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ABSTRACT
Regardless of the frequent patterns to discover, either the
full frequent patterns or the condensed ones, either closed
or maximal, the strategy always includes the traversal of the
lattice of candidate patterns. We study the existing depth
versus breadth traversal approaches for generating candi-
date patterns and propose in this paper a new traversal ap-
proach that jumps in the search space among only promis-
ing nodes. Our leaping approach avoids nodes that would
not participate in the answer set and reduce drastically the
number of candidate patterns. We use this approach to effi-
ciently pinpoint maximal patterns at the border of the fre-
quent patterns in the lattice and collect enough information
in the process to generate all subsequent patterns.

1. INTRODUCTION
Discovering frequent patterns is a fundamental problem

in data mining. Many efficient algorithms have been pub-
lished in this area in the last 10 years. The problem is by
no means solved and remains a major challenge, in partic-
ular for extremely large databases. The idea behind these
algorithms is the identification of a relatively small set of
candidate patterns, and counting those candidates to keep
only the frequent ones. The fundamental difference between
the algorithms lies in the strategy to traverse the search
space and to prune irrelevant parts. For frequent itemsets,
the search space is a lattice connecting all combinations of
items between the empty set and the set of all items. Re-
gardless of the pruning techniques, the sole purpose of an
algorithm is to reduce the set of enumerated candidates to
be counted. The strategies adopted for traversing the lat-
tice are always systematic, either depth-first or breadth-first,
traversing the space of itemsets either top-down or bottom-
up. Among these four strategies, there is never a clear win-
ner, since each one either favors long or short patterns, thus
heavily relying on the transactional database at hand. Our
primary motivation here is to find a new traversal method
that neither favors nor penalizes a given type of dataset,
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and at the same time allows the application of lattice prun-
ing for the minimization of candidate generation. Moreover,
while discovering frequent patterns can shed light on the
content and trends in a transactional database, the discov-
ered patterns can outnumber the transactions themselves,
making the analysis of the discovered patterns impractical
and even useless. New attempts toward solving such prob-
lems are made by finding the set of frequent closed itemsets
(FCI) [8, 10, 11]. A frequent itemset X is closed if and only
if there is no X ′ such that X is a subset of X ′ and X ′ is
contained in every transaction containing X. Finding only
the closed item patterns reduces dramatically the size of
the result sets without losing relevant information. Closed
itemsets reduce indeed the redundancy already in the set of
frequent itemsets. From the closed itemsets one can derive
all frequent itemsets and their counts. Directly discovering
or enumerating closed itemsets can lead to huge time saving
during the mining process. But in cases where databases
are made of long frequent patterns, finding the set of closed
itemsets is not always feasible. In such cases finding the set
of maximal frequent patterns is the alternative [2, 3, 5, 6],
where a frequent itemset is said to be maximal if there is no
other frequent itemset that subsumes it. Frequent maximal
patterns are a subset of frequent closed patterns, which are
a subset of all frequent patterns. While we can derive the
set of all frequent itemsets directly from the maximal pat-
terns, their support cannot be obtained without counting
with an additional database scan. Nonetheless, discovering
maximal patterns has interesting significance, especially in
pattern clustering applications where frequent patterns are
important, not their exact support. Formally the problem
is stated as follows: Let I = {i1, i2, ...im} be a set of literals,
called items and m is considered the dimensionality of the
problem. Let D be a set of transactions, where each trans-
action T is a set of items such that T ⊆ I . A transaction
T is said to contain X, a set of items in I , if X ⊆ T . An
itemset X is said to be frequent if its support s (i.e. ratio of
transactions in D that contain X) is greater than or equal to
a given minimum support threshold σ. A frequent itemset
M is considered maximal if there is no other frequent set
that is a superset of M. A frequent itemset X is is said to
be closed if and only if there is no X ′ such that X ⊆ X ′

and the support of X equals the support of X ′. Clearly the
set of maximal patterns is subsumed by the set of closed
patterns, which is in turn subsumed by the set of all fre-
quent patterns. However, from the set of closed itemsets,
one can directly determine all frequent patterns with their
respective supports, but the maximal patterns can only help
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Figure 1: Lattice with frequent pattern border

enumerate the set of all frequent patterns without hinting
to their exact support counts. What is relevant here is the
efficient counting of some specific itemsets.

Figure 1 presents the pattern lattice of a token example
with a dataset of 5 transactions made of 5 frequent items us-
ing an absolute support threshold of 2. The frequent pattern
border can be drawn to separate frequent from non-frequent
patterns, where all non-frequent patterns lie below that bor-
der. Closed and maximal patterns are also identified on that
figure. Maximals are directly above the border.

In this paper a new traversal approach for the itemset lat-
tice, called leap-traversal, is proposed. We show that using
this traversal we can find the set of maximal patterns, and
collect enough information in the process to derive subse-
quent patterns, closed and all, without having to recount.

2. TRAVERSAL APPROACHES
Existing algorithms use either breadth-first-search or depth-

first-search strategies to find candidates that will be used to
determine the frequent patterns. Breadth-first-search tra-
verses the lattice level-by-level: where it uses frequent pat-
terns at level k to generate candidates at level k+1 before
omitting the non-frequent ones and keeping the frequent
ones to be used for the level k+2, and so on. This ap-
proach usually uses many database scans, and it is not fa-
vored while mining databases that are made of long frequent
patterns. When traversing the same lattice as in Figure 1
using a breadth-first strategy, frequent 1-itemsets are first
generated, then used to generate longer candidates to be
tested from size two to above. In our token example, this
approach would test 18 candidates to finally discover the 13
frequent ones. Five were unnecessarily tested. On the con-
trary depth-first-search tries to detect the long patterns at
the beginning and only back-tracks to generate the frequent
patterns from the long ones that have already been declared
as frequent. For longer patterns, depth-first-search indeed
outperforms the breadth-first method. But in cases of sparse
databases where long candidates do not occur frequently, the
depth-first-search is shown to have poor performance. Using
the depth-first approach with the same lattice as in Figure
1, 23 candidates are tested, 10 of them unnecessarily.

It is true that many algorithms have been published for
enumerating and counting frequent patterns, and yet all al-
gorithms still use one of the two traversal strategies (depth-
first vs. breadth-first) in their search. They differ only in
their pruning techniques and structures used. No work has
been done to find new traversal strategies, such as greedy
ones, or best first, etc. We need a new greedy approach that

jumps in the lattice searching for the most promising nodes
and based on these nodes it would generate the set of all
frequent patterns.

2.1 Leap Traversal Approach: Candidate Gen-
eration vs. Maximal generation

Most frequent itemset algorithms follow the candidate
generation first approach, where candidate items are gener-
ated first and only the candidate with support higher than
the predefined threshold are declared as frequent while oth-
ers are omitted. One of the main objectives of the existing
algorithms is to reduce the number of candidate patterns.
In this work, we propose a new approach to traverse the
search space for frequent patterns that is based on find-
ing two things: the set of maximal patterns, and a data-
structure that encodes the support of all frequent patterns
that can be generated from the set of maximal frequent pat-
terns. Since maximal patterns alone do not suffice to gener-
ate the subsequent patterns, the data structure we use keeps
enough information about frequencies to counter this defi-
ciency. The basic idea behind the leap traversal approach is
that we try to identify the frequent pattern border in the lat-
tice by marking some particular patterns (called later path
bases). Simply put, the marked nodes are those represent-
ing complete sub-transactions of frequent items. How these
are identified and marked will be discussed later. If those
marked patterns are frequent, they belong to the border (i.e.
they are potential maximal) otherwise their subsets could be
frequent, and thus we jump in the lattice to patterns derived
from the intersection of infrequent marked patterns in the
anticipation of identifying the frequent pattern border. The
intersection comes from the following intuition: if a marked
node is not a maximal, a subset of it should be maximal.
However, rather than testing all its descendants, to reduce
the search space we look at descendent’s of two non-frequent
marked nodes at a time, hence the pattern intersection. The
process is repeated until all currently intersected marked
patterns are frequent and hence the border is found. Before
we explain the Leap-Traversal approach in detail, let us de-
fine the Frequent-Path-Bases (FPB). Simply put, these are
some particular patterns in the itemset lattice that we mark
and use for our traversal. An FPB if frequent could be a
maximal. If infrequent, one of its subsets could be frequent
and maximal. A frequent-path-base for an item A, called
A-Frequent-Path-Base, is a set of frequent items that has
the following properties:

1. At maximum one A-FPB can be generated from one
transaction.

2. All frequent items in an A-frequent path base have
support greater than or equal to the support of A;

3. Each A-FPB represents items that physically occur in
the database with item A.

4. Each A-FPB has its branch-support, which represents
the number of occurrences for this A-FPB in the database
exactly alone (i.e. not as subset of other FPBs). In
other words, the branch support of a pattern is the
number of transactions that consist of this pattern, not
the transactions that include this pattern along with
other frequent items. The branch support is always
less or equal to the support of a pattern.

As an example for the leap-traversal, assuming we have
an oracle to generate for us the Frequent-Pattern-Bases from
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Figure 2: Leap-Traversal

the token database in Figure 1 , Figure 2 illustrates the pro-
cess. With the initial FPBs ABC, ABCD, ACDE and DE
(given by our hypothetical oracle) we end-up testing only 10
candidates to discover 13 frequent patterns, two were tested
unnecessarily (ABCD and ACDE) but 5 patterns were di-
rectly identified as frequent without even testing them: AB,
AC, AD, BC, CD. From the initially marked nodes, ABC
and DE are found frequent, but ABCD and ACDE are not.
The intersection of those two nodes yields ACD. This newly
marked node is found frequent and thus maximal. From the
maximals ACD, DE and ABC, we generate all the subse-
quent patterns, some even without testing (AB, AC, AD,
BC and CD). The supports of these patterns are calculated
from their superset FPBs. For example, AC has the support
of 4 since ABC occurs (alone) twice, ABCD and ACDE oc-
cur each alone once.

Frequent pattern bases that have support greater than the
predefined support (i.e. frequent patterns) are put aside as
they are already known to be frequent and all their subsets
are also known to be frequent. Only infrequent ones partic-
ipate in the leap traversal approach, which consists of inter-
secting non-frequent FPBs to find a common subset of items
shared among the two intersected patterns. The support of
this new pattern is found as follows without revisiting the
database: the support of Y where Y = FPB1 ∩ FPB2, is
the summation of the branch support of all FPBs that are
superset of Y . For example if we have only two frequent
path bases ABCD: 1, and ABEF: 1, by intersecting both
FPBs we get AB that occurs only once in ABCD and once
in ABEF which means it occurs twice in total. By doing so,
we do not have to traverse any candidate pattern of size 3 as
we were able to jump directly to the first frequent pattern of
size 2, which can be declared de-facto as a maximal pattern.
Hence the name leap-traversal. Consequently, all its subsets
are also frequent, which are A and B with support of 2 as
they occur only once in each of the frequent path bases.

The Leap-Traversal approach starts by building a lexico-
graphic tree of intersections among the Frequent-Pattern-
Bases FPBs. It is a tree of possible intersections between
existing FPBs ordered in a lexicographic manner. The size
of this tree is relatively big as it has a depth equal to the
number of FPBs. It is also unbalanced to the left since
intersection is commutative. The number of nodes in a lex-
icographic tree equals to

∑n
i=1(

n
i ) where n is the number of

Frequent Pattern Bases. It is obvious that the more FPBs
we have, the larger the tree becomes. Thus, pruning this tree
plays an important role for having an efficient algorithm.

Four pruning techniques can be applied to the lexico-

graphic tree of intersections. These pruning strategies can
be explained by the following theorems:

Theorem 1: ∀X, Y ∈ FPBs ordered lexicographically, if
X∩Y is frequent then there is no need to intersect any other
elements that have X ∩ Y ., i.e, all children of X ∩ Y can be
pruned. Proof: ∀A, X, Y ∈ FPBs, A ∩ X ∩ Y ⊂ X ∩ Y . If
X ∩ Y is frequent then A ∩ X ∩ Y is also frequent (apriori
property) as a subset of a frequent pattern is also frequent.
Theorem 2: ∀X,Y, Z, W ∈ FPBs ordered lexicographi-
cally, if X ∩ Y = X ∩ W and Y � W (i.e Y is left of W
in the lexicographic tree) then there is no need to explore
any children of X ∩ Y . Since Z is left of W (or equal to
W ) in the lexicographical order, all children of X ∩ Y will
also be children of X ∩ Z or X ∩ W . Proof: To prove this
theorem we need to show that any children of X ∩ Y are
repeated under another pattern X ∩ Z that always exists.
Since X ∩ Y = X ∩ W , then X ∩ Y ∩ Z = X ∩ Z ∩ W (in-
tersection is commutative) and X ∩ Z ∩ W always exists in
the lexicographic tree of intersections because of the order.
Then, we can prune X ∩ Y .
Theorem 3: ∀X, Y, Z ∈ FPBs ordered lexicographically,
if X ∩Y ⊂ X ∩Z then we can ignore the subtree X ∩Y ∩Z.
Proof: Assume we have X, Y, Z ∈ FPBs, Since X ∩ Y ⊂
X ∩Z then X ∩ Y ∩Z = X ∩ Y . This means we do not get
any additional information by intersecting Z with X ∩ Y .
Thus, the subtree under X ∩ Y suffices.
Theorem 4: ∀X, Y, Z ∈ FPBs, if X ∩ Y ⊃ X ∩ Z then
we can ignore the subtree of X ∩ Z as long X ∩ Z is not
frequent. Proof: following the proof of Theorem 3 we can
conclude that X ∩ Z is included in X ∩ Y .
Lemma 1: At each level of the lexicographic tree of inter-
sections, consider each item as a root of a new subtree:
(A) Intersect the siblings for each node with the root
(B) If a set exists and it is not frequent then we can prune
that node. Proof: Assume we have X, Y, Z ∈ FPBs, if X
is a parent node then if X ∩Y ∩Z exists and is not frequent
then any superset for this intersected node is also not fre-
quent (apriori property) that is why any intersection of X
with any other item is also not frequent.

2.2 Heuristics used for building and travers-
ing the lexicographic tree

Heuristic 1: The lexicographic tree of intersections of
FPBs needs to be ordered. Four ways of ordering could be
used which are: order by support, support branch, pattern
length, and random. Ordering by support yields the best
results, as intersecting two patterns with high support in
general would generate a pattern with higher support than
intersecting two patterns with lower support. Ordering the
tree by assigning the high support nodes at the left increases
the probability of finding early frequent patterns in the left
and by using Theorem 1, a larger subtree can be pruned.

Heuristic 2: The second heuristic deals with the traver-
sal of the lexicographic tree. The breadth-traversal of the
tree is better than the depth-traversal. This observation
can be justified by the fact that the goal of the lattice Leap-
Traversal approach is to find the maximal patterns, which
means finding longer patterns early is the goal of this ap-
proach. Thus, by using the breadth-first approach on the in-
tersection tree, we detect and test the longer patterns early
before applying too many intersections that usually lead to
smaller patterns.



3. TREE STRUCTURES USED
The Leap-Traversal approach we discuss consists of two

main stages: the construction of a Frequent Pattern tree
(HFP-tree); and the actual mining for this data structure
by building the tree of Intersected patterns.

3.1 Construction of the Frequent Pattern Tree
The goal of this stage is to build the compact data struc-

ture called Frequent Pattern Tree, which is a prefix tree
representing sub-transactions pertaining to a given mini-
mum support threshold. This data structure compressing
the transactional data was contributed by Han et al. in [7].
The tree structure we use, called HFP-tree is a variation
of the original FP-tree. However, we will start introducing
the original FP-tree before discussing the differences with
our data structure. The construction of the FP-tree is done
in two phases, where each phase requires a full I/O scan
of the database. A first initial scan of the database identi-
fies the frequent 1-itemsets. After the enumeration of the
items appearing in the transactions, infrequent items with a
support less than the support threshold are weeded out and
the remaining frequent items are sorted by their frequency.
This list is organized in a table, called header table, where
the items and their respective support are stored along with
pointers to the first occurrence of the item in the frequent
pattern tree. The actual frequent pattern tree is built in the
second phase. This phase requires a second complete I/O
scan of the database. For each transaction read, only the
set of frequent items present in the header table is collected
and sorted in descending order according to their frequency.
These sorted transaction items are used in constructing the
FP-tree. Each ordered sub-transaction is compared to the
prefix tree starting from the root. If there is a match, the
support in the matched nodes is simply incremented, other-
wise new nodes are added for the items in the suffix of the
transaction to continue a new path, each new node having
a support of one. During the process of adding any new
item-node to the FP-Tree, a link is maintained between this
item-node in the tree and its entry in the header table. The
header table holds one pointer per item that points to the
first occurrences of this item in the FP-Tree structure.

Our tree structure is the same as the FP-tree except for
the following differences. We call this tree Headerless-Frequent-
Pattern-Tree or HFP-tree.

1. We do not maintain a header table, as a header table
is used to facilitate the generation of the conditional
trees in the FP-Growth model;

2. We do not need to maintain the links between the same
itemset across the different tree branches;

3. The links between nodes are bi-directional to allow
top-down and bottom-up traversals of the tree;

4. All leaf nodes are linked together as the leaf nodes are
the start of any pattern base and linking them helps
the discovery of frequent pattern bases;

5. In addition to support, each node in the HFP-tree has
a second variable called participation. Participation
plays a similar role in the mining process as the par-
ticipation counter in the COFI-tree [4].

Basically, the support represents the support of a node,
while participation represents, at a given time in the mining
process, the number of times the node has participated in al-
ready counted patterns. Based on the difference between the

two variables, participation and support, the special patterns
called frequent-path-bases are generated. These are simply
the paths from a given node x, with participation smaller
than the support, up to the root (i.e. nodes that did not fully
participate in frequent patterns yet). Algorithm 1 shows

Algorithm 1 HFP-Leap: Leap-Traversal with Headerless
FP-tree

Input: D (transactional database); σ (Support threshold);
Type (Maximal, Closed or All).
Output: Type patterns with their respective supports.

Scan D to find the set of frequent 1-itemsets F1
Scan D to build the Headerless FP-tree HFP
FPB ← FindFrequentPatternBases(HFP )
Maximals← FindMaximals(FPB,σ)
if Type ==Maximal then

Output Maximals
else

Patterns← GeneratePatterns(FPB, Maximals, Type)
Output Patterns

end if

Algorithm 2 FindFrequentPatternBases: Marking nodes
in the lattice

Input: HFP (Headerless FP-Tree).
Output: FPB (Frequent pattern bases with counts)

ListNodesF lagged← ∅
Follow the linked list of leaf nodes in HFP
for each leaf node N do

Add N to ListNodesF lagged
end for
while ListNodesF lagged �= ∅ do

N ← Pop(ListNodesF lagged) {from top of the list}
fpb← Path from N to root
fpb.branchSupport ← N .support - N .participation
for each node P in fpb do

P .participation ← P .participation + fpb.branchSupport
if P .participation < P .support AND ∀c child of P ,
c.participation = c.support then

add P in ListNodesF lagged
end if

end for
add fpb in FPB

end while
RETURN FPB

the main steps in our approach. After building the Head-
erless FP-tree with 2 scans of the database, we mark some
specific nodes in the pattern lattice using FindFrequentPat-
ternBases. Using the FPBs, the leap-traversal in FindMaxi-
mals discovers the maximal patterns at the frequent pattern
border in the lattice. GeneratePatterns is called to produce
all subsequent patterns (closed or all) if needed using the in-
formation collected along with the FPBs (i.e. their branch
support).

Algorithm 2 shows how patterns in the lattice are marked.
The linked list of leaf nodes in the HFP-tree is traversed to
find upwards the unique paths representing sub-transactions.
If frequent maximals exist, they have to be among these
complete sub-transactions. The participation counter helps
reusing nodes exactly as needed to determine the frequent
path bases.

Algorithm 3 is the actual leap-traversal to find maximals.
It starts by listing some candidate maximals stored in Po-
tentialMaximals which is initialized with the frequent pat-



tern bases that are frequent. All the non-frequent FPBs are
used for the jumps of the lattice leap-traversal. These FPBs
are stored in the list List and intermediary lists NList and
NList2 will store the nodes in the lattice that the intersec-
tion of FPBs would point to, in other words, the nodes that
may lead to maximals. The nodes in the lists have two at-
tributes: flag and startpoint. For a node n, flag indicates
that a subtree in the intersection tree should not be consid-
ered starting from the node n. For example, if node (A∩B)
has a flag C, then the subtree under the node (A ∩ B ∩ C)
should not be considered. For a given node n, startpoint in-
dicates which subtrees in the intersection tree, descendants
of n, should be considered. For example, if a node (A ∩ B)
has the startpoint D, then only the descendent’s (A∩B∩D)
and so on are considered, but (A ∩ B ∩ C) is omitted. Note
that ABCD are ordered lexicographically. At each level
in the intersection tree, when NList2 is updated with new
nodes, the theorems are used to prune the intersection tree.
In other words, the theorems help avoid useless intersections
(i.e. useless maximal candidates). The same process is re-
peated for all levels of the intersection tree until there are no
other intersections to do (i.e. NList2 is empty). At the end,
the set potential maximals is cleaned by removing subsets
of any sets in PotentialMaximals.

It is obvious in the Leap-traversal approach that super-
set checking and intersections plays an important role. We
found that the best way to work with this is by using the
bit-vector approach where each frequent item is represented
by one bit in a vector. In this approach, intersection is noth-
ing but applying the OR operation between two vectors, and
subset checking is nothing but applying the AND operation
between two victors. If A ∩ B = A then A is a subset of B.

3.2 Closed and All frequent patterns
The main goal of the Leap-traversal approach is to find

the set of maximal patterns. From this set we can generate
all the subset patterns where all subsets are nothing but the
set of all frequent patterns, and some of them are the set
of closed patterns. The only challenge in this process is to
compute the support of these patterns. The computation
for the support for these patterns is encoded in the branch
support of the existing FPBs already generated from the
HFP-tree, where the support of any generated pattern is
the summation of the branch support of all its supersets of
FPBs.

As can be seen in Algorithm 4, all relevant patterns are
generated from the set of maximals. Using the definition of
maximals, all subsets of a maximal are de facto frequent.
Once their support is computed using the branch support of
FPBs as described above, pinpointing closed patterns is sim-
ply done using the definition of closed itemsets (i.e. no other
frequent pattern subsumes it and has the same support).

4. RELATED WORK
There is a plethora of algorithms proposed in the liter-

ature to address the issue of discovering frequent itemsets.
The most important, and at the basis of many other ap-
proaches, is apriori [1]. The property that is at the heart
of apriori and forms the foundation of most algorithms sim-
ply states that for an itemset to be frequent all its subsets
have to be frequent. This anti-monotone property reduces
the candidate itemset space drastically. However, the gen-
eration of candidate sets, especially when very long frequent

patterns exist, is still very expensive. Moreover, apriori is
heavily I/O bound. Another approach that avoids generat-
ing and testing itemsets is FP-Growth [7]. FP-Growth gen-
erates, after only two I/O scans, a compact prefix tree repre-
senting all sub-transactions with only frequent items called
FP-tree. However, mining the FP-tree using FP-Growth
strategy requires significant memory, and large databases
quickly blow out the memory stack.

Algorithm 3 FindMaximals: The actual leap-traversal

Input: FPB (Frequent Pattern Bases); σ (Support threshold).
Output: Maximals (Frequent Maximal patterns)

List← FPB; PotentialMaximals ← ∅
for each i in List do

Find support of i {using branch supports}
if support(i) > σ then

Add i to PotentialMaximals
Remove i from List

end if
end for

Sort List based on support
NList← List; NList2← ∅
∀i ∈ NList initialize i.flag← NULL AND i.startpoint← index
of i in NList
while NList �= ∅ do

for each i in NList do
g ← Intersect(i, j) {where j ∈ List AND i� j (in lexico-
graphic order) AND not j.flag}
g.startpoint ← j; Add g to NList2

end for

for each i in NList2 do
Find support of i {using branch supports}
if support(i) > σ then

Add i to PotentialMaximals
Remove all duplicates or subsets of i in NList2; Remove
i from NList2

else
Remove all duplicates of i in NList2 except the most
right one ; Remove i from NList2
Remove all non frequent subsets of i from NList2
if ∃j ∈ NList2 AND j ⊇ i then

i.flag ← j
end if
for all j in List do

if j 	 i.startpoint (in lexicographic order) then
n← Intersect(i, j)
Find support of n {using branch supports}
if support(n) < σ then

Remove i from NList2
end if

end if
end for

end if
end for
NList← NList2; NList2← ∅

end while
Remove any x from PotentialMaximals if (∃M ∈
PotentialMaximals AND x ⊂M)
Maximals← PotentialMaximals
RETURN Maximals

MaxMiner [2], GenMax [5], & MAFIA [3] are state-of-
the-art algorithms that specialize in finding frequent max-
imal patterns. MaxMiner is an apriori-like algorithm that
performs a breadth-first traversal of the search space. At
the same time it performs intelligent pruning techniques to
eliminate irrelevant paths of the search tree. A look-ahead



strategy achieves this, where there is no need to further
process a node if it, with all its extensions, is determined
to be frequent. To improve the effectiveness of the super-
set frequency pruning, MaxMiner uses a reorder strategy.
MAFIA, which is one of the fastest maximal algorithms, uses
many pruning techniques such as the look-ahead used by the
MaxMiner, checking if a new set is subsumed in another ex-
isting maximal set, and other clever heuristics. GenMax is a
vertical approach that uses a novel strategy, progressive fo-
cusing, for finding supersets. In addition, it counts supports
faster using diffsets [12].

Finding the set of closed frequent patterns has also been
extensively studied. A-Close [8] is an apriori-like algorithm.
This algorithm mines directly for closed frequent itemsets.
It uses a breadth-search strategy. This algorithm is one-
order of magnitude faster than apriori, when mining with a
small support. This algorithm shows, however, poor perfor-
mance compared to apriori when mining with high support
especially when we find a small set of frequent patterns as
it consumes most of its computation power in computing
the closure of itemsets. CLOSET+ [10] is an extension of
the FP-Growth algorithm. It builds recursively conditional
trees that cause this algorithm to suffer when mining for low
support thresholds. CHARM [11] uses a vertical represen-
tation of the database. It adopts the diffset technique to
reduce the size of intermediate tidsets.

Algorithm 4 GeneratePatterns: Extending the maximals

Input: FPB (Frequent pattern bases); Maximals (Set of fre-
quent maximals); Type (Closed or All).
Output: Patterns (Either closed or all frequent patterns with
their supports)

for each M in Maximals do
FP ← Generate all sub-patterns of M

end for
for each p in FP do

p.support =
∑ ∀X.branchSupport {Where X ∈ FBS AND

p ⊂ X}
if Type ==Closed then

if not(p.support == g.support AND g ∈ FP AND g ⊃ p)
then

add p in Patterns
end if

else
add p in Patterns

end if
end for
RETURN Patterns

5. PERFORMANCE EVALUATIONS
To evaluate our leap-traversal approach, we conducted a

set of different experiments. First, to measure its effective-
ness compared to depth-first and breadth-first, we evaluated
the number of candidates generated by all the three methods
at different support levels and on different datasets. Sec-
ond, we compared our method with FP-Growth and FP-
MAX in terms of efficiency when discovering all frequent
patterns. Since the strategy of our leap-traversal approach
is to first discover the maximal patterns before generating all
patterns, we also compared our algorithm with other state-
of-the-art algorithms solely to discover those maximal pat-
terns, in terms of speed, memory usage and scalability.

The contenders we tested against are MAFIA [3], FP-

MAX [6] and FP-Growth [7]. The implementations of these
algorithms were all provided to us by their original authors.
All our experiments were conducted on an IBM P4 2.6GHz
with 1GB memory running Linux 2.4.20-20.9 Red Hat Linux
release 9. We have tested these algorithms using both real
and synthetic datasets.

5.1 Number of generated candidates
To better differentiate between our novel leap-traversal

method and the other typical traversal methods, breadth-
first and depth-first, we conducted a set of experiments to
count the number of candidate itemsets generated. Generat-
ing candidates and counting their support is what takes time
and what all algorithms are trying to minimize. A candi-
date pattern is any pattern that the algorithm generates and
counts even if it turns out later to be infrequent. To do so,
we implemented three versions of lattice traversal: breadth-
first, depth-first (without any look-ahead strategy) and leap
traversal. We tested many databases to study the effect of
changing the traversal strategies. The effect is relative to
the length of the frequent patterns, and thus, we report the
results with a UCI dataset [9], namely chess, with relatively
long frequent patterns and one with mixed size frequent pat-
terns, T10I4D100K. In most cases using the leap traversal
approach reduces drastically the number of generated can-
didate patterns.

In Figure 3.A, with the Chess real dataset, we can see that
the leap traversal approach was able to generate almost 10
times less candidate patterns than the depth-search and al-
most 14 times less than the breadth-search strategies. At
70% support, both depth and breadth-first strategies gen-
erate one order of magnitude more candidates than neces-
sary, while our leap traversal method generates almost as
many candidates as the actual number of frequent patterns.
Many were unnecessarily generated, but many more were di-
rectly (and correctly) generated without checking and count-
ing. Similar discriminating results using the T10I4D100K
dataset can be seen in Figure 3.B. The Leap-traversal ap-
proach considers significantly less candidates to effectively
find exactly the same frequent patterns as its rival methods.
Since the patterns are very small in size, breadth-first can
stop early and thus need not generate too many candidates.

Breadth Depth Leap Breadth Depth Leap

95 78 165 90 33 66 87 12 21
90 628 2768 1842 70 591 2140 1214 33
85 2690 20871 9667 380 2571 18181 6977 261
80 8282 91577 49196 630 8056 83295 40914 404
75 20846 292363 160362 1100 20357 271517 139516 611
70 48939 731740 560103 1780 48041 682801 511164 882

Breadth Depth Leap Breadth Depth Leap

0.75 561 637 745 204 462 76 184 105
0.5 1073 1867 1620 1009 912 794 547 848

0.025 7703 37369 36684 19940 7101 29666 28981 19338
0.01 27532 265020 458650 175265 25223 237488 431118 172956
0.005 53385 1130154 4924098 1026095 41330 1076769 4870713 1014040
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Figure 3: Candidate generated using 3 approaches

5.2 Efficiency Evaluation
The goal in the following experiments is to measure the

advantage of first discovering maximals in order to discover
all frequent itemsets. FP-Growth finds directly all frequent
patterns, while our HFP-Leap uses the discovered maximals



and the branch supports of FPBs to derive all frequent pat-
terns. To have a fair comparison, we also tried to find the
maximals with FPMAX and derive all frequent patterns and
count their supports from the in memory FP-tree struc-
ture. We refer to this version of the algorithm as FPMAX+.
The times reported in Figure 4.A include the time to gen-
erate maximals, for HFP-Leap and FPMAX+, as well as
the time needed to derive all frequent patterns with their
respective supports. The experiment reported here was us-
ing a synthetic dataset with 50K transactions using 1000
items with and average of 36 items per transaction (i.e. rel-
atively dense). As can be seen in Figure 4.A, HFP-Leap
outperforms FP-Growth and FPMAX+ by a large margin.
FPMAX+ discovers all frequent patterns faster than FP-
Growth despite the fact that the supports of all patterns
still needed to be computed. This shows the advantage of
initially finding maximals. Unfortunately since maximals
are a “lossy” representation of frequent patterns FPMAX+
still has to compute supports resorting to the FP-tree rep-
resentation. Keeping extra relevant information within the
frequent pattern bases, gives an edge to HFP-Leap.

5.3 Scalability
Since our algorithm starts by finding maximal patterns

and has an advantage over its contenders like FP-Growth
by collecting extra information to generate subsequent pat-
terns, we conducted experiments for discovering exclusively
the maximal patterns on UCI and synthetic datasets. For
lack of space we could not presents all the results we came
upon. In summary, while mining small synthetic datasets,
we found that the HFP-Leap algorithm outperforms algo-
rithms such as MAFIA and GENMAX by as much as two
orders of magnitudes. The difference between FPMAX and
HFP-Leap was not always clear, as each one of them was a
winner in many cases and a runner up in others. To Dis-
tinguish the subtle differences between both strategies, we
conducted our experiments on extremely large datasets. In
these series of experiments we used three synthetic datasets
made of 5M, 25M, and 50M transactions, with a dimen-
sion equals to 100K items, an average transaction length
equals to 24. All experiments were conducted using a sup-
port of 0.05%. In mining 5M transactions both algorithms
show similar performance: HFP-Leap finished its work in
320 second while FPMAX finished in 375 seconds. At 25M
transactions the difference starts to increase. In the final
test, mining a transactional database with 50M transactions,
HFP-Leap discovered all patterns in 1980 seconds while FP-
MAX finished in 2985 seconds. The results, averaged on
many runs, are depicted in Figure 4.B. From these experi-
ments we see that the difference between FPMAX and HFP-
Leap while mining synthetic datasets becomes clearer once
we deal with extremely large datasets as HFP-Leap saves at
least one third of the execution time compared to FPMAX.
This is due to the reduction in candidate checking.

5.4 Memory Usage
We have also tested the memory usage by FPMAX, MAFIA

and HFP-Leap. In many cases we have noticed that HFP-
Leap consumes one order of magnitude less memory than
both FPMAX and MAFIA. Figure 4.C illustrates a sample
of the experiments that we conducted where the transac-
tion size, the dimension and the average transaction length
are respectively 1000K, 5K and 12. The support was var-
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Figure 4: A. Advantage of finding maximals
first. B. Scalability with very large datasets.
C. Memory usage.

ied from 0.1% to 0.01%. This memory usage is due to the
fact that HFP-Leap generates the maximal patterns directly
from its HFP-tree. Also the intersection tree is never phys-
ically built. FPMAX, however, uses a recursive technique
that keeps building trees for each frequent item tested and
thus uses much more memory.

6. CONCLUSION
We presented a new way of traversing the pattern lattice

to search for pattern candidates. The idea is to first discover
maximal patterns and keep enough intermediary informa-
tion to generate from these maximal patterns all types of
patterns with their exact support. Our new lattice traversal
approach dramatically minimized the size of candidate list
because it selectively jumps within the lattice toward the
frequent pattern border. It also introduces a new method of
counting the supports of candidates based on the supports
of other candidate patterns, namely the branch supports
of FPBs. Our performance studies show that our approach
outperforms the state of the art methods that have the same
objective: discovering maximal and all patterns by, in some
cases, two orders of magnitude. This algorithm shows dras-
tic saving in terms of memory usage as it has a small foot-
print in the main memory at any given time.
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