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Abstract—Grasp planning based on geometrical information
of objects can be approached as an optimization problem where
a hand configuration that indicates a stable grasp needs to
be located in a large search space. In this paper, we study
the applicability of genetic algorithm (GA) on grasp planning
optimization of 3D objects. The details are given on the selection
of operators and parameters. Different sampling methods in the
implementation of crossover and mutation operators are tested.
A quantitative analysis including the comparison with random
planner and simulated annealing (SA) method is performed to
evaluate the performance of the GA based planner. GraspIt!
simulator [1] is used for implementing the proposed algorithm
and as the test environment. Two different quality metrics are
considered. The result shows that GA is a robust method in the
field of grasp planning. And the GA planner outperforms the SA
planner in both pre-grasp quality and stability of the final grasp.

I. INTRODUCTION

Grasp planning based on the geometrical information can
be approached as an optimization problem: to search for a
stable grasp either from the contact space of the object or
from the space of possible hand configurations. The first
approach is classified as synthesis approach, while the second
one classified as heuristic approach [2].

The goal of synthesis approach is to find the contact points
on the surface of the object which indicate stable grasps. This
type of approach generally requires a precise placement of
fingers on an object, which may not be achievable in practical
applications. And also it is not the natural way of grasping an
object from a human’s perspective.

In our work, we focus on heuristic grasp planning, a grasp
action starting with “pre-grasp”-a hand posture close to but
not in touch with the object-inspired by the fact that humans
unconsciously preshape the hand before the actual grasp [3]. It
defines the starting posture and approach direction of the hand.
After the preshape is determined, the hand is moved along the
direction toward the object until in contacts. Then fingers are
closed to conform to the surface of the object to complete the
whole grasp action. The pre-grasps can be obtained in this
way: for simple gripper, by some simple heuristic rules based
on the object shape or for more dexterous hand, by searching

for hand poses that will be likely to yield grasps with good
quality.

Both approaches can be considered as optimization prob-
lems. But the solution space is too vast to search in an effective
manner. And it is discontinuous since there are some surface
points or hand configurations that we want to avoid. Also the
quality measures for evaluating the stability of a grasp are
often non-linear. As a general-purpose optimization method,
Genetic Algorithm (GA) is widely used to tackle with this
type of problem.

In the literature, some work has been done in applying
genetic algorithm to synthesis grasp planning. A. Chella et al.
proposed a hybrid method of GA and neural network to planar
object grasping [4], where a dataset is first generated off-line
by using genetic algorithm and then trained by neural networks
for the purpose of real-time application. This method only dealt
with 2D objects in superellipses shape. N. Daoud [5] used GA
to find grasps for 3D objects with an LMS mechanical hand.
It had not been tested on other hand types and only limited
information was given on the performance of the algorithm.

For the heuristic grasp planning, although GA has been
mentioned as a possible method for optimization in this
scenario [1], not much work has been done in applying genetic
algorithm to this problem. The first relevant work dates back to
1998, when J.J Fernandez et al. proposed a genetic approach
to find good grasps with three-fingered robot hands [6]. It
was restricted to a certain hand-object placement and several
pre-defined 3D objects with regular shapes and three-fingered
hands. In [7], GA is applied to search for hand position
and orientations. But the preshape of the hand is fixed for
certain objects, not considered in the optimization process.
And the performance of the GA planner is only compared
with a random planner. In addition, no quantitative result has
been addressed in the literature regarding the performance of
the GA based grasp planner as opposed to other optimization
techniques and few details have been found on the parameter
selection. These make it difficult to compare with planners
based on other algorithms.

In this paper, we study the effect of applying GA on heuris-
tic grasp planning in order to fill the gap of current research



and gain a better understanding of GA’s applicability in the
context of grasp planning. We carefully choose the operators
and parameters of GA taking into account the characteristics
of the solution landscape in this grasp planning problem. The
effects of different sampling methods in the implementation
of GA will be investigated as well. And the proposed GA
grasp planner is applied on different sets of hand-object
including 3D objects in different shapes and hand models
with different number of DOFs to examine its performance
and robustness. Comparison with other algorithms such as a
simple random algorithm and simulated annealing algorithm
(SA) are conducted for further evaluation of the GA planner.
The execution time of SA and GA planners are presented for a
fair comparison of their performance. And two different quality
metrics will be considered.

This paper is organized as follows. Section II formulates
the optimization problem in grasp planning and describes
the quality metrics used in this work. The components and
important concepts in designing a GA based grasp planner are
discussed in Section III. In Section IV, the performance of the
GA planner is examined with quantitative analysis. Section V
concludes the paper and outlines the future work.

II. PROBLEM FORMULATION

The first step of the grasp planning is to find a good pre-
grasp that is expected to yield a force-closure final grasp. Then
the final grasp will be executed and stability will be checked
as the second step. The quality metric proposed in [8] is used
to evaluate the quality of a pre-grasp:

Qpre = ∑
all contacts

δi (1)

where δi is a measure of the distance between the desired
contact locations on the hand and the object. The contact lo-
cations on the hand are selected to be on the fingers and palms
in our study to create a power grasp, which is more suitable on
human-made objects than pinch grasp using fingertips only [9].
This quality measure assumes that the closer the hand is from
the object, the better potential it has to give a stable power
grasp on the object. For details, the reader is referred to [8].

The lower the Qpre, the closer the hand is from the object,
and the better the pre-grasp is considered to be in yielding
a force-closure final grasp(although not always the case, as
shown in the results section). The optimization goal is to
find a pre-grasp that can minimize this pregrasp quality mea-
sure. To reduce the dimensionality and make the optimization
speed faster, we consider the grasp planning in eigengrasp
space, where the high-dimensional space is projected to a
low-dimensional control space while maintaining sufficient
information needed for finding stable grasps [8]. Therefore,
the grasp planning problem in the configuration space of the
hand can be represented as:

argmin
p,w

Qpre(p,w), subject to : p ∈ℜ
b,w ∈ℜ

6 (2)

where Qpre(p,w) : ℜd 7→ ℜ is the objective function to be
minimized over the variable space of dimension d = b+6. b is
dimension of the eigengrasp space, p is a vector representing
the hand posture, and w is a vector of the position and
orientation of the wrist.

TABLE I: Variable List

Property Name Definition Range
Tx x-coordinate [-250,250]

Position Ty y-coordinate [-250,250]
Tz z-coordinate [-250,350]
θ angle between the z-axis and the

axis
[0,π]

Orientation φ angle between the projection of the
axis on x-y plane and x-axis

[-π ,π]

α rotation angle around the axis [0,π]
Eigengrasp EG[0,..,b] amplitude along the eigengrasp di-

mension
[-4,4]

Fig. 1: The solution landscape

The variables are listed in Table I. A larger range of T z
is chosen for tall objects. Axis-Angle representation is used
for the 3D rotation. Note that the pregrasp is only the starting
stage of a complete grasping action. To assess the stability of
the final grasp, we use ε quality and v quality proposed in
[10]. For force-closure grasps, 0 < ε < 1, v > 0. The larger
these two quality measures are, the more stable a grasp is.

III. GENETIC ALGORITHM ON GRASP PLANNING

In this section, we will apply GA on grasp planning. We
start with a close look at the search space. The selection
of operators and parameters are then investigated in detail.
To understand and overcome the sampling bias caused by
crossover and mutation operators, we also test different types
of sampling methods.

A. Solution Landscape

The GA planner needs to be designed according to the
characteristics of the search space, which is the space of all
possible solutions to a problem.

First we need to decide on the encoding for a solution.
As the variables in this problem take real value, we naturally
adopt floating-point representation. Each chromosome can thus
be represented as:

chromosome =< T x,Ty,T z,θ ,φ ,α,EG0,EG1, ... > (3)

The position and orientation of the hand is defined in terms of
the contact space of object. We define the range of the variables
so that possible solution space is around the object, as shown
in Table I. The solution landscape is illustrated in Fig. 1. The
red area shows the space taken up by the target object. The pre-
grasp is considered to be illegal if the hand and the object get
in touch. The legal solutions fall in the space outside the object.



xmin xmaxx1 x2

IαI αI

ymin ymax

Fig. 2: BLX-α

The closer to the object, the better the pre-grasp is. “Good”
denotes the space that gives the best pre-grasps. As it extends
outward, the quality goes down, denoted by “Normal”. In the
solution space close to the boundary (e.g. when the position
variables take values to the minimum or maximum, the hand
is far away from the object), the pre-grasps has a very low
quality, denoted as “Bad”. Although “Bad” pre-grasps are not
considered to be illegal, we want to avoid them. “Normal”
and “Bad” do not indicate particular quality value. They are
just two terms used to informally show the transition trend
of the solutions. In the grasp planning, we will only search
for solutions that do not collide with the object. That is, if
any illegal solution is obtained during any step of the GA, it
will be dropped and that GA step will be repeated until a legal
solution is found. This makes the solution space discontinuous.
Imagine the action of moving the hand from inside the object
to outside, there will be a sudden transition from the worst
grasp to the best. It addresses one of the difficulties for an
optimization algorithm to find the best solution.

Good solutions are not distributed evenly in the search
space. For the three position variables denoting the position
of the the wrist, we want the search to be focused on the
center area, where the hand is closer to the object. There is no
preferred range for the orientation and eigengrasp variables.
The possible solutions should be searched evenly throughout
the entire range.

B. Operator Selection

We use Tournament Selection with a tournament size of
two as the parent selection technique. For crossover operator,
we employed BLX-α operator proposed in [11], which is
defined as: suppose we have two parents x1,x2, children y1,y2
are uniformly chosen from the interval [Cmin− Iα,Cmax + Iα]
at random, where Cmin = min{x1,x2},Cmax = max{x1,x2}, I =
Cmax−Cmin,α ∈ [0,1]. This can be illustrated in Fig. 2. α is
normally set to a number bigger than 0, to make the children
generated span a slightly larger space than the parents, which
from a statistical perspective compensates for the shrinking of
the solution space over the generations [12]. The effect that the
solution space will be attracted towards a certain area preferred
by the search operator is also called the search bias [13]. There
will be further discussion later.

Gaussian Mutation is applied as the mutation operator. A
new gene value is obtained by adding to the current value a
number drawn from a Gaussian distribution N(0,σ) , where
σ is a user-specified parameter [14]. Let

σi = Kσ · ri (4)

, where ri is the range of the value of genei. We want to select
the parameter Kσ to make sure that the possible solution can
cover the full range. Since the value range for a Gaussian

TABLE II: Operator List

Operators Method
Representation Floating-point Numbers
Parent Selection TournamentSelectionWithoutReplacement, Ts = 2
Crossover BLX-al pha
Mutation Gaussian Mutation, Kσ = 0.2
Elitism Two Elitists, added to the next population
Survivor Selection Generational Model
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Fig. 3: BLX-α with six sampling methods

distribution is approximately equal to 6σ , we choose Kσ = 0.2
as an initial value. Larger values of Kσ will be tested in order
to find the most appropriate value.

In addition, we adopt the generational model for survivor
selection, i.e., the entire population are replaced by their
offspring at each generation. To summarize, the operators are
listed in Table II.

C. Sampling Methods

As discussed earlier, there is an inherent bias caused by
the crossover operator, that the search will go toward a certain
area rather than the whole space. It is necessary to investigate
the bias of BLX-α crossover operator to find out if this bias
is beneficial for the search.

In BLX-α crossover, children solutions are generated by
sampling from an extended area around the parents. In [15],
the search bias was examined with three sampling methods.
We will extend their work with six sampling methods. Details
of each method are described in the Appendix.

We consider one dimensional search without loss of gen-
erality. This search space is given by

X = {x ; xmin ≤ x≤ xmax} (5)

We run the BLX-0.5 operator on the randomly generated
parents x1,x2, using the above six sampling methods. Each one
is run for 5,000,000 times. The probability density function
(p.d.f.) of offspring y generated with each method are shown
in Fig. 3. BLX-0 and BLX-0.25 with type1 sampling are also
included.
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Fig. 4: Two different mutation sampling methods with different
sampling for BLX-0.5, “m repeat” means repetition sampling
for mutation, “m truncate” means truncation sampling for
mutation

From the figure, we can see that the BLX-α operator
has an inherent bias towards the center of the search space.
Comparing these six sampling methods, we can see that the
p.d.f of type(1,2,6) are almost identical, and type(4, 5) are
similar as well. We will treat them as equivalent. Type3
sampling produces solutions more evenly distributed in the
search space. Type(1,2,6) has highest p.d.f. on the center while
the boundary gets a lowest p.d.f. The solutions of type(4,5)
have a very high p.d.f near the boundary because of the
truncation. This leads to the lowest p.d.f in the remaining
search space. We would prefer type(4,5) only when the global
optimum is very close to the boundary of the search space.
Type3 sampling would be the one preferred if no a priori
information is known about the solution space because of its
less bias.

Note that the above probability density functions are gen-
erated empirically. For the theoretical proof on the p.d.f of
offspring produced by BLX operator, readers are referred to
Appendix A in [13].

In the discussion above , we focused on crossover operator
only. In fact, in the implementation of Gaussian Mutation,
there also can be two sampling methods: one is repeating until
the children are in the feasible space, the other is truncating
the children to the limit of the feasible range. We call these
two methods the “repetition method” and “truncation method”
respectively. The effect of them on mutations are illustrated in
Fig. 4. The solutions of the truncation method concentrate on
the boundary while other areas are less likely to be searched
as opposed to the repetition method.

IV. RESULTS AND DISCUSSION

A. Test Platform

The algorithm is implemented in C++ under a modified
version of GraspIt! [1] which runs in ROS framework [16]. All
the tests are performed in this modified GraspIt! simulator, on

TABLE III: Dimension of the search space

Hand Model DOFs and Eigengrasp Space GA Encoding Length
Barrett 4DOFs 7→ 2 EG 8 genes

Human Hand 20DOFs 7→ 6 EG 12 genes

a desktop computer with a AMD Athlon II Quad-core 2.9Ghz
CPU and 6G RAM. The objects used for the tests are imported
from the Household Objects and Grasps Data Set [17]. The
Barrett Hand and the Human Hand model released with the
GraspIt! simulator are employed in this study. The DOFs and
the eigengrasp (EG) space of the hand models are listed in
Table. III.

B. Parameter Tuning

Three parameters are typically considered in the parameter
tuning of GA:

• n : Population size

• pc : Probability of crossover

• pm : Probability of mutation

In our case, we also decide on which sampling method to
use. And we will tune α in the BLX operator and Kσ in the
Gaussian Mutation operator.

There is no general theory on parameter selection. The
optimal parameters are generally problem-dependent. In prac-
tice, parameters are often empirically tuned until satisfactory
results are obtained. To tune the parameters, the program is
executed with a Barrett Hand grasping a glass. n, pc and
pm will be tuned in the range: n = 50− 100, pc = 0.5− 1.0,
pm = 0.01− 0.5. Some preliminary tests show that the GA
planner usually does not produce better solutions after 5,000
generations with a population size of 50 or 100. Optimization
with each set of parameters is performed over 5,000 gener-
ations and the best pre-grasp found is saved as well as the
running time. To account for the stochastic nature of GA, each
test is repeated five times. The best pre-grasp qualities are
taken as the average from the five runs, denoted as “Average”
in the tables.

The best parameter found for this planner is n= 100, BLX-
0.5 with type1 sampling, Gaussian Mutation with Kσ = 0.2 and
repetition method. Results are presented in Table. IV. Note that
in this table, we also show the best pregrasp quality found from
the five runs, which is put in the parentheses next to “Average”.
“STD” is the estimated standard deviation. The best average
solution achieved is marked in red, while the best solution is
marked in blue.

We will use pc = 0.8, pm = 0.1 throughout the following
tests. This set of pc, pm is chosen since it finds the best solution
and also determines a good average best solution. It should
be recognized that, the search space is different when either
the hand or the object is changed. The parameters we chose
may not be applicable for other hand-object combinations.
Thus the robustness of the GA planner is very important in
grasp planning. Further tests will be presented in the following
sections.



TABLE IV: BLX-0.5 with type1 sampling, Kσ = 0.2 with repetition method for mutation

Repetition Sampling pm
0.01 0.1 0.2 0.3 0.4 0.5

Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD

pc

0.5 26.815(21.408) 5.349 17.982(14.626) 6.821 16.098(15.145) 0.859 18.69(16.568) 1.673 18.815(16.443) 2.304 18.978(16.095) 2.083
0.6 31.07(22.53) 5.196 24.997(17.697) 6.166 16.846(15.048) 2.133 18.141(15.039) 1.796 18.976(15.058) 2.62 20.344(19.419) 0.979
0.7 26.915(15.918) 6.81 25.668(14.885) 6.079 17.726(16.264) 1.363 21.124(17.531) 4.891 18.792(16.916) 2.257 20.068(17.475) 1.723
0.8 26.752(19.639) 5.692 16.96(13.678) 6.629 18.327(16.909) 1.687 20.306(17.657) 2.414 21.594(19.206) 2.083 20.853(17.717) 3.204
0.9 20.189(15.906) 5.213 23.235(14.039) 8.149 15.828(15.428) 0.259 19.953(16.827) 2.385 19.995(18.763) 0.973 22.74(20.27) 2.112
1 21.723(14.738) 6.912 15.64(13.988) 2.051 19.037(16.306) 3.207 19.415(17.549) 1.481 21.136(18.151) 2.608 23.739(21.234) 1.622

C. Performance

We run the GA planner with the best parameters we
selected from the previous section. The on-line performance
and off-line performance proposed by De Jong [18] are used
to monitor the evolution of the quality of the grasps over
generations and evaluate the convergence performance of GA.
On-line performance at generation t is an average of the best
from each generation in the past. Off-line performance keeps
track of the best solution Q(best) up to each generation and is
calculated by taking an average of Q(best) of the past genera-
tion at generation t. The on-line and off-line performance over
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Fig. 5: The on-line and off-line performance of the genetic
algorithm and random planner

5,000 generations as well as the elitists and the Q(best) of each
generation are shown in Fig. 5. In this plot, we also include
the on-line and off-line performance of a random planner.
This planner simply generate a random number in the search
space for each variable at each step. For a fair comparison, the
random planner is executed for 5,000∗100= 500,000 function
evaluations. And the results for both planners are presented in
the figure over function evaluations rather than generations.

The figure shows that the population of the planner evolves
rapidly over the first 200-250 generations and grows slowly
afterwards. In the later stage, the population reaches a stable
status. Most individuals are within a small space around the
elitist. During this time period, crossover hardly produces new
individuals and is not efficient in the search of the solution
space. However, the diversity is maintained by mutation so that
the rest of the configuration space still gets the chance to be
searched over, which is indicated in the blue line. Compared
with the simple random planner, we can see that GA is far
more efficient. That is the reason we do not want to use a

high mutation probability for GA, since that will make it act
like a random algorithm.

D. Comparison with Simulated Annealing Planner

Quantitative results on the performance of simulated an-
nealing on grasp planning were reported in [8] and imple-
mented in the original release of GraspIt! simulator. To further
assess the performance of the proposed GA grasp planner,
we test both GA and SA planner on the same sets of hand-
object combinations and compare their performance. The SA
planner from the original GraspIt! is used in our study as
the benchmark since it is very well tuned. In our test, it
is performed over 70,000 iterations as suggested in [8] and
the GA planner is terminated at 5,000 generations, which is
500,000 function evaluations. Each test is repeated five times
and the best pre-grasp quality results are averaged. These
results are given in Table V. And the best pre-grasps found
for both planners on each hand-object combination are shown
in Fig. 6.

The results shows that GA planner outperforms SA planner
in most cases in terms of the best solution. And it is robust
to different hand-object combinations. The average execution
time of the two algorithms is listed in Table VI. The SA
planner performs faster than GA planner. This shows that GA
is better in finding global optimal pre-grasp with a sacrifice in
calculation speed. In fact, the optimization in grasp planning
usually finds its application in off-line use, such as building a
database [19]. Thus the difference in execution time is not a
big concern in this work. However, for a fair comparison, we
want to see what happens if the two algorithms are given the
same amount of time.

We run the GA planner with the same time as the average
time of SA planner listed in Table VI. The result is also
obtained from five runs on each hand-object combination,
shown together with result of SA planner from Table V in
Table VII. The better average pre-grasp quality obtained for
each hand-object from the two planners is marked in red. GA
planner performs better in five out of eight cases. This shows
that even given the same amount of time, the performance of
GA is comparable to that of SA. We recognize that it is helpful
to have GA as another option in the grasp planning task. In
applications such as building a database, we can run both GA
and SA planners and save the better result into the database.

The final grasps resulting from the pre-grasps in Fig. 6 are
executed and shown in Fig. 7. “e” and “v” refers to the ε

quality and v quality. The object is set to transparent to show
the contact between the hand and object. Note that, the quality
of pre-grasp is an informal estimate of the final grasp quality.
But they are not equivalent. A good pre-grasp may result in a



TABLE V: Statistics of the best pre-grasps found from both planners

Planner Type Glass Bottle Mug Spray Bottle
Barrett Human Barrett Human Barrett Human Barrett Human

Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD
SA 13.968(13.717) 0.297 12.032(11.382) 0.574 15.317(13.22) 2.155 10.005(8.75) 1.422 14.847(11.104) 4.115 11.999(10.885) 1.561 14.91(14.364) 0.494 9.221(7.138) 2.633
GA 13.819(13.421) 0.689 11.84(10.774) 1.15 11.773(11.56) 0.189 9.017(8.732) 0.312 13.055(11.194) 1.694 10.387(9.479) 0.807 12.945(10.34) 2.706 9.722(8.972) 1.11

TABLE VI: Execution time of the GA and SA planners

Planner Type Execution Time(seconds)
Barrett Human Hand

SA (70,000 iterations) 125 183
GA (500,000 function evaluations) 226 272

TABLE VII: Statistics of the best pre-grasps found from both planners given the same running time

Planner Type Glass Bottle Mug Spray Bottle
Barrett Human Barrett Human Barrett Human Barrett Human

Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD Average(Best) STD
SA 13.968(13.717) 0.297 12.032(11.382) 0.574 15.317(13.22) 2.155 10.005(8.75) 1.422 14.847(11.104) 4.115 11.999(10.885) 1.561 14.91(14.364) 0.494 9.221(7.138) 2.633

GA(Same Time with SA) 13.89(13.567) 0.317 11.983(10.866) 0.998 13.131(11.951) 1.709 10.681(8.814) 1.172 15.707(14.807) 0.814 10.566(10.174) 0.374 13.793(11.976) 1.597 10.801(9.622) 0.686

Fig. 6: Best pre-grasps found by GA and SA planners

Fig. 7: The corresponding final grasps and the quality

non F-C grasp and a better pre-grasp may leads to worse final
grasp as indicated in Fig. 7.

E. Grasp Planning of Final Grasps

The pre-grasp quality metric that we used is fast to compute
but it has a limitation. It was focused on forming an enveloping
grasp around the object, which from a stability standpoint
may not be a force-closure grasp. And a pre-grasp with a
low (better) quality is not necessarily an enveloping grasp. For
instance, if the hand has all the fingers fully opened, and is
positioned very close and parallel to the surface of the object
(like the spray bottle used in our study), then the hand is so

close to the object that the it may yield a very good pre-grasp
quality, but the hand is not even enveloping the object.

As mentioned earlier, in off-line applications, the speed of
the grasp planning method is not as important as the stability
of the grasp that it can find. To better find force-closure
final grasps and to further evaluate GA’s applicability in grasp
planning, we propose planning the pre-grasps using the quality
of the final grasp directly. Instead of using pre-grasp quality
as the objective function, each pre-grasp is evaluated with its
corresponding final grasp so that the stability of the solution
is guaranteed. For every pre-grasp found by the optimization
algorithm, we move the hand along the approaching direction
defined by the pre-grasp by maximum 50mm until the hand is



in contact with the object and then close the fingers to complete
the final grasp. If no contact is found in this 50mm distance,
the hand is moved back to its intial position and the fingers are
closed. Then the ε quality and v quality can be obtained. We
use a combination of these two quality measures to evaluate
the final grasp, which was originally found in the Graspit!
release:

Q f inal =−(100ε +30v) (6)

This Q f inal is used as the objective function of the optimiza-
tion. The negative value is taken so that it is a minimization
problem, consistent with the pre-grasp quality metric we used
in previous sections. We use ε as the primary quality measure.
It gets more weight than v quality.

Since the execution of the final grasp takes a lot of
computation power, both GA and SA algorithms run very
slow on this problem. We run both planners with a time limit:
1,000 seconds for Barrett Hand and 1,500 seconds for Human
Hand. The quality of the grasp found from five runs of both
planners was summarized in Table VIII. And the best pre-
grasps and their corresponding final grasps are shown in Fig. 8
and 9. Both planners are able to find force-closure grasps. GA
clearly outperforms SA on all the objects when using Barrett
Hand. For grasp planning with Human Hand, GA finds better
solutions in three out of four objects tested. With this method,
the stability of the grasp is guaranteed. And the result shows
that GA is robust to different quality metrics in grasp planning.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an extensive analysis on ge-
netic algorithm in solving the optimization problem in grasp
planning. The solution landscape were examined as well as the
bias introduced by the crossover and mutation operator with
different sampling methods. We implemented GA in GraspIt!
simulator and tests were carried out to choose the appropriate
parameters and sampling methods.

The quantitative results on a number of hand-object com-
binations indicate that genetic algorithm can be used to obtain
a good pre-grasp and is robust to different solution space
introduced by different hand or object. Compared to the
grasp planner based on simulated annealing algorithm, the
GA planner was superior in most cases in terms of the
average best solution obtained. Even given the same amount
of time, the performance of GA was comparable with that of
SA. To overcome the limitation of the pre-grasp quality, we
investigated the possibility of using another quality metric for
this problem. In the optimization process, each pre-grasp was
evaluated based on its corresponding final grasp with a stability
quality measure consisting of ε quality and v quality. With this
quality metric as the objective function, GA outperforms SA
with the same execution time.

Future work will be focused on improving the robustness
of the GA planner. We will apply adaptive methods to tune the
parameters on-the-fly. And since GA is intrinsically parrellel,
it would be interesting to investigate the performance of a
parallel GA, utilizing the power of multiple-core computers.
Furthermore, considering the resemblance between SA and
GA, hybrid methods which combine them [20] to take the
best from both worlds may largely improve the performance.

APPENDIX

For definition of Type1-3 sampling method, users are
referred to [15].

(a) Type4 sampling

In type4 sampling, instead of truncating ymin and ymax as
in Type2, we truncate y if it is out of the range [xmin,xmax]:

y
′
= ymin +u(ymax− ymin), (7a)

y =


xmin, if y

′
< xmin,

xmax, if y
′
> xmax,

y
′
, otherwise

(7b)

(b) Type5 sampling

Type5 sampling is similar with Type3 except that it trun-
cates the offspring in the last step rather than truncating ymin
and ymax.

y
′
=

{
ymin +u1(c− ymin), if u2 ≥ 0.5,
c+u1(ymax− c), if u2 < 0.5.

(8a)

y =


xmin, if y

′
< xmin,

xmax, if y
′
> xmax,

y
′
, otherwise

(8b)

where

c =
(x1 + x2)

2
(9a)

u1,u2 : uniform random number ∈ [0.0,1.0]. (9b)

(c) Type6 sampling

Type6 sampling is a variation from Type3. There is no
truncation done in this method. The steps are repeated until
the offspring is in the feasible range.

y=


{

ymin +u1(c− ymin), if u2 ≥ 0.5,
c+u1(ymax− c), if u2 < 0.5.

, if xmin ≤ y≤ xmax

repeat sampling, otherwise
(10)

where

c =
(x1 + x2)

2
(11a)

u1,u2 : uniform random number ∈ [0.0,1.0]. (11b)
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