
Incremental Mining of Frequent Patterns Without Candidate
Generation or Support Constraint

William Cheung and Osmar R. Zaïane

University of Alberta, Edmonton, Canada
{wcheung, zaiane}@cs.ualberta.ca

Abstract
In this paper, we propose a novel data structure

called CATS Tree. CATS Tree extends the idea of FP-
Tree to improve storage compression and allow frequent
pattern mining without generation of candidate itemsets.
The proposed algorithms enable frequent pattern mining
with different supports without rebuilding the tree
structure. Furthermore, the algorithms allow mining
with a single pass over the database as well as efficient
insertion or deletion of transactions at any time.

1. Introduction

One major function of association rules is to analyze
large amounts of market basket transactions [1,2,3,4].
Association rules have been applied to many areas
including outlier detection, classification, clustering etc
[5,6,7,8,9]. The mining process can be broken down into
the mining of underlying frequent itemsets and the
generation of association rules. Association rule mining
is an iterative process [10], thus, in practice, multiple
frequent pattern mining processes with different supports
are often required to obtain satisfactory results.

This paper introduces Compressed and Arranged
Transaction Sequences Tree or CATS Tree and CATS
Tree algorithms. Once CATS Tree is built, it can be used
for multiple frequent pattern mining with different
supports. Furthermore, CATS Tree and CATS Tree
algorithms allow single pass frequent pattern mining and
transaction stream mining. In addition, transactions can be
added to or removed from the tree at any time.

It is assumed that there is no limitation on the main
memory. The assumption is realistic for a reasonably
large database due to the following reasons: 1) the current
trend of modern computing moves towards computers
with large amounts of main memory (gigabytes sized); 2)
memory management techniques and data compression
technique in the CATS Tree reduce memory footprint; 3)
the same assumption has been used in other publications
[11,12,13,14,15]. In addition, CATS Tree allows removal
of transactions concurrently. Even a huge database can be
processed by CATS Tree if out-of-date transactions are
removed concurrently.

The remainder of the paper is organized as follows.
Section 2 surveys related work. Section 3 introduces the
CATS Tree structure and the algorithm to build it. CATS
Tree based frequent pattern mining algorithm is
introduced in Section 4. Section 5 presents some
experimental results. Conclusions are given in Section 6.

2. Previous Work

2.1. Apriori-based Algorithms

The very first published and efficient frequent
patterns mining algorithm is Apriori [2]. A number of
Apriori-based algorithms [1,4,9] have been proposed to
improve the performance of Apriori by addressing issues
related to the I/O cost.

2.2. Pattern Growth Algorithms

Han et al. propose a data structure, frequent pattern
tree or FP-Tree, and an algorithm called FP-growth that
allows mining of frequent itemsets without generating
candidate itemsets [3]. The construction of FP-Tree
requires two data scans.

As pointed out by the designers of FP-Tree, no
algorithm works in all situations. A new data structure
called H-struct was introduced in [14] to deal with sparse
data solely.

3. CATS Tree

In the present study, we have developed a novel data
structure, CATS Tree, an extension of FP-Tree[3].
Researchers have proposed to use tree structure in data
mining [3,16,17]. However, they are not suitable for
interactive frequent pattern mining.

CATS Tree is a prefix tree and it contains all
elements of FP-Tree including the header, the item links
etc. Paths from the root to the leaves in CATS Tree
represent sets of transactions. We use the database in
Table 1 to illustrate the construction of a CATS Tree.

Initially, the CATS Tree is empty. Transaction 1 (F, A,C,
D, G, I, M, P) is added as it is. As shown in Figure 1,
Transaction 2 (A, B, C, F, L, M, O) is added, common
items, F, A, C, are extracted from Transaction 2 and are
merged with the existing tree. Although item D is not
contained in Transaction 2, common items could be
found underneath node D. Item M is found to be
common. However, Transaction 2 cannot be merged
directly at node M because it would violate the structure
of CATS tree that the frequency of a parent node must
be greater than the sum of its children’s frequencies.
Node M of CATS Tree is swapped in front of node D as
shown in Figure 1 and it is merged with the transaction.
After that, there is no more common item. The remaining
portion of Transaction 2 is added to node M.

TID Original Transactions Projected transactions for FP-Tree
1 F, A, C, D, G, I, M, P F, C, A, M, P
2 A, B, C, F, L, M, O F, C, A, B, M
3 B, F, H, J, O F, B
4 B, C, K, S, P C, B, P
5 A, F, C, E, L, P, M, N F, C, A, M, P

Table 1. Sample database

In Figure 1, Transaction 3 (B, F, H, J, O) is added.
Item F of Transaction 3 is merged. Since the frequency
of node A is the same as that of node F, the search for
other possible merge nodes continues along the branch.
It passes through node A, C, and M and finally, reaches
node B. Even though Transaction 3 also contains an item
B, but the frequency of node B is smaller than that of
node M, the remaining of the transaction is inserted as a
new branch at node F.

P:1

I:1

F:1

A:1

C:1

M:1

D:1

G:1

Root

A,C,F of Transaction 2
have been merged

O:1

A:1

B:1

C:1

F:1

L:1

M:1

Transaction 1 Transaction 2

Transaction 3

B:1

F:1

H:1

J:1

O:1

P:1

I:1

F:2

A:2

C:2

M:2

D:1

G:1

Root

O:1

B:1

L:1

Figure 1. Insertion of Transaction 1, 2 & 3

When Transaction 4 (B, C, K, S, P) is added, there
is no common item. Transaction 4 is added as it is. In
Figure 2, Transaction 5 (A, F, C, E, L, P, M, N) is added;
F, A, C, and M are merged. The search for common

items continues along the path. Item P is common in
both the tree path and Transaction 5. This triggers
swapping of node P to the front of node D. After item P
is merged, there is no more common item. The
remainders of Transaction 5 are inserted as a new branch
at node P.

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:1

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

C:1

B:1

N:1P:1 L:1E:1

Figure 2. Insertion of Transaction 5

CATS Tree FP-Tree
Contains all items in every
transaction

Contains only frequent items

Sub-trees are locally optimized
to improve compression

Sub-trees are not locally
optimized

Ordering of items within paths
from the root to leaves are
ordered by local support

Ordering of items within
paths from the root to leaves
are ordered by global support

CATS nodes of the same parent
are sorted in descending order
according to local frequencies

Children of a node are not
sorted

Table 2. CATS Tree versus FP-Tree.

All CATS Trees have the following properties:
1) The compactness of CATS Tree measures how many
transactions are sharing a node. Compactness decreases
as it is getting away from the root. This is the result of
branches being arranged in descending order.
2) No item of the same kind could appear on the lower
right hand side of another item. If there were items of the
same kind on the right hand side, they should have been
merged with the node on the left to increase
compression. Any items on the lower right hand side can
be switched to the same level as the item, split nodes as
required if switching nodes violates the structure of
CATS Tree. After that they can be merged with the item
on the left. Because of the above properties, a vertical
downward boundary is formed beside each node and a
horizontal rightward boundary is formed at the top of
each node. The vertical and horizontal boundaries
combine to form a step-like individual boundary [18]. As
shown in Figure 3, boundaries of multiple items can be

joined together to form a refined boundary for a
particular item. Items of the same kind can only exist on
the refined boundary. A few major differences between
CATS Tree and FP-Tree are listed in Table 2.

I:1

G:1 O:1

L:1

B:1

C:5

F:3

A:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

B:1

K:1

N:1

L:1

E:1

F:1 X:1 Y:1 Z:1 …

… … …Refined
Boundary for B

Individual Boundary of B nodes

Figure 3. Item boundary in CATS Tree

3.1. CATS Tree Builder

CATS Tree contains all information of a dataset. Its
construction requires only a single data scan. Thus, it is
not optimal since there is no preliminary analysis before
this single data scan. New transactions are added at the
root level. At each level, items of the transaction are
compared with those of children nodes. If the same items
exist in both the new transaction and that of the children
nodes, the transaction is merged with the node at the
highest frequency. The frequency of the node is
incremented. The remainder of the transaction is added
to the merged nodes and the process is repeated
recursively until all common items are found. Any
remaining items of the transaction are added as a new
branch to the last merged node. Furthermore, CATS Tree
Builder has to consider not only the immediate items of
that level, but also all possible descendants. The
frequency of a descendant node can become larger than
that of its ancestor, once the frequency of the new
transaction is added. If the frequency becomes larger, the
descendant has to swap in front of its previous ancestor
to maintain the structural integrity of CATS Tree. The
CATS Tree Builder algorithm cannot afford to search
blindly to locate common item. There are few properties
of CATS Tree that can be used to prune the search space.
1) Inherited from FP-Tree, the sum of frequencies of all
children nodes can only be smaller or equal to that of
their parent. 2) Children of a node are sorted. Based on
these properties, if a node cannot have local frequency
greater than that of its parent, none of its sibling after it
or any of its children can. As soon as an invalid node is
found, CATS Tree Builder can abort the search and
pursue other paths or insert the new transaction as a new
branch. Since the frequency of the new transaction is 1,

this implies that the frequency of descendant node must
be equal to that of its ancestor. There can only be one
node if we need to search downward. If the ordering of
sibling node becomes out of order after merging, the
offending node is repositioned to maintain the structural
integrity of the tree. The algorithm CATS Tree Builder is
listed as the following:

Algorithm : CATS Tree Builder
Input : set of transactions
Output : CATS Tree
1. PROCEDURE CATSTreeBuilder(input_set S)
2. for all transactions t ∈ S
3. for all i ∈ t
4. i.(frequency in header)++;
5. root.add(t);
6. PROCEDURE add(transaction t)
7. if (this.children ∩ t ≠ ∅)
8. child node.merge(t);
9. else if (this.descendant ∩ t ≠ ∅))
10. swap descendant node and split child

 node if necessary;
11. descendant.merge(t);
12. else
13. this.children ← t;
14. Reposition the merged node if necessary;
15. PROCEDURE merge(transaction t)
16. this.frequency++;
17. remove this.item from t;
18. node.add(t);

Pseudo Code 1. CATS Tree Builder

In general, it is impossible to build a CATS Tree
with maximal compression and without prior knowledge
of the data. Therefore the compression of a CATS Tree
is sensitive to both ordering of transaction and items
within the transactions. However based on experiments,
the size difference between maximal compressed CATS
Tree and a CATS Tree produced by heuristic search is
about 5 - 10%. A maximal compressed CATS Tree is an
optimal tree where further loss-less compression is not
possible. Different CATS Trees from the same database
can be converted into a maximal compressed CATS Tree
by recursively extracting the most compact item
sequentially at each node. Thus, the ordering issues
become irrelevant since the maximal compressed CATS
Tree is insensitive to the order of input. CATS Tree
based frequent patterns mining algorithm, FELINE,
produces an identical set of frequent patterns as long as
the underlying database remains the same.

4. FrEquent/Large patterns mINing with
CATS trEe (FELINE)

Unlike FP-tree, once the CATS Tree is built, it can
be mined repeatedly for frequent patterns with different
support thresholds without the need to rebuild the tree.
Like FP-growth [3], FELINE employs divide and
conquer, fragment growth method to generate frequent
patterns without generating candidate itemsets. FELINE
partitions the dataset based on what patterns transactions
have. For a pattern called p, a p’s conditional CATS Tree
is a tree built from all transactions that contain pattern p.
Transactions contained in a conditional CATS Tree can
be easily gathered by traversing the item links of pattern
p. A conditional condensed CATS Tree is one in which
all infrequent items are removed and it is different
enough from a conditional FP-Tree that FP-growth
cannot be applied. By traversing upward only like FP-
growth, the algorithm cannot guarantee that all frequent
patterns in a conditional condensed CATS Tree are
gathered. In order to ensure all frequent patterns are
captured by FELINE, FELINE has to traverse both up
and down to include all frequent items. However, this
may cause duplications of frequent patterns in different
conditional condensed CATS Trees because the same
frequent pattern could appear in all trees of the frequent
pattern’s constituents. While building conditional
condensed CATS Tree, items are excluded if the items
are infrequent or the items have been mined. A detailed
example of FELINE’s execution can be found in [18].
The pseudo code for FELINE is given as follows:

Algorithm : FELINE
Input : a CATS Tree and required support
Output : a set of frequent pattern
1. PROCEDURE FELINE(required support ε)
2. sort(header.frequent items α);
3. for each frequent item α
4. build αTree = α’s conditional condensed

 CATS Tree;
5. mineCATSTree(αTree, ε, null)
6. PROCEDURE mineCATSTree(αTree, ε, stack ps)
7. if (αtree’s support > ε)
8. ps ← α;
9. frequent pattern FP ← ps;
10. FP’s support = αtree’s support;
11. frequent itemsets ← FP;
12. processed set s ← ∅; // prevent duplication
13. if (αtree.children ≠∅)
14. for all item i ∈ αtree ∧ i ∉ ps ∧ i ∉ s
15. s ← i;
16. build iTree = i’s conditional

 condensed CATS Tree;

17. mineCATSTree(iTree, ε, ps);
18. pop ps; // keep only the path to root

Pseudo Code 2. FELINE

CATS trees can be used with incremental updates of
the transactional database. Indeed transactions could be
added or deleted on the fly while the mining is still
possible without having to rebuild the whole structure.
Algorithms that add or remove a set of transactions from
an already built CATS Tree, or merge trees can be found
in [18].

5. Experiments and Results

The goal of the experiments is to find out the extent
of different dataset properties that could affect the
performance of CATS Tree algorithms and the relative
performance compares with other algorithms. Datasets
are generated with the data generator by IBM QUEST.
To avoid implementation bias, external Apriori
implementation, by Christian Borgelt [19], is used; FP-
growth is provided by the original authors. To allow a
fair comparison of algorithms, Apriori is also run in
cached mode where all transactions are loaded into the
main memory. Experiments are performed on a Pentium
4 1.6GHz PC with 512Mb RAM running on Window
2000 server. All programs are complied with the same
compiler. They all yield the same patterns with the same
dataset and the same parameters. All data files are
generated with default parameters: 1 million transactions;
average pattern length is 4; average transaction length is
10; number of unique items is 23,890 and the minimum
support is 0.15%, unless stated otherwise.

Most of the previous published literature deals with
database sized around 100k [3,4,12,14,16,20,21]. In our
experiments, our database size is over a million
transactions, which is a reasonable size for a respectable
department store-like transactional database.

5.1. Scalability

The first experiment measures scalability of CATS
Tree algorithms with respect to the number of
transactions.

As shown in Figure 4, both CATS Tree Builder and
FELINE scale linearly to the number of transactions.
FELINE is very efficient while building the CATS Tree
may seem expensive. However, the cost of building the
CATS tree is quickly amortized in an ad-hoc interactive
association rule mining context, since the tree needs only
be built once. This matches the design goal: building
once and mining multiple times with low overhead.

0

10

20

30

40

50

60

70

80

90

0k 250k 500k 750k 1000k 1250k 1500k 1750k

Number of Transactions

T
im

e(
s)

CAT S T ree B uilder
F ELINE
T otal CAT S T ree
Apriori
Cached Apriori
F P -growth

Figure 4. Scalability of CATS Tree with respect to
number of Transactions with single run

The goal of the second experiment is to examine the
effect of support on CATS Tree algorithms. In addition,
the unique characteristic of CATS Tree, that “build once,
mine many”, is put to the test. A single CATS Tree is
built from the data file. Frequent pattern mining
iterations with different supports are performed on the
same CATS Tree. In Figure 5, for comparison purposes,
time required to build CATS Tree is added to the time
for Total CATS Tree. In Figure 6, cumulated time from
the adding of the first transaction until completion of
frequent pattern mining at each data point is calculated.
In other words, seven experiments with different supports
were done on the same dataset.

0

50

100

150

200

0.00%0.10%0.20%0.30%0.40%0.50%
Support

T
im

e
(s

)

CATS Tree Builder
FELINE
Total CATS Tree
Cached Apriori
FP-growth

Figure 5. Scalability of CATS Tree with respect to
support with single run

Time required by all algorithms increases as the
support decreases. However, the rate of increase in
Apriori is much faster than that of FELINE. Eventually,
CATS Tree algorithms become faster than cached
Apriori because FELINE does not generate candidate
itemsets. Other than performance, the memory
requirement for CATS Tree is smaller than other
algorithms when support is low. Apriori and FP-tree runs
out of memory at when the support is 0.02% and 0.15%
respectively.

Unlike other frequent pattern mining algorithms,
CATS Tree algorithms do not require to be started from

scratch when the minimum support is decreased. The
same CATS Tree can be used to mine frequent patterns
with different supports; only FELINE needs to be rerun.
As shown in Figure 6, the benefits of CATS Tree
algorithms increase as the number of frequent pattern
mining increases.

0.15%

0.25%0.30%0.40%
0.50% 0.20% 0.18%

0

20

40

60

80

100

120

140

1 3 5 7
The number of Frequent Pattern Minin g

T
im

e
(s

)

Cumulated CATS Tree
Cumulated Cached Apriori
Cumulated FP-growth
5

Figure 6. Build once, mine many with CATS Tree:
scalability with multiple runs

5.2. Memory Usage

In this experiment, the memory usages of different
algorithms are compared. The amounts of memory usage
are the peak memory usage reported by the process
monitor. In FP-Tree, the theoretical number of nodes is
used because the source code of FP growth is not
available. Only the executable code was provided to us.

0

250

500

750

1000

1250

0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30%
Support

M
em

or
y

U
sa

ge
 (

M
B

)

0

1

2

3

4

5
6

7

8

9

10

N
um

be
r

of

N
od

es
(0

00
,0

00
)

Memory:CATS Tree
Memory:FP Tree
Memory:Cache Apriori
Nodes:CATS Tree
Nodes:FP-Tree
Nodes:Database

Figure 7. Memory Comparison

As shown in Figure 7, the memory usage of CATS
Tree is relatively insensitive to the support while both
FP-Tree and Cached Apriori are very sensitive to the
support. As the support decreases, the memory
consumption of FP-Tree increases exponentially and
over takes that of CATS Tree at around 0.16% support.

From the theoretical aspect, CATS Tree is smaller
than FP-Tree when the support is low. Because of the
local memory management technique, CATS Tree will
always consume less memory than a FP-Tree with 0%
support. Furthermore, the structure of FP-Tree is based

on the frequency list of the items. As soon as a
transaction is added, the frequency list could be changed
and the FP-Tree may require a significant rearrangement
of nodes to maintain the structure.

6. Conclusion

We propose a novel data structure, CATS Tree and
an algorithm to build it. The algorithm FELINE is also
proposed to mine frequent patterns from CATS Trees.

There are many advantages of CATS Tree
algorithms over the existing algorithms. 1) Once a CATS
Tree is built, frequent pattern mining with different
supports can be performed without rebuilding the tree.
The benefit of “build once, mine many” increases with
the number of frequent patterns mining performed, i.e.,
interactive mining with different supports; the cost of
CATS Tree construction is amortized over multiple
frequent patterns mining. 2) CATS Tree allows single
pass frequent pattern mining. 3) CATS Tree algorithms
allow addition and deletion of transactions in the finest
granularity, i.e., a single transaction. See [18] for more
details. Currently, there is no known and published
algorithm that can provide the same functionalities
efficiently. This makes CATS Tree algorithm suitable for
real time transactional frequent pattern mining where
modifications and frequent patterns mining are common.
Moreover, with the addition and deletion capability,
CATS trees algorithms are appropriate to mine
transaction streams since one single scan of the data
suffices [18].

We have implemented CATS Tree algorithms and
compared our approach with other algorithms. CATS
Tree algorithms are shown to be efficient and scalable to
large amount of transactions and outperform other
algorithms in interactive setting.

7. Acknowledgement

We would like to thank Dr. Jian Pei for providing us
with the executable code of the FP-growth program that
was used in our experiments for comparison purposes.
This work was partially supported by the National
Science and Engineering Research Council of Canada .

8. References

 [1] Savasere, A., Omiecinski, E., and Navathe, S. An Efficient
Algorithm for Mining Association Rules in Large
Databases. Proceedings of the VLDB Conference. 1995.

 [2] Agrawal, R. and Srikant, R. Fast algorithms for mining
association rules. VLDB, 487-499. 1994.

 [3] Han, J., Pei, J., and Yin, Y. Mining Frequent Patterns
without Candidate Generation. SIGMOD, 1-12. 2000.

 [4] Brin, S., Motwani, R., Ullman Jeffrey D., and Tsur
Shalom. Dynamic itemset counting and implication rules
for market basket data. SIGMOD. 1997.

 [5] Brin, S., Motwani, R., and Silverstein, C. Beyond market
baskets: Generalizing association rules to correlations.
SIGMOD 26[2], 265-276. 1997.

 [6] Antonie, M.-L. and Zaïane, O. R., Text Document
Categorization by Term Association , IEEE ICDM'2002,
pp 19-26, Maebashi City, Japan, December 9 - 12, 2002

 [7] Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., and
Hsu, M.-C. FreeSpan: Frequent pattern-projected
sequential pattern mining. ACM SIGKDD, 2000.

 [8] Beil, F., Ester, M., Xu, X., Frequent Term-Based Text
Clustering, ACM SIGKDD, 2002

 [9] Orlando, S., Palmerini, P., and Perego, R. Enhancing the
Apriori Algorithm for Frequent Set Counting. Proceedings
of 3rd International Conference on Data Warehousing and
Knowledge Discovery. 2001.

[10] Piatetsky-Shapiro, G., Fayyad, U., and Smith, P., "From
Data Mining to Knowledge Discovery: An Overview," in
Fayyad, U., Piatetsky-Shapiro, G., Smith, P., and
Uthurusamy, R. (eds.) Advances in Knowledge Discovery
and Data Mining AAAI/MIT Press, 1996, pp. 1-35.

[11] Huang, H., Wu, X., and Relue, R. Association Analysis
with One Scan of Databases. Proceedings of the 2002
IEEE International Conference on Data Mining. 2002.

[12] Wang, K., Tang, L., Han, J., and Liu, J. Top down FP-
Growth for Association Rule Mining. Proc.Pacific-Asia
Conference, PAKDD 2002, 334-340. 2002.

[13] Zaki, M. J. and Hsiao, C.-J. CHARM: An Efficient
Algorithm for Closed Itemset Mining. SIAM International
Conference on Data Mining. 2002.

[14] Pei, J., Han, J., Nishio, S., Tang, S., and Yang, D. H-Mine:
Hyper-Structure Mining of Frequent Patterns in Large
Databases. Proc.2001 Int.Conf.on Data Mining. 2001.

[15] Pei, J., Han, J., and Mao, R. CLOSET: An efficient
algorithm for mining frequent closed itemsets. SIGMOD.
2000.

[16] Agrawal, R., Aggarwal, C. C., and Prasad, V. V. V. A Tree
Projection Algorithm For Generation of Frequent Itemsets.
Journal on Parallel and Distributed Computing[(Special
Issue on High Performance Data mining)]. 2001.

[17] Goulbourne, G., Coenen, F., and Leng, P. H. Computing
association rule using partial totals. In Proceedings of the
5th European Conference on Principles and Practice of
Knowledge Discovery in Databases, 54-66. 2001.

[18] Cheung, W., "Frequent Pattern Mining without Candidate
generation or Support Constraint." Master's Thesis,
University of Alberta, 2002.

[19] Borgelt, C. Apriori. [2.11]. 2001.

[20] Lin, J. L. and Dunham, M. H. Mining association rules:
Anti-skew algorithms. The 1998 14th International
Conference on Data Engineering, 486-493. 1998.

[21] Zaki, M. J., Parthsarathy, S., Ogihara, M., and Li, W. New
Algorithms for Fast Discovery of Association Rules. KDD,
283-286. 1997.

