## House Keeping Matters

- Homework assignment #3 to be posted later today, and on October 28 due time, I'll post (partial) solution.
- Proposal of the course project due Wednesday October 23 (was Monday October 21)
- Midterm will be on Wednesday October 30 (was October 28)
- Proposal presentation October 28 (was October 30), 10-15 minutes per group
- Doodle sign up for consultation slots on the course project (by group) this Friday PM









# Perspective-3-Point (P3P)

### Definition:

Given the model of an object (geometry) and its projection on the image, determine the object pose with respect to the camera.

#### Two Steps:

- 1. Determine 3 object points in the camera coordinate frame,  $X^c$ .
- 2. Solve for the extrinsics/pose  $\{R, t\}$  with  $X^c = [R, t]X^w$ .

Note that  $X^w$  are known.















# Perspective-n-Point (PnP)

### Definition:

Given the model of an object (geometry) and its projection on the image, determine the object pose.

### Solution:

- 1. Identify three distinct points on the object:  $X^{w}$ ,  $Y^{w}$ , and  $Z^{w}$
- 2. Solve for *X*, *Y*, and *Z* to obtain three  $X^c Y^c$ , and  $Z^c$
- 3. We have three equations of the form, *X*<sup>c</sup> = [*R*, *t*]*X*<sup>w</sup>, or nine (linear) constraints on [*R*, *t*] of 6 DOF, to obtain our solution.

For further details, refer to:

https://www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/