What we will do today ..

- Examples of Equation (1) in [Cadena 2016]

- Introduction to robot odometry (u_{i} in Fig. 3 of [Caneda 2016])
- Coordinate frames
- Spatial transforms (3D and 2D)
- Wheel odometry
- Odometry with inertial measurement unit (IMU) odometry - LiDAR odometry (Wednesday)
- Visual odometry (later)
- Wednesday (9/18), we will talk about cameras and loop closure (c_{i})
- Assignment No. 1, Wednesday (9/18)

SLAM Solution

$$
\begin{equation*}
\mathcal{X}^{\star} \doteq \underset{\mathcal{X}}{\operatorname{argmax}} \mathrm{p}(\mathcal{X} \mid Z)=\underset{\mathcal{X}}{\operatorname{argmax}} \mathrm{p}(Z \mid \mathcal{X}) \mathrm{p}(\mathcal{X}) \tag{1}
\end{equation*}
$$

Reading Assignments

- (9/4) SLAM Survey: [Caneda 2016], pp. 1-12 (13091320) and pp. 17-18 (1326-1327)
- (9/16) Basic linear algebra and coordinate transformations:
http://ais. informatik.uni-freiburg.de/teaching/ss11/robotics/sides/02-inear-algebra.ppt.pdf
- (9/16) Mobile robot kinematics (differential drive): http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/03-locomotion.ppt.pdf
- (9/16) RTAB-MAP: [Labbe 2019], pp. 1-12 (416-427)

$$
\begin{align*}
& \mathcal{X}^{\star} \doteq \underset{\mathcal{X}}{\operatorname{argmax}} \mathrm{p}(\mathcal{X} \mid Z)=\underset{\mathcal{X}}{\operatorname{argmax}} \mathrm{p}(Z \mid \mathcal{X}) \mathrm{p}(\mathcal{X}) \tag{1}\\
& \mathcal{X}^{\star}=\underset{\mathcal{X}}{\operatorname{argmax}} \mathrm{p}(\mathcal{X}) \prod_{k=1}^{m} \mathrm{p}\left(z_{k} \mid \mathcal{X}\right) \\
& =\underset{\mathcal{X}}{\operatorname{argmax}} \mathrm{p}(\mathcal{X}) \prod_{k=1}^{m} \mathrm{p}\left(z_{k} \mid \mathcal{X}_{k}\right) \tag{2}\\
& \mathrm{p}\left(z_{k} \mid \mathcal{X}_{k}\right) \propto \exp \left(-\frac{1}{2}\left\|h_{k}\left(\mathcal{X}_{k}\right)-z_{k}\right\|_{\Omega_{k}}^{2}\right) \tag{3}\\
& \mathcal{X}^{\star}=\underset{\mathcal{X}}{\operatorname{argmin}}-\log \left(\mathrm{p}(\mathcal{X}) \prod_{k=1}^{m} \mathrm{p}\left(z_{k} \mid \mathcal{X}_{k}\right)\right) \\
& =\underset{\mathcal{X}}{\operatorname{argmin}} \sum_{k=0}^{m}\left\|h_{k}\left(\mathcal{X}_{k}\right)-z_{k}\right\|_{\Omega_{k}}^{2} \tag{4}
\end{align*}
$$

