

(a) Texture map

Xtion Pro Live

- Introduction
 - · How it works (video) • Structured light (video)
- Hardware
 - RGB
 - Depth sensing by structured light

Introduction Patented technology by an Israeli Company (PrimeSense) Developed for gaming Microsoft, Asus and Orbbecc licensed technology

Specification PRODUCT SPECIFICATION Pr eSensor Spec Property PrimeSensor Spec Field of View (Horizontal, Vertical, Diagonal) 58° H, 40° V, 70° D Color image size UXGA (1600x1200) Audio: built-in microphones 2 mics Depth image size VGA (640x480) Audio: digital inputs 4 inputs Spatial x/y resolution (@2m distance from sensor) 3mm Data interface USB 2.0 USB 2.0 Power supply Depth z resolution (@2m distance from sensor) 1cm 2.25W Power consumption Maximal image throughput (frame rate) 60fps 14cm x 3.5cm x 5cm Dimensions (Width x Height x Depth)

Operation environment (every lighting condition)

Operating temperature

indoor

0°C - 40°C

40msec

0.8m - 3.5m

Average image latency in full VGA resolution

Operation range

How it works

- The Kinect/Xtion Pro Live uses structured (IR) light principle to compute depth of a scene
- The depth computation is done by the PrimeSense Hardware built into the camera, and details are not available
- The basic principle, however, is well known: the depth from stereo triangular (and focus).

Limitations of Xtion Pro Live

- Indoor only since it uses IR as projected light
- Interfere between multiple sensors in the same environment
- Limited FOV (58, 40, and 70 degrees respectively)
- Limited range (depth of field): 0.8 3.5 m
- Limited spatial resolution: 3 mm in x-y, 10 mm in z
- Communication bandwidth
- Power consumption

LiDAR vs. depth from RGB-D

- Lidar produces a point cloud: list of 3D points
- D channel of an RGB-D camera produces a depth map
- Given one, you can compute the other, i.e., depth image from point cloud and point cloud from depth image.
- The measurement function of a RGB-D camera is no different from that of a LiDAR, in terms of its depth value.