Image formation: pinhole model

(a) Texture map

Pinhole camera

space point image point $(X, Y, Z)^{T} \mapsto \mathbf{x}=(x, y)^{T}=(f X / Z, f Y / Z)^{T}$
both in camera coordinate frame! 8

Terms and definitions

- Camera centre: point (pinhole) through which light enters the camera
- Image plane: (virtual) plane in front of the camera centre where image is formed/sensed
- Focal length (f): distance between camera centre and the image plane
- Optical/principal axis (z): line through camera centre and perpendicular to the image plane
- Camera coordinate frame
- origin: camera centre
- z -axis: along optical axi
- x - y plane: parallel to image plane with the horizontal axis being x-axis
- Space point: a point in space in the camera coordinate frame
- Image point: the projection of a space point on the image plane
- Image coordinate frame: shares x and y-axis directions with camera coordinate frame but whose origin is the upper left corner of the image
plane.

Image vs camera coordinate frame

- Image coordinate frame is related to the camera coordinate frame by two translations c_{x} and c_{y}

- In addition, image point \mathbf{x} is mm in the camera coordinate frame but in pixels in the image coordinate frame. 10

Pinhole camera model

Therefore, image point in image coordinate frame is given by:

$$
\left(f_{x} X / Z+\mathrm{c}_{\mathrm{x}}, f_{y} Y / Z+\mathrm{c}_{\mathrm{y}}\right)
$$

($\mathrm{c}_{\mathrm{x}}, \mathrm{c}_{\mathrm{y}}$) are the image centre, and ($f_{\mathrm{x}}, f_{\mathrm{y}}$) are focal lengths, which are called intrinsic parameters of the camera.

Extrinsics

- If the world coordinate frame $\{0\}$ is defined with respect to the camera coordinate frame (\{cam\}), by R and t,

- $[R, t]$ are called the extrinsic parameters of the camera and K the intrinsic parameters.

Summary of camera parameters

- Intrinsics: K
- Focal lengths (2)
- Image center (2)
- Skew coefficient (1) (angle between x and y axes)
- Distortion coefficients (3) (radial distortion)
- Extrinsics: R, t
- Rotation (3), R
- Translation (3), t
- Intrinsics are calibrated once whereas extrinsics may change whenever the camera (robot) moves.

Measurement function $h_{\mathrm{k}}\left(\chi_{\mathrm{k}}\right) \cdot \because \cdot$

- χ_{k} : camera/robot pose x_{i} (2D or 3D) and landmark position $l_{\mathrm{j}}=(X, Y, Z)$ (3D)
- z_{k} : image point in image coordinate frame (x, y), e.g., $(56,73)$ pixels
- $h_{\mathrm{k}}\left(\boldsymbol{\chi}_{\mathrm{k}}\right)$ computes the expected image point in:

$$
\begin{equation*}
\mathrm{p}\left(z_{k} \mid \mathcal{X}_{k}\right) \propto \exp \left(-\frac{1}{2}\left\|h_{k}\left(\mathcal{X}_{k}\right)-z_{k}\right\|_{\Omega_{k}}^{2}\right) \tag{3}
\end{equation*}
$$

based on: $\left(f_{x} X / Z+\mathrm{c}_{x}, f_{y} Y / Z+\mathrm{c}_{y}\right)$, with appropriate coordinate transformation

Xtion Pro Live

- Introduction
- How it works (video)
- Structured light (video)
- Hardware
- RGB
- Depth sensing by structured light

Specification
PRODUCT SPECIFICATION

Property	PrimeSensor Spec	Property	PrimeSensor Spec
Field of View (Horizontal, Vertical, Diagonal)	$58^{\circ} \mathrm{H}, 40^{\circ} \mathrm{V}, 70^{\circ} \mathrm{D}$	Color image size	UXGA (1600x1200)
		Audio: built-in microphones	2 mics
Depth image size	VGA (640×480)	Audio: digital inputs	4 inputs
Spatial x / y resolution (@2m distance from sensor)	3 mm	Data interface	USB 2.0
Depth z resolution (@2m distance from sensor)	1 cm	Power supply	USB 2.0
		Power consumption	2.25 W
Maximal image throughput (frame rate)	60fps	Dimensions (Width \times Height x Depth)	$14 \mathrm{~cm} \times 3.5 \mathrm{~cm} \times 5 \mathrm{~cm}$
Average image latency in full VGA resolution	40 msec	Operation environment (every lighting condition)	indoor
Operation range	0.8m-3.5m	Operating temperature	$0^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$

How it works

- The Kinect/Xtion Pro Live uses structured (IR) light principle to compute depth of a scene
- The depth computation is done by the PrimeSense Hardware built into the camera, and details are not available
- The basic principle, however, is well known: the depth from stereo triangular (and focus).

Depth from stereo

Depth from focus

Limitations of Xtion Pro Live

- Indoor only since it uses IR as projected light
- Interfere between multiple sensors in the same environment
- Limited FOV (58, 40, and 70 degrees respectively)
- Limited range (depth of field): $0.8-3.5 \mathrm{~m}$
- Limited spatial resolution: 3 mm in $x-y, 10 \mathrm{~mm}$ in z
- Communication bandwidth
- Power consumption

LiDAR vs. depth from RGB-D

- Lidar produces a point cloud: list of 3D points
- D channel of an RGB-D camera produces a depth map
- Given one, you can compute the other, i.e., depth image from point cloud and point cloud from depth image.
- The measurement function of a RGB-D camera is no different from that of a LiDAR, in terms of its depth value.

