worsen perfor-
mance, due to the corresponding decrease in the number of
rollouts. See Figure 12.

D. Opening Book

80

T
no book +—+—
10k book ==-x---t
75 40k book -+t
160k book sz

70

65

60

N

LS

sgees!

W 0208 o c e N

ealefor i aSeey
- O s o
8 cg0ge50555558

55

50

Percentage wins

45

40

35 /
30

1 2 3 4 5
MoHex with 25k * 2(x-1) Simulations / Move

Fig. 13. MoHex with books of increasing size against 100k yenleloHex
with no book.

e

, . . . Fig. 14. MoHex 2009 Computer Olympiad games. From top toobott
MoHex’s opening play can be inconsistent, perhaps bepponents are Wolve, Six, and Yopt. MoHex is White in all game

cause there is so little existing structure to guide the sand
game simulations. We are investigating the constructicemof ~ Against Wolve, MoHex's evaluation was close to 50%
opening book using Lincke’s method [26]. Our initial result throughout the game, until its parallel solver indicatedtth
are promising, with an opening book fox9 Hex that was the game was won. Wolve’s move 37 looks weak — k2 seems
constructed in a day producing gains of 85 Elo, which igreferable to k3 — but Wolve had already lost the game at
worth more than a doubling of simulations. As the bookhat point.
size increases, the strength gains grow logarithmicalse S against Six, the game’s progression is surprising, since
Figure 13. MoHex’s opening play is weak and Six develops a strong
wall of influence within 19 moves. Nevertheless, MoHex
manages to play effectively, with an especially brillianva

As mentioned earlier, MoHex won gold in the 2009 Com-36. MoHex’s parallel solver generates moves 40 and beyond.
puter Olympiad. Its opponents were Yopt, another MCTSPost-game analysis revealed the game was close: MoHex
based player, and the previous alpha-beta based champibhsdered on move 38 and Six blundered on move 39.
Wolve and Six. Seélll. Although MoHex was undefeated, Against Yopt, the game is straightforward, with parallel

VIl. TOURNAMENT PERFORMANCE

bridge structures and many probes of such connections. Passually do not maintain important connections, especially
game analysis indicates that Yopt played winning moves 2¥hen the carrier is large.
and 29, but that move 31 is a blunder: d4 loses while c4 We have tested many algorithms that incorporate connec-
wins. MoHex maintains its winning position from this pointtion strategies into the simulations, including the foliog
on. two: heuristically select connections to maintain durihg t
See the Olympiad report for further commentary [5]. simulation; at the root node, allow the choice of maintagnin
] some subset of a given list of connection strategies.
A. Experimental Tournaments Unfortunately, all of these techniques greatly worsened
Because Olympiad results are based on a very small saperformance. The best variation to date involves using com-
ple size, we also ran our own tournaments between MoHeéRron responses in the Monte Carlo tree to guide the responses
and the two previous champions, Six and Wolve. These the simulated game; investigations are still ongoing.
tournaments omitted opening books and parallel solvers, soGiven the strength of our parallel solver, stronger inte-
that the results measure only the relative strength of eaghation of the solver and MCTS could produce even greater
player's search engine. We did not run tests against Yopgenefits. Currently the solver indicates only whether tha ro
since this program is not publically available. The resultposition has been solved; the solver could instead inform
are summarized in Figure 15. Basically, MoHex dominateBloHex of any tree nodes that it has solved. Furthermore,

Six and is evenly matched with Wolve. it might be desirable for the search tree to indicate which
moves it currently prefers, thereby encouraging the sdtver
Opponent | MoHex Win % explore the most pertinent lines.
Six 76.6+ 3.6 Other possibilities include using the AMAF heuristic to
Wolve 49.2+ 3.2

influence the random game simulations, ensuring that moves
perceived to be strong are played early in the simulation.
Also, heuristic initialization of moves in the Monte Carlo
tree may ensure that strong moves are always explored or
VIII. A PPLICATION TO OTHER GAMES speedup the UCT convergence, although such methods have
tnot yet been successful in Monte Carlo Hex.

Fig. 15. MoHex: performance against Six and Wolve.

The application of tree knowledge to MCTS, in particula
the use of fillin, can be generalized to other classical board X. CONCLUSION
games. Most of Hex’s inferior cell analysis applies to Y (wit
only minor modifications relating to the fact that board side
are not owned by players in Y), and so a MCTS Y pIayeE
could likewise use fillin and inferior cell knowledge in its

We have applied Monte Carlo Tree Search techniques to
roduce an automated Hex player that is on par with the
est players produced via the classical alpha-beta approac

The potential for further improvement remains, especially
Monte Carlo tree. : : ; . e
- S . in terms of better incorporating connection strategieshi t
Fillin and inferior cell pruning can also be computed . : . :
tree and game simulations, improved knowledge computation

for Havannah, but the existence of rings as a winnin% the tree (i.e. parallel solver updates), developmentrof a
condition (instead of just connecting paths, such as bsidge €. P P ' P

and forks) makes this process far less straightforward. ogpenng book, and improving simulation quality.
group has performed some initial research on this topic, bilcknowledgements

no implementation of these ideas has yet been performed

Due to the relative rarity O.f such patte_rns in Havannah, WRartin Muller, Markus Enzenberger, David Silver of the
expect this knowledge to yield only a minor gain, although i uego team for many useful discussions regarding Monte

may be more useful in terms of improving a player's IC’ara"eé:arlo Tree Search. We also thanlalédr Melis and Tristan

solver. . . . X .
. . . .Cazenave for useful discussions regarding their resgectiv
For games like Go where such theoretical pruning IS utomated Hex players g g e

extremely difficult and/or rare, perhaps heuristic fillin -«eh

‘We are indebted to Sylvain Gelly of the MoGo team and

as preventing simulated games from playing in the territory REFERENCES
_Of Ilve_groups and seki reglor_ls R CO_UId prove useful In[l] L. Victor Allis. Searching for Solutions in Games and Artificial Intel-
improving accuracy and speeding up simulated games. ligence PhD thesis, University of Limburg, Maastricht, Nethedan
1994.
IX. LIMITATIONS AND FUTURE WORK [2] Vadim V. Anshelevich. The game of Hex: An automatic tresor

proving approach to game programming. AAAI/IAAIL, pages 189—

Despite MoHex’s recent success, there are still many 194, Menlo Park, 2000. AAAI Press / The MIT Press.

aspects that can be improved. [3] Vadim V. Anshelevich. Hexy wins Hex tournamentCGA Journal
. . . 23(3):181-184, 2000.

MoHex does not fully exploit the connection Strateg'es[4] Vadim V. Anshelevich. A hierarchical approach to congruHex.
it computes. Although H-search finds connection strategies Artificial Intelligence 134(1-2):101-120, 2002.
MoHex uses this information only for pruning and endgamel®] Broderick Ameson, Ryan B. Hayward, and Philip HendersloHex

. . wins Hex tournamentlCGA Journa) 32(2):114-116, 2009.

play. In pamCUIar* simulated games do not use knoWn[6] Broderick Arneson, Ryan B. Hayward, and Philip Henders@/olve
connection properties. As expected, the near-random games 2008 wins Hex tournamentCGA Journal 32(1):49-53, March 2009.

(71
(8]

[0l
[10]
(11]

(12]

(23]

(14]

[15]

[16]
[17]
(18]

[19]
[20]

[21]

(22]

(23]

[24]
(25]

[26]

[27]
(28]
[29]

[30]

(31]

[32]

[33]
[34]

(35]

Broderick Arneson, Ryan B. Hayward, and Philip Henders8olving
Hex: Beyond humans. Accepted to Computers and Games, 2010.
Elwyn Berlekamp, John H. Conway, and Richard K. Gu¥inning
Ways for Your Mathematical Playsolume 1-4. A.K. Peters, 2nd
edition, 2000.

Rémi Coulom. Computing Elo ratings of move patterns in the gam
of Go. ICGA Journa) 30(4):198-208, December 2007.

M. Enzenberger and M. Mler. Fuego homepage, 2008. Date of
publication: May 27, 2008. Date retrieved: March 14, 2010.

D. Fotland. The Many Faces of Go, version 12, 2009. Datgaved:
April 1, 2009.

Martin Gardner. The 2nd Scientific American Book of Mathematical
Puzzles and Diversionshapter 7, pages 78-88. Simon and Schuster,
New York, 1961.

S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modificat@hUCT
with patterns in Monte-Carlo Go, 2006. Technical Report G0®2.
Sylvain Gelly and David Silver. Combining online andfliofe
knowledge in UCT. In Zoubin Ghahramani, editdgML, volume
227 of ACM International Conference Proceeding Seripages 273—
280. ACM, 2007.

Ryan Hayward, Yngvi Bjrnsson, Michael Johanson, Morgan Kan,
Nathan Po, and Jack van Rijswijck. Solvifig x 7 Hex with
domination, fill-in, and virtual connections.Theoretical Computer
Science 349(2):123-139, 2005.

Ryan B. Hayward. A note on domination in Hex. Technioapart,
University of Alberta, 2003.

Ryan B. Hayward. Six wins Hex tournamentICGA Journal
29(3):163-165, 2006.

Ryan B. Hayward and Jack van Rijswijck. Hex and comirias.
Discrete Mathematics306(19-20):2515-2528, 2006.

Piet Hein. Vil de laere PolygonPolitiken, December 1942.

Philip Henderson, Broderick Arneson, and Ryan Haywardlex,
braids, the crossing rule, and XH-search. In J. van den Hamik

P. Spronck, editorsACG, volume 6048 ofLecture Notes in Computer
Science pages 88-98. Springer, 2010.

Philip Henderson, Broderick Arneson, and Ryan B. Haylv&olving
8x8 Hex. In Craig Boutilier, editolJCAI, pages 505-510, 2009.
Philip Henderson and Ryan B. Hayward. Probing the 4-8ege
template in Hex. In H. Jaap van den Herik, Xinhe Xu, Zongmin, Ma
and Mark H.M. Winands, editor§omputers and Gamggolume 5131

of Lecture Notes in Computer Scienpages 229-240. Springer, 2008.
Philip Henderson and Ryan B. Hayward. Captured-rékrsnoves
and star decomposition domination in Hex. Submitted togeis,
2010.

igGameCenter. www.iggamecenter.com/, 2009.

Levente Kocsis and Csaba SzepesvBandit based monte-carlo plan-
ning. In Johannesii¥nkranz, Tobias Scheffer, and Myra Spiliopoulou,
editors, ECML, volume 4212 ofLecture Notes in Computer Science
pages 282-293. Springer, 2006.

Thomas R. Lincke. Strategies for the automatic comsimn of
opening books. In T. Anthony Marsland and lan Frank, editors
Computers and Gamgesolume 2063 ofLecture Notes in Computer
Science pages 74-86. Springer, 2000.

Little Golem. www.littlegolem.net/jsp/, 2009.

Gabor Melis. Six. six.retes.hu/, 2006.

Gabor Melis and Ryan Hayward. Six wins Hex tournamel@GA
Journal 26(4):277-280, 2003.

A. Nagai. Df-pn Algorithm for Searching AND/OR Trees and Its
Applications PhD thesis, Dept. of Information Science, University
of Tokyo, Tokyo, Japan, 2002.

John Nash. Some games and machines for playing themhnited
Report D-1164, RAND, February 1952.

Rune Rasmussen andé&geric Maire. An extension of the H-search
algorithm for artificial Hex players. In Geoffrey |. Webb aXihghuo
Yu, editors,Australian Conference on Artificial Intelligencgolume
3339 ofLecture Notes in Computer Scienpages 646—657. Springer,
2004.

Abdallah Saffidine. Utilization d’'UCT au Hex. Technlaaport, Ecole
Normale Superieure de Lyon, 2008.

Claude E. Shannon. Computers and automd&eoceedings of the
Institute of Radio Engineer€t1:1234-1241, 1953.

Jan Willemson and Yngvi Birnsson. Six wins Hex tournamen€GA
Journal 27(3):180, 2004.

[36] Mark H. M. Winands, Yngvi Bprnsson, and Jahn-Takeshi Saito.

Monte-Carlo tree search solver. In H. Jaap van den Herikh&in
Xu, Zongmin Ma, and Mark H.M. Winands, editorSpmputers and

Games volume 5131 ofLecture Notes in Computer Sciengqeages

25-36. Springer, 2008.

