
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Analysis of Unsupervised Feature Learning in Image
Segmentation

Mennatullah Siam, Min Tang, Sepehr Valipour, Sepideh Hosseinzadeh, Xuebin Qin, Zichen Zhang
Co-coach: Dana Cobzas

University of Alberta
116 St 85 Ave, Edmonton

valipour@ualberta.ca

Abstract

Unsupervised feature learning was proved to be a potentially powerful tool for image segmentation
as pixel-wise classification. However, there is no comprehensive study on the importance of each
module of image segmentation pipeline. In this project we aim to understand the formulated variabil-
ity of performance of feature learning methods in the context of image segmentation. A generic test
framework was developed, then two segmentation tasks from two different domain were studied and
analyzed. Through extensive experiments on buildings segmentation and multiple sclerosis lesions
segmentation, different parameters are compared. Discussions about the preprocessing settings, the
impact of dictionary learning, encoding and classification is presented. Our results conform in some
parts with the analysis previously reported on image classification, but also new conclusions are
drawn specific to the segmentation task.

1 Introduction

One of the main challenges in machine learning is the lack of labeled data for a particular task. Labeling data is
usually expansive, both in money and time. One approach for using machine learning algorithms in such a situation
is to utilize the abundance of cheap unlabeled data for the learning task. A variety of methods have been proposed
recently that use unlabeled data as a source of information [12][16][2]. A successful methods is feature learning in
which a dictionary is trained as an overcomplete basis for the data.

Many efforts have been made on parameter tuning, researches suggest to identify most prominent ones, then limit the
search scope. Nowak et al. [19], investigates effects of feature representation algorithm and values of involved param-
eters. They conclude that highly overcomplete codebook/dictionary tends to be more successful, randomly sampled
patches are superior to point of interest based sampler and choice of dictionary learning algorithm has negligible effect
on outcome. Jarrett et al. [14], studies the encoding part and also the effect of a multilayer architecture compared to a
single layer. They found encoding is the most influential part of the algorithm and having a second layer benefits the
method. Boureau et al. [3], particularly look into encoding and pooling steps in image classification and tries to find
best combination of methods for these two tasks. Coates et al. [6] goes a step further and explores if the search space
contains global maxima or not. He states that, the better results can be achieved on the boundaries of some parameters.
All these findings are mostly consistent and point to the same direction.

In contrast to these comprehensive researches about unsupervised feature learning for image classification, there is no
peer study for pixel-wise image segmentation. Even though most of the procedures for pixel-wise image segmentation
and image classification are the same, a few differences can drastically change the outcome which is sensitivity to some
parameters. For example, the pooling step in image classification can provide an opportunity for smoothing the features
[3] but it is absent in segmentation task. Besides, the proposed methods for improvement, such as increasing the
dictionary size, is much more expansive for segmentation and not always feasible. Furthermore, increasing popularity
of unsupervised methods for segmentation, asks for a deeper understanding of each module.

Compared with traditional methods for image segmentation, unsupervised feature learning poses advantage. Most of
existing methods use, handcrafted features combined with an energy function or a classifier for segmentation. Even

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

though these methods achieve impressive results in many applications, they are not widely applicable. Because, for
each new task, appropriate filters should be carefully chosen and finely tuned to get decent results such as works in
[8]. But as recent development in deep learning has shown a generic learning algorithm could be used for a wide
range of applications with extremely good performance. Kiros et al. [15], achieved state of the art performance on
vessel segmentation in brain MRI images using sparse encoders and Deshpande et al. [7] achieves best results in MS
lesion segmentation. Rigamonti et al. [20] work on filter learning using sparse methods for road segmentation in aerial
images.

Accordingly, in this study, we seek answers for questions about unsupervised feature learning in image segmentation.
The same questions have been asked in image classification. Specifically, we investigate four major components of
the learning system, pre-processing, dictionary learning, encoding and classifier. Some parameters in each component
have been thoroughly studied and empirical result is gathered for comparison and conclusion. To make the finding
independent from the subject, two tasks from very different domains were chosen. One is building segmentation in
high resolution satellite images and the other is multiple sclerosis lesion segmentation. Even though they are different
in nature they share common characteristics. Collecting labeled data for both tasks is quite expensive while unlabeled
data could be found freely in abundance. Besides, intensive effort to solve the task with hand crafted features produced
mediocre results. All these make both tasks suitable for unsupervised methods.

The proposed image segmentation pipeline is shown in Fig. 1. The rest of the paper is organized as follows: first
we give a review on each module of the pipeline, then we show the datasets. Afterwards, the experiments and result
analysis are presented and finally we have the conclusion and future work.

Figure 1: Framework for analysis of feature learning in image segmentation

2 Methodology

2.1 Preprocessing

Gaussian Pyramid: In order to have a compact and efficient multi-scale representation for an image, we apply
Gaussian Pyramid to the image. A Gaussian pyramid contains the original image and subsequent images in different
scales that are built by repeatedly smoothing and subsampling the original. The smoothing is done by a Gaussian
blur (average) and scaled down. Each pixel contains a local average of neighborhood pixels on a lower level of the
pyramid. [15]

Whitening: Whitening makes the raw input images less redundant. The goal is to make the features less correlated
with each other and have the same variance. [5] We performed whitening on each patch instead of the entire image.
Interestingly, whitening did help with buildings but did not make a difference for lesions. A possible reason is that the
correlation between the pixels on MRI images are low even without applying whitening.

2.2 Unsupervised Feature Learning

For given data X ∈ Rm×n (m is the number of instance and n is the attribute dimension of instance), the main idea of
unsupervised feature learning is to find a basis(or dictionary) D ∈ Rn×d which can be used to represent this X more
efficiently by codes S based on D, S ∈ Rm×d. x(i) ∈ Rn is an instance of X and s(i) is its corresponding codes.
D(j) represents a column element of D.

2.2.1 Dictionary Learning

In this work, three kinds of unsupervised dictionary learning algorithms, sparse coding, OMP-k and K-SVD, were
used.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

(1) Sparse Coding (SC): The cost function of sparse coding is shown in equation (1) [17].

minD,s
∑
i

‖Ds(i) − x(i)‖22 + λ
∑
i

φ(s(i)) subject to ‖D(j)‖22 = 1∀j (1)

φ(s(j)) =


‖s(j)‖1 L1 penalty function
((s(j))2 + ε)

1
2 epsilon L1 penalty function

log(1 + (s(j))2) log penalty function.
(2)

D and s are computed alternatively by minimizing cost function[17]. Equation (2) is the penalty function and we
mainly use epsilon L1 penalty function in this work.

(2) Orthogonal Matching Pursuit (OMP-k): The cost function of OMP-k is the same with sparse coding except for
the removing of penalty function and addition of constrain as is shown in equation (3) [4].

minD,s
∑
i

‖Ds(i) − x(i)‖22 subject to ‖D(j)‖22 = 1∀j and ‖s(i)‖0 6 k ∀i (3)

s(i) are approximately computed by Orthogonal Matching Pursuit and ‖s(i)‖0 is the number of non-zero elements
in s(i). ‖s(i)‖0 are not greater than k that’s why this method is called OMP-k. In our study, OMP-1 was the most
commonly used because it is easy to solve for optimal dictionary. It chooses k = argmaxj |D(j)Tx(i)|, then makes

s
(i)
j=k = D(j)Tx(i) and s

(i)
j 6=k = D(j)Tx(i) = 0.

(3) K-SVD: The cost function of K-SVD is almost the same with OMP-k. The difference exists in the process of
computing the dictionary. The name K-SVD stems from the fact that K-SVD operations are used to update the
dictionary. It updates one column at a time with each time computing SVD on the restricted error matrix [1].

minD,s
∑
i

‖Ds(i) − x(i)‖22 subject to ‖s(i)‖0 6 T0 ∀i (4)

2.2.2 Encoding

After training the dictionary D, original input data x need to be coded by dictionary D and features s. The encoding
process is to find s when givenD. In this work, sparse coding, OMP-k and thresholding were implemented and tested.

(1) Sparse Coding: Given trained dictionaryD, encoding by sparse coding minimizes the same equation (1). But here
D is fixed and s is computed iteratively. In general , parameters of encoding process should be the same as training
process except for the coefficient (λ) of penalty function. λ can be changed appropriately. In this work, we use the
same parameters saved in dictionary learning and encoding. When we use dictionary trained by OMP-k or k-SVD to
encoding, parameters, such as patch size, were modified to match the dictionary. s here is the feature (we did not split
the positive and negative components of s to form features [4]).

(2) Orthogonal Matching Pursuit (OMP-k): For endcoding by OMP-k, D(j)T x was used to compute s when k = 1.
When k 6= 1, s was computed by minimizing equation (3).

(3) Thresholding (T): Soft thresholding works on top of OMP-1 by applying the following non-linearity to compute
features [4]. In our experiment, we set α to zero and name it Thresholding to distinguish from soft thresholding.

fj = max{0, D(j)Tx− α}
fj+d = max{0,−D(j)Tx− α}

2.3 Multi modality

In this project, we considered both Gaussian pyramids and modalities of images. Given images with modality number
of c, patches (size: m×(w×h),m represents the number of patch. w and h denote the width and height of patch.) were
randomly extracted from image pyramids in dictionary learning. Each patch contains information of corresponding
area of c modalities. So the size of X is m× (w×h× c) ,where, m is the number of intances and (w×h× c) denotes
the attribute dimension of instance, and the size of dictionary D is ((w × h) × d) × c. In the process of encoding,
features considered with modality and pyramid scale were extracted by (5) [15]. T γj represents a volume slice of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

modality j and scale γ. D(l)
j ∈ Rw×h is the l-th basis for modality j of D. where * denotes convolution. Finally,

feature maps of each octave of pyramid were upsampled to the same size of original image.

fγl =

c∑
j=1

T γj ∗D
(l)
j (5)

2.4 Classification

2.4.1 Logistic Regression

Logistic Regression finds the linear model that fits the data in sense of minimizing the cost function below with respect
to θ [9].

J(θ) = −
∑
i

(y(i)log(hθ(x
(i))) + (1− y(i))log(1− hθ(x(i))) (6)

where x is the input data, y is labels and hθ is the linear hypothesis for the model.

2.4.2 Random Forest

Random Forests [13] is an ensemble learning method for classification. Each tree is trained with a random subset of
the training data, this process is called bagging. And the output of different trees are merged using majority voting.
Also each tree is sampling from the original features and using them for the tree splitting. The main advantage of
random forests, is in handling mislabeled data because trees are trained on subsets of the data. Another advantage is
that it can easily be parallelizable. The parameters of the random forest can be tuned using out of bag error, which is
the error rate for observations left out of the bootstrap sample for each tree.

2.4.3 AdaBoost/RUSBoost

AdaBoost is an algorithm for building a stronger classifier from a simple one, as linear combination of simple
classifier [10]. A variation of Adaboost for handling imbalanced data is called RUSBoost. RUS stands for Random
Under Sampling. It randomly undersamples the majority class and then run AdaBoost on the undersampled data [21].

3 Experimental Analysis

3.1 Datasets

3.1.1 MS Lesion

For MS lesion segmentation, we used the MICCAI Grand Challenge 2008 dataset. The data were acquired from
Children’s Hospital Boston (CHB) and University of North Carolina (UNC). The labeled data is composed of 20
MRI images that represents a range of patients and pathology. Each MRI has 3 modalities: a T1-weighted image, a
T2-weighted image and a FLAIR image. All data has been rigidly registered 1.

3.1.2 Building

The Massachusetts Buildings Dataset [18] consists of 151 aerial images of the Boston area, with each of the images
being 1500 by 1500 pixels for an area of 2.25 square kilometers. The entire dataset covers roughly 340 square
kilometers. The data used for the experiment is randomly split into a training set of 137 images, a test set of 10 images
and a validation set of 4 images. The target maps were obtained by rasterizing building footprints obtained from the
OpenStreetMap project. Unlike the Greater Toronto Area (GTA) Buildings dataset, this data was restricted to regions
with an average omission noise level of roughly 5% or less. The dataset covers mostly urban and suburban areas and
buildings of different sizes. Individual houses and garages are also included in the labels 2.

1http://www.ia.unc.edu/MSseg/index.html
2https://www.cs.toronto.edu/ vmnih/data/

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2: Sample images of the datasets. From left to right:
Aerial Image and the labels (red area denotes buildings), MRI and the labels (lesions are inside the green boundary)

Figure 3: Visualization of pipeline and final output for building segmentation

3.2 Evaluation

Quantitative evaluation is carried out for the segmentation tasks (pixel-wise classification). With skewed data (0.1%
positives in the case of MS lesions), the accuracy is 99.9% even if simply predicting all negatives. Thus we use
Precision, Recall and F1-score as evaluation metrics which are summarized in Table 1. Due to time constraints and
memory usage, the experiment is carried out with a subset of the training data, which is summarized in Table 2.
Note that the experiments presented for building segmentation is trained with 4500000 samples that is from 2 training
images, and testd on 2250000 samples from 1 image. For MS lesions segmentation, we trained on one volume and
tested on another one. Specifically, we used the features learned from the 42 slices that contain lesions. The testing
was done on all the 512 slices in the test volume.

Table 1: The evaluation metrics.
TN: true negatives. TP: true positives.

FN: false negatives. FP: false positives.

Name Definition Unit Best Worst
Precision TP

TP+FP % 100 0
Recall TP

TP+FN % 100 0
F1-score 2×Precision×Recall

Precision+Recall % 100 0

Table 2: Training and Testing data

Lesion Building
Training UNC train 01 MassachusettsB train
Testing UNC train 10 MassachusettsB test

3.3 The state of the art

Ezequiel Geremia et al. built a discriminative random decision forest framework for MS lesion segmentation which
provide a voxel-wise probabilistic classification of the volume [11]. The method used three kinds of 3D features based
on multi-channel intensity, prior and context- rich information and got a performance of 39.8% in precision, 39.4% in
recall and 39.6% in F1-score.

Volodymyr Mnih implemented deep neural networks on building segmentation which can efficiently learn highly
discriminative image features [18]. The method introduced new loss functions for training neural networks that are
partially robust to incomplete and poorly registered target maps. It proposed two ways of improving the predictions by
introducing structure into the outputs of the neural networks and achieved a performance of 92% in precision, recall
and F1-score.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3.4 Results and Discussion

In this section we show the experimental results obtained on both buildings segmentation and lesions segmentation,
followed by a discussion of the results. The learning and performance task is illustrated in Fig. 3. For each component
in the pipeline, we experimented with different parameters and discuss how they impact the segmentation result.

The experiments results are presented in two sections: one that is concerned with tuning the preprocessing parameters,
and the other was focused on experimenting with different dictionary learning, encoding techniques and classifier.
Table3 summarizes the components and parameters that were tuned in the experiments. All the results shown in this
section, are obtained by tuning one particular parameter while keep the other parameters the same.

Table 3: Components and parameters used in the experiment
SC: Sparse Coding, RF: Random Forests, LR: Logistic Regression, T: Thresholding

Preprocessing Main experiments
Patch Size 5x5 / 9x9 / 15x15 Dictionary Type K-SVD/ OMP-1/ SC
Modalities Multi / Single Dictionary Size 32 / 100 / > 400
Gaussian Pyramid 1 / 3 / 6 scales Encoder DTx / SC / OMP-K/ T

Classifier LR / RF / Adaboost / RUSBoost
Data Balanced/Imbalanced.

3.4.1 Preprocessing Parameters

The first set of experiments is to decide on the preprocessing parameters to use during the main experiments.

We compared the result between using single and multi modalities. On one hand, multi modalities when fused together
is expected to provide more information to the classifier. But on the other hand it will increase the computation and
merging the features may blur out the distinctive features. The “modalities” is T1, T2 and FLAIR for the lesion data
and RGB channels for the building data. The multi-modalities used in buildings yielded better results as shown in
table 4. But for lesions segmentation it yielded worse result. Our interpretation is that the features of lesions are less
distinctive on some modalities so taking the average of all modalities makes it worse.

Table 4: Modalities Results

Modalities Single Multiple
Lesions FLAIR T1,T2,FLAIR
Precision 3.165 0.0015
Recall 40.29 10.23
F1-Score 5.869 0.0031
Buildings Grayscale RGB
Precision 88.28 82.92
Recall 2.33 6.69
F1-Score 4.54 12.38

Table 5: Gaussian Pyramid Results

Settings 6 Scales 3 Scales 1 Scale
Lesions
Precision 0.9387 3.165 0.1928
Recall 5.621 40.29 37.17
F1-Score 1.609 5.869 0.3837
Buildings
Precision 87.24 82.56 66.82
Recall 10.52 26.21 21.61
F1-Score 18.78 39.79 32.66

Another parameter to study is the number of scales used in the Gaussian pyramid which is used to have scale inde-
pendent features. Table 5 shows the results for using 1,3,6 scales on both image segmentation tasks. In the results it is
noticeable that using 1 scale yielded worse recall since it won’t capture varying sizes. When we use six scales it leads
to bad result too since in buildings data some get merged together in the downscaled image and blurred in coarser
resolution. So 3 scale pyramid gave the best results.

Finally, the patch size is another aspect to consider, since this will affect the dictionary learning and we had to make
sure that the each patches would contain enough information for learning a representative dictionary. In table 6 it is
shown that a moderate patch size yields best result. The patch needs to be bigger than the smallest object of interest
(smallest lesion is around 5x5). But a big patch tends to introduce too much noise so it’s a trade-off one has to make.

3.4.2 Main Parameters

The second set of experiments is the analysis of different dictionary learning and encoding techniques. Classification
is studied as well.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 6: Patch Size Results

Patch Size Small Medium Large
Lesions 3x3 5x5 9x9
Precision 1.385 3.165 2.516
Recall 29.95 40.29 23.82
F1-Score 2.647 5.869 4.552
Buildings 5x5 9x9 15x15
Precision 81.43 87.24 79.71
Recall 7.71 10.52 5.10
F1-Score 14.09 18.78 9.59

Table 7: Balanced Data Results

Imbalanced Balanced
Lesions
Precision 9.412 3.893
Recall 0.1777 15.27
F1-Score 0.3489 6.204
Buildings
Precision 82.56 61.08
Recall 26.21 57.86
F1-Score 39.79 59.43

(1) Classification method: Experiment in this part is about choosing the suitable classification method for the task at
hand. The classifiers used are Logistic Regression, Random Forests and Adaboost/RUSboost. RUSboost is specifically
used for the lesions data since it’s highly skewed. The Random Forests is experimented with a varying cost matrix.
Table 8 shows that Random Forests achieves the best F1-score. Note that the number of trees is set to 50, which was
selected according to the out of bag error, and the number of features to sample is 50. There are two main reasons
for the superior performance of RF. First, RF is a non linear classification method that is more appropriate to the
segmentation tasks. The second reason is that random forest is able to handle mis-labeled data that is abundant in the
aerial imagery datasets. A cost matrix is often used for practical applications where the misclassification cost is clearly
different for different classes. The main benefit of using it in our case is to balance the precision and recall.

Table 8: Results using different classifiers
cost: misclassification cost of foreground class for building; of class background for lesion

Classifier Logistic Regression Boosting Random Forest
cost= 1 cost= 5 cost= 10

Lesions RUSBoost
Precision 3.165 0.080 3.893 5.662 8.036
Recall 40.29 98.34 15.27 7.39 3.355
F1-Score 5.869 0.160 6.204 6.410 4.734
Buildings Adaboost
Precision 82.92 89.00 89.09 87.23 82.56
Recall 6.69 11.00 9.57 22.02 26.21
F1-Score 12.38 19.58 17.29 35.17 39.79

(2) Imbalanced data: Experiments in this part is about dealing with imbalanced data. Table7 shows the results
obtained on buildings and lesions. Both show better F1-score with enforcing balanced data with 1:2 ratio (a common
practice) between foreground and background respectively. Note that for buildings data, we used cost = 10 for the
imbalanced data and cost = 2 for balanced one.

(3) Dictionary learning: Experiment in this part is varying dictionary learning algorithms and was done on balanced
data. Three different learning techniques were utilized to compare the results on both segmentation tasks. The al-
gorithms compared are K-SVD, OMP-1, and Sparse Coding. Table 9 shows the results. The results obtained in both
applications demonstrate no significant difference between the different learning techniques. But since OMP-1 is more
computationally efficient than others, it is recommended to use. This conforms with the conclusions presented in [6],
that mentions that the dictionary learning part does not significantly affect the final classification results. Adding to
that, we tested with swapped dictionary between the two applications: segmenting lesions using the dictionary learned
from buildings and vice versa. Very interestingly, the experiment shows no significant difference than other learned
dictionaries, again conforming with the small impact of the dictionary learned.

(4) Encoding: Also different encoding techniques are compared against each other. Four encoding techniques that are
tested are DTx, Sparse Coding, OMP-K, and Thresholding. Table 11 shows the results of this experiment. Among
the techniques, DTx gave the best results. It was the most computationally efficient one as well. Finally for different
dictionary size Table 10 shows different dictionary sizes that was used. A bigger dictionary is considered to be more
powerful as it offers more basis. But we found that a larger dictionary does not necessarily give better result. For

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 9: Dictionary Results

Learning K-SVD OMP-1 SC Swapping
Lesions
Precision 2.830 3.165 2.387 2.971
Recall 44.02 40.29 38.62 34.91
F1-Score 5.317 5.869 4.496 5.476
Buildings
Precision 62.35 61.08 59.62 58.23
Recall 61.18 57.86 55.46 52.76
F1-Score 61.76 59.43 57.47 55.36

Table 10: Dictionary Size Results

Size 32 100 > 400

Lesions
Precision 0.92 3.165 3.098
Recall 8.643 40.29 0.5669
F1-Score 1.663 5.869 5.5022
Buildings
Precision 61.08 58.25 66
Recall 57.86 56.96 15
F1-Score 59.43 57.59 24.44

Table 11: Encoding Results, T: Thresholding, SC: Sparse Coding

Encoding DTx T SC OMP-4
Lesions
Precision 0.4658 3.165 1.138 0.8887
Recall 37.38 40.29 23.41 26.32
F1-Score 0.9202 5.869 2.171 1.719
Buildings
Precision 61.08 56.01 82.51 81.05
Recall 57.86 56.48 15.34 15.10
F1-Score 59.43 56.25 25.85 25.46

buildings the 32 dictionary size is the best setting for dictionary learning. For lesions, 100 yields better result. Keep
increasing it did not improve the performance. Although [4] mentioned that increasing the dictionary gets better
results, but that work was based on the analysis of image classification. And this is explained by the fact that the
classification task is using larger patch size and is used later to encode a region. But in our case we’re handling pixel
wise classification task, and smaller patch size. So with larger dictionary size the learned dictionary will tend to overfit
the training data and thus will not be representative for other data.

The best final results obtained on buildings segmentation is F1-score of 61.7%; with 6.4% for MS lesion segmentation.

4 Conclusion and Future Work

In this research multiple components were studied and general guideline for image segmentation using feature learn-
ing were derived. The empirical results show that preprocessing is substantially important for the pipeline and the
performance can be bounded with improper preprocessing. Specific conclusions are listed below.

• Patch size and pyramid should be selected based on the data. Patch size in each pyramid scale should not be
smaller than the smallest region and also should not be much larger than the biggest object of interest.

• In dictionary learning, we see the dictionary learning method barely affect the performance. As even swap-
ping the learned dictionaries on these two different domain does not affect the performance. This is similar
to the findings in image classification literature. However, in contrast to image segmentation task, best per-
formance is not limited by dictionary size, larger dictionary will cause overfitting.

• In encoding, we found extremely good results can be achieved by simple encoders. This conforms with
analysis in image classification. Therefore, we recommend to first try with simplest encoders and focus the
tuning on other components.

• In classification, we state that making the data balanced by under/oversampling or, equally, using classifiers
that handle the skewed data has the most significant effect.

For the future work, we will study multiple layers to see if having more layers negates any of our conclusion or not.
In case of these specific tasks, the main priority is to use the whole dataset not just a tiny portion of it.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

References

[1] M. Aharon, M. Elad, and A. Bruckstein. k -svd: An algorithm for designing overcomplete dictionaries for sparse
representation. Signal Processing, IEEE Transactions on, 54(11):4311–4322, Nov 2006.

[2] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. Greedy layer-wise training of deep
networks. Advances in neural information processing systems, 19:153, 2007.

[3] Y-Lan Boureau, Francis Bach, Yann LeCun, and Jean Ponce. Learning mid-level features for recognition. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2559–2566. IEEE, 2010.

[4] Adam Coates and Andrew Y. Ng. The importance of encoding versus training with sparse coding and vector
quantization. In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011, pages 921–928, 2011.

[5] Adam Coates and Andrew Y Ng. Learning feature representations with k-means. In Neural Networks: Tricks of
the Trade, pages 561–580. Springer, 2012.

[6] Adam Coates, Andrew Y Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature
learning. In International conference on artificial intelligence and statistics, pages 215–223, 2011.

[7] Hrishikesh Deshpande, Pierre Maurel, and Christian Barillot. Detection of multiple sclerosis lesions using sparse
representations and dictionary learning. In 2nd International Workshop on Sparsity Techniques in Medical Imag-
ing (STMI), MICCAI 2014, number 71-79, 2014.

[8] Alejandro F Frangi, Wiro J Niessen, Koen L Vincken, and Max A Viergever. Multiscale vessel enhancement fil-
tering. In Medical Image Computing and Computer-Assisted InterventationMICCAI98, pages 130–137. Springer,
1998.

[9] David A Freedman. Statistical models: theory and practice. cambridge university press, 2009.
[10] Yoav Freund and Robert Schapire. A short introduction to boosting. Journal-Japanese Society For Artificial

Intelligence, 14(771-780):1612, 1999.
[11] Ezequiel Geremia, Olivier Clatz, Bjoern H Menze, Ender Konukoglu, Antonio Criminisi, and Nicholas Ayache.

Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images. NeuroImage,
57(2):378–390, 2011.

[12] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

[13] Tin Kam Ho. Random decision forests. In Document Analysis and Recognition, 1995., Proceedings of the Third
International Conference on, volume 1, pages 278–282. IEEE, 1995.

[14] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best multi-stage ar-
chitecture for object recognition? In Computer Vision, 2009 IEEE 12th International Conference on, pages
2146–2153. IEEE, 2009.

[15] Ryan Kiros, Karteek Popuri, Dana Cobzas, and Martin Jagersand. Stacked multiscale feature learning for domain
independent medical image segmentation. In Machine Learning in Medical Imaging, pages 25–32. Springer,
2014.

[16] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng. Efficient sparse coding algorithms. In Advances in
neural information processing systems, pages 801–808, 2006.

[17] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse coding algorithms. In Advances
in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Infor-
mation Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006, pages 801–808, 2006.

[18] Volodymyr Mnih. Machine Learning for Aerial Image Labeling. PhD thesis, University of Toronto, 2013.
[19] Eric Nowak, Frédéric Jurie, and Bill Triggs. Sampling strategies for bag-of-features image classification. In

Computer Vision–ECCV 2006, pages 490–503. Springer, 2006.
[20] Roberto Rigamonti, Engin Türetken, Germán González Serrano, Pascal Fua, and Vincent Lepetit. Filter learning

for linear structure segmentation. Technical report, 2011.
[21] Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. Rusboost: Improving classifica-

tion performance when training data is skewed. In Pattern Recognition, 2008. ICPR 2008. 19th International
Conference on, pages 1–4. IEEE, 2008.

9

	Introduction
	Methodology
	Preprocessing
	Unsupervised Feature Learning
	Dictionary Learning
	Encoding

	Multi modality
	Classification
	Logistic Regression
	Random Forest
	AdaBoost/RUSBoost

	Experimental Analysis
	Datasets
	MS Lesion
	Building

	Evaluation
	The state of the art
	Results and Discussion
	Preprocessing Parameters
	Main Parameters

	Conclusion and Future Work

