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Abstract

When computationally feasible, mining extremely large databases produces tremendously large num-
bers of frequent patterns. In many cases, it is impractical to mine those datasets due to their sheer size; not
only the extent of the existing patterns, but mainly the magnitude of the search space. Many approaches
have been suggested such as sequential mining for maximal patterns or searching for all frequent patterns
in parallel. So far, those approaches are still not genuinely effective to mine extremely large datasets.

In this work we propose a method that combines both strategies efficiently, i.e. mining in parallel for the
set of maximal patterns which, to the best of our knowledge, has never been proposed efficiently before.
Using this approach we could mine significantly large datasets; with sizes never reported in the literature
before. We are able to effectively discover frequent patterns in a database made of billion transactions
using a 32 processors cluster in less than 2 hours.

1 Introduction

The last decades have witnessed a massive growth in data collection techniques from different sources
like satellite images, surveillance cameras, commercial domain transactions, etc.; this has led to huge
archiving of data often without the ability to extract useful actionable information. The need to discover
actionable knowledge from these massive data collections, for security, scientific or competitive reasons
is obvious today. In the commercial domain alone, considering all the daily commercial transactions,
or the goods movements and management with Radio Frequency Identification, RFID is phenomenal.
Market competition motivates the timely discovery of useful patterns in the collected transactional data
to gain competitive edge and help decision support. Data mining is the process in which hidden, implicit
knowledge can be extracted from a store of databases or facts. The techniques have been proven very
effective in many applications. However, while computers are getting faster and more powerful, they
cannot sustain the tremendous increase in data collection we are able to amass today. New strategies are
needed to scale with the amplified data gathering.

One of the major data mining techniques for pattern discovery and consequently one of the most stud-
ied in the data mining community, is association rule analysis in which strong relationships between
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co-occurring items in transactional data are discovered. Association rules are based on frequent item-
set mining which is, simply put, the enumeration of sets of items frequently occurring together. The
search (i.e. enumeration) is bound by count thresholds, known as support, or some other imposed con-
straints. Although mining for frequent itemsets is indeed necessary for association rule mining that is
useful for customer behavior analysis or many other applications, frequent itemsets are valuable in many
other knowledge discovery tasks, from the pre-processing of data to the characterization of discovered
patterns. Frequent itemsets are constructive in building classification models, clustering data, discovering
contrast sets, etc. In specific applications such as bio-informatics, frequent itemsets are an asset in micro-
array analysis, protein structure prediction, etc. Hence, discovering frequent itemsets forms an essential
canonical task in data mining.

While discovering hidden knowledge in the available repositories of data is an important goal for de-
cision makers, discovering this knowledge in a “reasonable” time is capital. Despite the increase in data
collection, the rapidity of the pattern discovery remains vital and will always be essential. Speeding up the
process of knowledge discovery has become a critical problem, and parallelism is shown to be a potential
solution for such a scalability predicament. Naturally, parallelization is not the only and should not be
the first solution to speedup the data mining process. Indeed, other approaches might help in achieving
this goal, such as sampling, attribute selection, restriction of search space, and algorithm or code opti-
mization [9]. Some of these approaches might be used in conjunction with parallelism to achieve the
desired speedup. A legitimate issue is whether parallelism is needed in data mining. Efficiency is crucial
in knowledge discovery systems, and with the explosive growth of data collection, sequential data mining
algorithms have become an unacceptable solution to most real size problems even after clever optimiza-
tions. To illustrate the complexity of the problem of frequent itemset enumeration in today’s real data,
assume a small token case with only 5 possible items (i.e. a store that sells only 5 distinct products), the
lattice that represents all possible candidate frequent patterns has25 − 1 = 31 itemsets. Applications that
generate transactions with sizes greater than 100 items per transaction are common. In those cases, to find
a frequent itemset with size 100, it would take a search space of2100−1 = 1.27∗1030 itemsets. Adding the
fact that most real transactional databases are in the order of millions, if not billions, of transactions and
the problem becomes intractable with current sequential solutions. With hundreds of gigabytes, and often
terabytes and thousands of distinct items, it is unrealistic for one processor to mine the data sequentially,
especially when multiple passes over these enormous databases are required.

Dividing the mining task among different processors represents a potential solution for the above-
mentioned problem especially if this parallelism provides answers for decision makers in a reasonable
time period and time is of the essence. There are different design issues that affect building parallel asso-
ciation rule mining algorithms [25, 24]. These design issues are significantly affected by the specification
of the problem that the system is trying to solve.

Finding the set of frequent patterns is the first step in finding association rules. Once frequent itemsets
are known, generating the association rules is trivial. Discovering the frequent patterns is essentially
pinpointing some itemsets with high support in this massive lattice of candidates. In the literature, there are
different approaches for efficient and effective counting and enumeration of frequent itemsets. Primarily,
these approaches differ in the way they traverse the lattice, or search space. Most algorithms apply bottom
up traversal of the lattice in order to enumerate the frequent itemsets. In other words, they search for short
frequent patterns and build up on those that are frequent. Others might use top down search in cases of
long frequent itemsets. They discover the long patterns before focusing on shorter ones. Some have also
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proposed hybrid strategies that merge top-down with bottom-up approaches.
Other fundamental differences between approaches are in the type of frequent patterns they aim at

discovering. Rather than discovering all the frequent itemsets, one could discover a representative subset
of these itemsets and then generate all the needed patterns. The set of frequent itemsets contains indeed
many redundancies and could be represented by a smaller set called the frequent closed itemsets, or an even
smaller set called the maximal frequent itemsets from which all the frequent itemsets can be generated. A
detailed definition of frequent and maximal patterns is explained in the next section. The strategies aiming
at these smaller subsets are typically faster and more scalable.

1.1 Problem Statement

The problem of mining frequent itemsets stems from the problem of mining association rules over
market basket analysis as introduced in [1]. The problem consists of finding sets of items (i.e. itemsets)
that are sufficiently frequent in a transactional database. The data could be retail sales in the form of
customer transactions, text documents [8], or even medical images [23]. These frequent itemsets have
been shown to be useful for other applications such as recommender systems, diagnosis, decision support,
telecommunication, and even supervised classification. They are used in inductive databases [13], query
expansion [18], document clustering [4], etc. Formally, as defined in [2], the problem is stated as follows:
Let I = {i1, i2, ...im} be a set of literals, called items andm is considered the dimensionality of the
problem. LetD be a set of transactions, where each transactionT is a set of items such thatT ⊆ I. A
transactionT is said to containX, a set of items inI, if X ⊆ T . An itemsetX is said to befrequentif its
supports (i.e. ratio of transactions inD that containX) is greater than or equal to a given minimum support
thresholdσ. A frequent itemsetM is considered maximal if there is no other frequent set that is a superset
of M. Consequently, any subset of a maximal pattern is a frequent pattern. Discovering all Maximal
patterns effortlessly yields the complete set of frequent patterns. Therefore, we solely contemplate the
discovery of maximals in this paper.

1.2 Contributions in this paper

In this paper we present a new parallel frequent mining algorithm that is based on our previous work
of leap-traversal that generates the set of maximal patterns. We show that using the traversal approach
while parallelizing the mining approach allows us to mine databases of sizes never reported before, and in
a reasonable time using a cluster made of 32 processors.

The rest of this paper is organized as follows: In section 2, we discuss our Leap traversal approach and
describe our proposed parallel approach in Section 3. We evaluate some strategies for load sharing and
present performance results on experiments assessing scalability and speed-up in Section 4. Finally, we
highlight some related work in Section 5 and conclude the paper.

2 The Leap Traversal Approach

Contrary to most existing parallel algorithms for mining frequent patterns, our algorithm is not apriori-
based. To mine for maximal patterns in parallel, we rely on a completely new and different approach and
use special structures that fit well a distributed or cluster environment. Before elaborating on our parallel
algorithm, we first present the data structures and explain the general concepts. Our algorithm is based on
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our recent new lattice raversal strategy HFP-Leap [21]. In our parallel approach, HFP-Leap still performs
the actual leap-traversal to find maximal patterns. We first present the idea behind HFP-Leap then show
how this idea can be parallelized.

The Leap-Traversal approach we discuss consists of two main stages: the construction of a Frequent
Pattern tree (HFP-tree); and the actual mining for this data structure by building the tree of intersected
patterns.
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Figure 1. Example of transactional database with its original FP-tree and Headerless FP-tree.

2.1 Construction of the Frequent Pattern Tree

The goal of this stage is to build a compact data structure, which is a prefix tree representing sub-
transactions pertaining to a given minimum support threshold. This data structure, compressing the trans-
actional data, is based the FP-tree by Han et al. [11]. The tree structure we use, called HFP-tree is a
variation of the original FP-tree. We start introducing the original FP-tree before discussing the differ-
ences with our data structure. The construction of the FP-tree is done in two phases, where each phase
requires a full I/O scan of the database. A first initial scan of the database identifies the frequent 1-itemsets.
The goal is to generate an ordered list of frequent items that would be used when building the tree in the
second phase.

After the enumeration of the items appearing in the transactions, infrequent items with a support less
than the support threshold are weeded out and the remaining frequent items are sorted by their frequency.
This list is organized in a table, called header table, where the items and their respective supports are
stored along with pointers to the first occurrence of the item in the frequent pattern tree. The actual
frequent pattern tree is built in the second phase. This phase requires a second complete I/O scan of the
database. For each transaction read, only the set of frequent items present in the header table is collected
and sorted in descending order according to their frequency. These sorted transaction items are used in
constructing the FP-Tree.

Each ordered sub-transaction is compared to the prefix tree starting from the root. If there is a match
between the prefix of the sub-transaction and any path in the tree starting from the root, the support in the
matched nodes is simply incremented, otherwise new nodes are added for the items in the suffix of the
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transaction to continue a new path, each new node having a support of one. During the process of adding
any new item-node to the FP-Tree, a link is maintained between this item-node in the tree and its entry
in the header table. The header table holds one pointer per item that points to the first occurrences of this
item in the FP-Tree structure.

Our tree structure is the same as the FP-tree except for the following differences. We call this tree
Headerless-Frequent-Pattern-Tree or HFP-tree.

1. We do not maintain a header table, as a header table is used to facilitate the generation of the
conditional trees in the FP-growth model. It is not needed in our leap traversal approach;

2. We do not need to maintain the links between the same itemset across the different tree branches
(horizontal links);

3. The links between nodes are bi-directional to allow top-down and bottom-up traversals of the tree;

4. All leaf nodes are linked together as the leaf nodes are the start of any pattern base and linking them
helps the discovery of frequent pattern bases;

5. In addition tosupport, each node in the HFP-tree has a second variable calledparticipation.

Basically, the support represents the support of a node, while participation represents, at a given time in
the mining process, the number of times the node has participated in already counted patterns. Based on
the difference between the two variables,participationandsupport, the special patterns calledfrequent-
path-basesare generated. These are simply the paths from a given nodex, with participation smaller than
the support, up to the root, (i.e. nodes that did not fully participate yet in frequent patterns).

Figure 1 presents the Headerless FP-tree and the original FP-tree for the same tansactional data.

Algorithm 1 HFP-Leap: Leap-Traversal with Headerless FP-tree
Input: D (transactional database);σ (Support threshold).
Output: Maximal patterns with their respective supports.

ScanD to find the set of frequent 1-itemsetsF1
ScanD to build the Headerless FP-treeHFP
FPB ← FindFrequentPatternBases(HFP )
Maximals ← FindMaximals(FPB, σ)

OutputMaximals

Algorithm 1 shows the main steps in our approach. After building the Headerless FP-tree with 2 scans
of the database, we mark some specific nodes in the pattern lattice usingFindFrequentPatternBases. Using
the FPBs, the leap-traversal inFindMaximalsdiscovers the maximal patterns at the frequent pattern border
in the lattice.

Algorithm 2 shows how patterns in the lattice are marked. The linked list of leaf nodes in the HFP-tree
is traversed to find upward the unique paths representing sub-transactions. If frequent maximals exist, they
have to be among these complete sub-transactions. The participation counter helps reusing nodes exactly
as needed to determine the frequent path bases.
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Algorithm 2 FindFrequentPatternBases: Marking nodes in the lattice
Input: HFP (Headerless FP-Tree).
Output: FPB (Frequent pattern bases with counts)

ListNodesF lagged ← ∅
Follow the linked list of leaf nodes inHFP
for each leaf nodeN do

Add N to ListNodesF lagged
end for
while ListNodesF lagged 6= ∅ do

N ← Pop(ListNodesF lagged) {from top of the list}
fpb ← Path fromN to root
fpb.branchSupport← N .support -N .participation
for each nodeP in fpb do

P .participation← P .participation +fpb.branchSupport
if P .participation< P .support AND∀c child of P , c.participation= c.supportthen

addP in ListNodesF lagged
end if

end for
addfpb in FPB

end while

RETURNFPB

2.2 Actual Mining of Frequent-Path-Bases: The Leap-Traversal approach

Algorithm 3 is the actual leap traversal to find maximals using FP-trees generated all at one time using
the Headerless FP-tree. It starts by listing some candidate maximals stored inPotentialMaximals, which
is initialized with the frequent pattern bases that are frequent. All the non-frequent FPBs are used for
the jumps of the lattice leap traversal. These FPBs are stored in the listList and intermediary listsNList
andNList2will store the nodes in the lattice that the intersection of FPBs would point to; in other words,
the nodes that may lead to maximals. The nodes in the lists have two attributes:flag and startpoint.
For a noden, flag indicates that a subtree in the intersection tree should not be considered starting from
the noden. For example, if node (A ∩ B) has a flagC, then the subtree under the node (A ∩ B ∩ C)
should not be considered. For a given noden, startpointindicates which subtrees in the intersection tree,
descendants ofn, should be considered. For example, if a node (A ∩ B) has the startpointD, then only
the descendants (A ∩ B ∩ D) and so on are considered, but (A ∩ B ∩ C) is omitted. Note thatABCD
are ordered lexicographically. At each level in the intersection tree, whenNList2 is updated with new
nodes, the theorems in [21] are used to prune the intersection tree. In other words, the theorems help avoid
useless intersections (i.e. useless maximal candidates). The same process is repeated for all levels of the
intersection tree until there is no other intersections to do (i.e.NList2 is empty). At the end, the set of
potential maximals is cleaned by removing subsets of any sets inPotentialMaximals.

It is obvious in the Leap-traversal approach that superset checking and intersections plays an important
role. We found that the best way to work with this is by using the bit-vector approach where each frequent
item is represented by one bit in a vector. In this approach, intersection is nothing but applying the AND
operation between two vectors, and subset checking is nothing but applying the AND operation followed
by equality checking between two vectors. IfA ∩B = A then A is a subset of B.
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Algorithm 3 FindMaximals: The actual leap-traversal
Input: FPB (Frequent Pattern Bases);σ (Support threshold).
Output: Maximals (Frequent Maximal patterns)
{which FPBs are maximals?}
List ← FPB; PotentialMaximals ← ∅
for eachi in List do

Find support ofi {using branch supports}
if support(i) > σ then

Add i to PotentialMaximals
Removei from List

end if
end for
SortList based on support
NList ← List; NList2 ← ∅
∀i ∈ NList initialize i.flag← NULL AND i.startpoint← index ofi in NList
while NList 6= ∅ do
{Intersections of FPBs to select nodes to jump to}
for eachi in NList do

g ← Intersect(i, j) {wherej ∈ List AND i ¿ j (in lexicographic order) AND notj.flag}
g.startpoint← j; Add g to NList2

end for
for eachi in NList2 do

Find support ofi {using branch supports}
if support(i) > σ then

Add i to PotentialMaximals
Remove all duplicates or subsets ofi in NList2; Removei from NList2

else
if duplicates ofi exist inNList2 then remove them except the most right one then removei from NList2
Remove all non frequent subsets ofi from NList2
if ∃j ∈ NList2 AND j ⊇ i then

i.flag← j
end if
for all j in List do

if j À i.startpoint (in lexicographic order)then
n ← Intersect(i, j)
Find support ofn {using branch supports}
if support(n) < σ then

Removei from NList2
end if

end if
end for

end if
end for
NList ← NList2; NList2 ← ∅

end while
Remove anyx from PotentialMaximals if (∃M ∈ PotentialMaximals AND x ⊂ M )
Maximals ← PotentialMaximals

RETURNMaximals
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3 Parallel Leap Traversal Approach

The parallel leap traversal approach starts by partitioning the data among the parallel nodes. Each
processor scans its partition to find the frequency of candidate items. The list of all supports is reduced to
the master node to get the global list of frequent 1-itemsets. The second scan of each partition starts with
the goal of building a local headerless frequent patterns tree. From each tree, the local set of frequent path
bases is generated. Those sets are broadcasted to all processors. Identical frequent path bases are merged
and sorted lexicographically, the same as with the sequential process. At this stage the pattern bases
are split among the processors. Each processor is allocated a carefully selected set of frequent pattern
bases to build their respective intersection trees. This distribution is discussed further below. Pruning
algorithms are applied at each processor to reduce the size of the intersection trees [21]. Maximal patterns
are generated at each node. Each processor then sends its maximal patterns to one master node, which
filters them to generate the set of global maximal patterns. Algorithm 4 presents the steps needed to
generate the set of maximal patterns in parallel.

3.1 Load sharing among processors

While the trees of intersections are not physically built, they are virtually traversed to complete the
relevant intersections of pattern bases. Since each processor can handle independently some of these
trees and the sizes of these trees of intersections are monotonically decreasing, it is important to cleverly
distribute these among the processors to avoid significant load imbalance. A naı̈ve and direct approach
would be to divide the trees sequentially. Givenp processors we would give the first1

p

t
h trees to the

first processor, the next fraction to the second processor, and so on. This strategy unfortunately leads to
eventual imbalance between processors since the last processor getting all small trees would undoubtedly
terminate before other nodes in the cluster. A more elegant and effective approach would be a round
robin approach considering the sizes of the trees: when ordered by size, the firstp trees are distributed
one to each processor and so on for each set ofp trees. This avoids having a processor dealing with
only large trees while another processor is intersecting with only small ones. Again this strategy may still
create imbalance between processors, however, less acute than the naı̈ve direct approach. The strategy
that we propose, and call First-Last, distributes two trees per processor at a time. The largest tree and the
smallest tree are assigned to the first processor, then the second largest tree and penultimate small tree to
the second processor, the third largest tree and third smallest tree to the third processor and so on in a loop.
This approach seems to advocate a better load balance as is demonstrated by our experiments.

3.2 Parallel Leap Traversal Approach : An Example

The following example illustrates how the leap traversal approach is applied in parallel. Figure 2.A
presents 7 transactions made of 8 distinct items which are:A, B, C, D, E, F , G, andH. Assuming we
want to mine those transactions with a support threshold equal to at least 3, using two processors, Figures
2 and 3 illustrate all the needed steps to accomplish this task. The database is partitioned among the two
processors where the first three transactions are assigned to the first processor,P1, and the remaining ones
are assigned to the second processor,P2 (Figure 2.A).

In the first scan of the database, each processor finds the local support for each item:P1 finds the
support ofA, B, C, D, E, F andG which are 3, 2, 2, 2, 2, 1 and 2 respectively, andP2 the supports ofA,
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Algorithm 4 Parallel-HFP-Leap: Parallel-Leap-Traversal with Headerless FP-tree
Input: D (transactional database);σ (Support threshold).
Output: Maximal patterns with their respective supports.

- D is already distributed otherwise partitionD between the availablep processors;
- Each processorp scans its local partitionDp to find the set of local candidate 1-itemsetsLpC1 with their respective local
support;
- The supports of allLiC1 are transmitted to the master processor;
- Global Support is counted by master andF1 is generated;
- F1 is broadcasted to all nodes;
- Each processorp scans its local partitionDp to build the local Headerless FP-treeLpHFP based onF1;
- LpFPB ← FindFrequentPatternBases(LpHFP );
- All LpFPB are sent to the master node ;
- Master node generates the globalFPB from all LpFPB;
- The globalFPB are broadcasted to all nodes;
- Each Processorp is assigned a set of local header nodesLHD from the globalFPB; {this is the distribution of trees of
intersections}
for eachi in LHD do

LOCALMaximals ← FindMaximals(FPB, σ);
end for
- Send allLOCALMaximals to the master node;
- The master node prunes allLOCALMaximals that have supersets itemsets inLOCALMaximals to produce
GLOBALMaximals;

- The master node outputsGLOBALMaximals.

B, C, D, E, F , andH which are 2, 3, 3, 3, 3, 3, 2. A reduced operation is executed to find that the global
support ofA, B, C, D, E, F , G, andH items is 5, 5, 5, 5, 5, 4, 2, and 2. The last two items are pruned as
they do not meet the threshold criteria (support> 2), and the remaining ones are declared frequent items
of size 1. The set of Global frequent 1-itemset is broadcasted to all processors using the first round of
messages.

The second scan of the database starts by building the local headerless tree for each processor. From
each tree the local frequent path bases are generated. InP1 the frequent-path-basesABCDE, ABE,
andACDF with branch support equal to 1 are generated.P2 generatesACDEF , BCDF , BEF , and
ABCDE with branch supports equal to 1 for all of them (Figure 2.B). The second set of messages is
executed to send the locally generated frequent path bases toP1. Here, identical ones are merged and the
final global set of frequent path bases are broadcasted to all processors with their branch support (Figure
2.C).

Each processor is assigned a set of header nodes to build their intersection tree as in Figure 3.A. In
our example, the first, third, and sixth frequent path bases are assigned toP1 as header nodes for its
intersection trees.P2 is assigned to the second, fourth, and fifth frequent path bases. The first tree of
intersection inP1 producesACDE, BCD, BE, andAE with support equal to 3, 3, 4, and 4 respectively.
The second assigned tree producesCDF with support equal to 3.P1 produces 4 local maximals which
areBE, AE, BE, CDF with support equal to 4, 4, 4, 3 respectively.P2 producedCDF , BE, and
AE with support equal to 3, 4, and 4 respectively. All local maximals are sent toP1 in which any local
maximal that has any other superset of local maximals from other processors are removed. The remaining
patterns are declared as global maximals (Figure 3.B).
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Figure 2. Example of Parallel Leap Traversal Approach: Finding the pattern bases

4 Performance Evaluations

To evaluate our parallel leap-traversal approach, we conducted a set of different experiments using a
cluster made of twenty boxes. Each box has Linux 2.4.18, dual processor 1.533 GHz AMD Athlon MP
1800+, 1.5 GB of RAM. Nodes are connected by Fast Ethernet and Myrinet 2000 networks. In this set
of experiments, we generated synthetic datasets using [12]. All transactions are made of 100,000 distinct
items with average transaction length of 12 items per transaction.

We conducted a battery of tests to evaluate the processing load distribution strategy, the scalability vis-
à-vis the size of the data to mine, and the speed-up gained from adding more parallel processing power.
Some of the results are portrayed hereafter.

4.1 Effect of load distribution strategy

We enumerated above three possible strategies for tree of intersection distribution among the processors.
As explained, the trees are in decreasing order of size and they can either be distributed arbitrarily using
the näıve approach, or more evenly using a round robin approach, or finally with the First-Last approach.

The näıve and simple strategy uses a direct and straightforward distribution. For example if we have 6
trees to assign to 3 processors, the first two trees are assigned to the first processor, the third and fourth trees
are assigned to the second processor, and the last two trees are assigned to the last processor. Knowing
that the last trees are smaller in size than the first trees, the thirds processor will inevitably finish before
the first processor. In the round robin distribution, the first, second and third tree are allocated respectively
to the first, second and third processor and then the remaining forth, fifth and sixth trees are assigned
respectively to processor one, two and three. With the last strategy of distribution, First-Last, the trees are
assigned in pairs: processor one works on the first and last tree, processor two receives the second and
fifth tree, while the third processor obtains the third and fourth trees.

From our experiments in Figure 4 we can see that the First-Last distribution gave the best results. This
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Figure 3. Example of Parallel Leap Traversal Approach: Intersecting pattern bases

can be justified by the fact that since trees are lexicographically ordered then in general trees on the left
are larger than those on the right. By applying the First-Last distributions we always try to assign largest
and smallest tree to the same node. All our remaining experiments use the First-Last distribution methods
among intersected trees.
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Figure 4. Effect of Leap node distributions

4.2 Scalability with respect to database size

One of the main goals in this work is to mine extremely large datasets. In this set of experiments we
tested the effect of mining different databases made of different transactional databases varying from 100
million transactions up to one billion transactions. To the best of our knowledge, experiments with such
big sizes have never been reported in the literature. We mined those datasets using 32 processors, with
three different support thresholds: 10%, 5% and 1%. We were able to mine one billion transactions in
5020 seconds for a support of 0.1 up to 6100 seconds for a support of 0.01. Figure 5 shows the results
of this set of experiments. While the curve does not illustrate a perfect linearity in the scalability, the
execution time for the colossal one billion transaction dataset was a very reasonable one hour and forty
minutes with a 0.01 support and 32 relatively inexpensive processors.
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Figure 5. Scalability with respect to the transaction size, (number of processors = 32)

4.3 Scalability with respect to number of processors

To test the speed-up of our algorithm with the increase of processors we fixed the size of the database
to 100 million transactions and examined the execution time on this dataset with one processor up to 32
processors. The execution time is reduced sharply when two to four parallel processors are added then
continues to decrease significantly afterward with additional processors (Figure 6). The speedup was
fairly acceptable as almost two folds were achieved with 4 processors, 4 folds while using 8 processors,
and almost 13 folds while using 32 processors. This results are depicted in Figure 7.
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Figure 6. Scalability with respect to the number of processors, (transaction size = 100M)
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5 Related work

Recent days have witnessed an explosive growth in generating data in all fields of science, business,
military, etc. The same rate of growth in the processing power of evaluation and analyzing the data has
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not followed this massive growth to the same extent. It has therefore become critical to design efficient
parallel algorithms to achieve the data mining tasks. Another reason that necessitates the parallel solution
is that most extremely large databases reside in different locations, and the cost of bringing them into one
site for sequential discovery can be prohibitively expensive. In this section, we are mentioning the parallel
environments used in the literature and most of the existing parallel association rule mining algorithms.

Parallel environment has been described either as a single computer with multiple processors sharing
the same address space (i.e. Shared Memory) or as multiple interconnected computers where each one
has its own independent local memory (i.e. Shared Nothing), or Distributed Memory [20]. The first
platform allows any processor to access the memory space directly, where synchronization occurs via
locks and barriers. Applications running on such a platform try to achieve the following goals: reducing
the synchronization points, achieving high data locality which means maximizing access to local cache,
and avoiding false sharing. In the later approach, Shared Nothing, if a processor requires data contained
in another processor’s memory space, messages must be passed between them using some function library
routines like MPI, or PVM. The main objective of this method is to reduce and optimize communication
costs, and to have good decomposition of data, because it is highly affected by the distribution of work
among nodes. It is true that shared memory programming offers simplicity over the distributed one, but
using the common memory with a finite bus in shared memory affects scalability. On the other hand the
distributed architecture solves the scalability problem at the expense of programming simplicity.

In the realm of association rules, existing parallel frequent itemset mining algorithms are divided among
the two parallel environments mentioned above where distributed algorithms are grouped into two main
categories based on how candidate sets are handled. Some algorithms rely on replications of candidate
sets while others partition the candidate set.

Replication is the simplest approach. In this approach the candidate generation process is replicated
and the counting step is performed in parallel where each processor is assigned part of the database to
mine. This method suffers mainly from three problems. First, not all local frequent items are global
frequent items, the “false positive phenomenon.” Second, not all non-local frequent items are non-global
frequent items, the “false negative phenomenon.” Finally, it depends heavily on the memory size. The
main algorithms on this class are: Count Distribution algorithm [17], Parallel Partition algorithm [19],
Fast Distributed Mining algorithm [6], Fast Parallel Mining algorithm [6], Parallel Data Mining algorithm
[14].

Partitioning Algorithms are the second type of parallel algorithms that rely on the concept of partitioning
the candidate set among processors. Here, each processor handles only a predefined set of candidate items
and scans the entire database, leading to prohibitive I/O costs. In cases of extremely large databases
these algorithms collapse due to excessive I/O scans required of them. In general they are used to mine
relatively small databases with limited memory bandwidth. Some of these algorithms are Data Distribution
algorithm, Candidate Distribution algorithm [17], Intelligent Data Distribution algorithm [10].

Most of the above mentioned algorithms are based on the apriori algorithm, which requires multi-scan
of the database and a massive candidate generation phase. That is why most of them are not fully scalable
for extremely large datasets.

A parallelization of the MaxMiner [3] is presented in [7]. The algorithm inherits the effective pruning
of MaxMiner but also its drawbacks. It is efficient for long maximal patterns but not as capable when
most patterns are short. It also requires multiple scans of the data making it inefficient for extremely large
datasets.
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A PC-cluster based algorithm proposed in [16], derived from the sequential FP-growth algorithm [11],
exhibits good load balancing. Being a non-apriori based approach, the candidacy generation is signifi-
cantly reduced. However, node-to-node communication is considerable especially for sending conditional
patterns. The algorithm displays good speedup, but on the other hand it does not scale to extremely large
datasets as the larger the dataset, the more conditional patterns are found, and the more node-to-node
communication is required.

Myriad shared memory-based parallel frequent mining algorithms are described in the literature such as
Asynchronous Parallel Mining [5], Parallel Eclat, MaxEclat, Clique, MaxClique, TopDown, and AprClique
algorithms all reported in [15]. These algorithms are mainly apriori-based and suffer from expensive can-
didacy generation and communication costs. Multiple Local Frequent Pattern tree Algorithm [22], which
was among the first non apriori-based parallel mining algorithm, at our attempt parallelizing FP-growth.
Such algorithms show good performance while mining for frequent patterns, but due to the nature of
shared memory environments with limited bus and common disks, they are not suitable to be scaled for
extremely large dataset.

What distinguishes our approach from the afore mentioned algorithms is the strategy for traversing the
lattice of candidate patterns. Candidate checking has significantly reduced by using pattern intersections
and communication costs are condensed thanks to the self-reliant and independent processing modules,
and finally, the data structure we use and the approach of sharing tasks support a quasi de facto load
balance.

6 Conclusion

Parallelizing the search for frequent patterns plays an important role in opening the doors to the mining
of extremely large datasets. Not all good sequential algorithms can be effectively parallelized and par-
allelization alone is not enough. An algorithm has to be well suited for parallelization, and in the case
of frequent pattern mining, clever methods for searching are certainly an advantage. The algorithm we
propose for parallel mining of frequent maximal patterns is based on a new technique for astutely jumping
within the search space, and more importantly, is composed of autonomous task segments that can be
performed separately and thus minimize communication between processors.

Our proposal is based on the finding of particular patterns, called pattern bases, from which selective
jumps in the search space can be performed in parallel and independently from each other pattern base
in the pursuit of maximal patterns. The success of this approach is attributed to the fact that pattern
base intersection is independent and each intersection tree can be assigned to a given processor. The
decrease in the size of intersection trees allows a fair strategy for distributing work among processors and
in the course reducing most of the load balancing issues. While other published works claim results with
millions of transactions, our approach allows the mining in reasonable time of databases in the order of
billion transactions using relatively inexpensive clusters; 16 dual-processor boxes in our case. This is
mainly credited to the low communication cost.
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[21] O. R. Zäıane and M. El-Hajj. Pattern lattice traversal by selective jumps. InIn Proc. 2005 Int’l Conf. on Data
Mining and Knowledge Discovery (ACM-SIGKDD), August 2005.
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