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Abstract 
In this paper, we propose a novel data structure 

called CATS Tree. CATS Tree extends the idea of FP-
Tree to improve storage compression and allow frequent 
pattern mining without generation of candidate itemsets. 
The proposed algorithms enable frequent pattern mining 
with different supports without rebuilding the tree 
structure. Furthermore, the algorithms allow mining 
with a single pass over the database as well as efficient 
insertion or deletion of transactions at any time. 

1. Introduction 

One major function of association rules is to analyze 
large amounts of market basket transactions [1,2,3,4]. 
Association rules have been applied to many areas 
including outlier detection, classification, clustering etc 
[5,6,7,8,9]. The mining process can be broken down into 
the mining of underlying frequent itemsets and  the 
generation of association rules. Association rule mining 
is an iterative process [10], thus, in practice, multiple 
frequent pattern mining processes with different supports 
are often required to obtain satisfactory results.  

This paper introduces Compressed and Arranged 
Transaction Sequences Tree or CATS Tree and CATS 
Tree algorithms. Once CATS Tree is built, it can be used 
for multiple frequent pattern mining with different 
supports. Furthermore, CATS Tree and CATS Tree 
algorithms allow single pass frequent pattern mining and 
transaction stream mining. In addition, transactions can be 
added to or removed from the tree at any time.  

It is assumed that there is no limitation on the main 
memory. The assumption is realistic for a reasonably 
large database due to the following reasons: 1) the current 
trend of modern computing moves towards computers 
with large amounts of main memory (gigabytes sized); 2) 
memory management techniques and data compression 
technique in the CATS Tree reduce memory footprint; 3) 
the same assumption has been used in other publications 
[11,12,13,14,15]. In addition, CATS Tree allows removal 
of transactions concurrently. Even a huge database can be 
processed by CATS Tree if out-of-date transactions are 
removed concurrently. 

The remainder of the paper is organized as follows. 
Section 2 surveys related work. Section 3 introduces the 
CATS Tree structure and the algorithm to build it. CATS 
Tree based frequent pattern mining algorithm is 
introduced in Section 4. Section 5 presents some 
experimental results. Conclusions are given in Section 6. 

2. Previous Work 

2.1. Apriori-based Algorithms 

The very first published and efficient frequent 
patterns mining algorithm is Apriori [2]. A number of 
Apriori-based algorithms [1,4,9] have been proposed to 
improve the performance of Apriori by addressing issues 
related to the I/O cost.  

2.2. Pattern Growth Algorithms 

Han et al. propose a data structure, frequent pattern 
tree or FP-Tree, and an algorithm called FP-growth that 
allows mining of frequent itemsets without generating 
candidate itemsets [3]. The construction of FP-Tree 
requires two data scans. 

As pointed out by the designers of FP-Tree, no 
algorithm works in all situations. A new data structure 
called H-struct was introduced in [14] to deal with sparse 
data solely. 

3. CATS Tree  

In the present study, we have developed a novel data 
structure, CATS Tree, an extension of FP-Tree[3]. 
Researchers have proposed to use tree structure in data 
mining [3,16,17]. However, they are not suitable for 
interactive frequent pattern mining.  

CATS Tree is a prefix tree and it contains all 
elements of FP-Tree including the header, the item links 
etc. Paths from the root to the leaves in CATS Tree 
represent sets of transactions. We use the database in 
Table 1 to illustrate the construction of a CATS Tree. 



Initially, the CATS Tree is empty. Transaction 1 (F, A,C, 
D, G, I, M, P) is added as it is. As shown in Figure 1, 
Transaction 2 (A, B, C, F, L, M, O) is added, common 
items, F, A, C, are extracted from Transaction 2 and are 
merged with the existing tree. Although item D is not 
contained in Transaction 2, common items could be 
found underneath node D. Item M is found to be 
common. However, Transaction 2 cannot be merged 
directly at node M because it would violate the structure 
of CATS tree that the frequency of a parent node must 
be greater than the sum of its children’s frequencies. 
Node M of CATS Tree is swapped in front of node D as 
shown in Figure 1 and it is merged with the transaction. 
After that, there is no more common item. The remaining 
portion of Transaction 2 is added to node M.  

 
TID Original Transactions Projected transactions for FP-Tree 
1 F, A, C, D, G, I, M, P F, C, A, M, P 
2 A, B, C, F, L, M, O F, C, A, B, M 
3 B, F, H, J, O F, B 
4 B, C, K, S, P C, B, P 
5 A, F, C, E, L, P, M, N F, C, A, M, P 

Table 1. Sample database 

In Figure 1, Transaction 3 (B, F, H, J, O) is added. 
Item F of Transaction 3 is merged. Since the frequency 
of node A is the same as that of node F, the search for 
other possible merge nodes continues along the branch. 
It passes through node A, C, and M and finally, reaches 
node B. Even though Transaction 3 also contains an item 
B, but the frequency of node B is smaller than that of 
node M, the remaining of the transaction is inserted as a 
new branch at node F.  
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Figure 1. Insertion of Transaction 1, 2 & 3 

When Transaction 4 (B, C, K, S, P) is added, there 
is no common item. Transaction 4 is added as it is. In 
Figure 2, Transaction 5 (A, F, C, E, L, P, M, N) is added; 
F, A, C, and M are merged. The search for common 

items continues along the path. Item P is common in 
both the tree path and Transaction 5. This triggers 
swapping of node P to the front of node D. After item P 
is merged, there is no more common item. The 
remainders of Transaction 5 are inserted as a new branch 
at node P. 

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:1

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

C:1

B:1

N:1P:1 L:1E:1

Figure 2. Insertion of Transaction 5 

CATS Tree FP-Tree 
Contains all items in every 
transaction 

Contains only frequent items 

Sub-trees are locally optimized 
to improve compression 

Sub-trees are not locally 
optimized 

Ordering of items within paths 
from the root to leaves are 
ordered by local support  

Ordering of items within 
paths from the root to leaves 
are ordered by global support 

CATS nodes of the same parent 
are sorted in descending order 
according to local frequencies 

Children of a node are not 
sorted 

Table 2. CATS Tree versus FP-Tree. 

All CATS Trees have the following properties:  
1)  The compactness of CATS Tree measures how many 
transactions are sharing a node. Compactness decreases 
as it is getting away from the root. This is the result of 
branches being arranged in descending order. 
2)  No item of the same kind could appear on the lower 
right hand side of another item. If there were items of the 
same kind on the right hand side, they should have been 
merged with the node on the left to increase 
compression. Any items on the lower right hand side can 
be switched to the same level as the item, split nodes as 
required if switching nodes violates the structure of 
CATS Tree. After that they can be merged with the item 
on the left. Because of the above properties, a vertical 
downward boundary is formed beside each node and a 
horizontal rightward boundary is formed at the top of 
each node. The vertical and horizontal boundaries 
combine to form a step-like individual boundary [18]. As 
shown in Figure 3, boundaries of multiple items can be 



joined together to form a refined boundary for a 
particular item. Items of the same kind can only exist on 
the refined boundary. A few major differences between 
CATS Tree and FP-Tree are listed in Table 2.  
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Figure 3. Item boundary in CATS Tree  

3.1. CATS Tree Builder 

CATS Tree contains all information of a dataset. Its 
construction requires only a single data scan. Thus, it is 
not optimal since there is no preliminary analysis before 
this single data scan. New transactions are added at the 
root level. At each level, items of the transaction are 
compared with those of children nodes. If the same items 
exist in both the new transaction and that of the children 
nodes, the transaction is merged with the node at the 
highest frequency. The frequency of the node is 
incremented. The remainder of the transaction is added 
to the merged nodes and the process is repeated 
recursively until all common items are found. Any 
remaining items of the transaction are added as a new 
branch to the last merged node. Furthermore, CATS Tree 
Builder has to consider not only the immediate items of 
that level, but also all possible descendants. The 
frequency of a descendant node can become larger than 
that of its ancestor, once the frequency of the new 
transaction is added. If the frequency becomes larger, the 
descendant has to swap in front of its previous ancestor 
to maintain the structural integrity of CATS Tree. The 
CATS Tree Builder algorithm cannot afford to search 
blindly to locate common item. There are few properties 
of CATS Tree that can be used to prune the search space. 
1) Inherited from FP-Tree, the sum of frequencies of all 
children nodes can only be smaller or equal to that of 
their parent. 2) Children of a node are sorted. Based on 
these properties, if a node cannot have local frequency 
greater than that of its parent, none of its sibling after it 
or any of its children can. As soon as an invalid node is 
found, CATS Tree Builder can abort the search and 
pursue other paths or insert the new transaction as a new 
branch. Since the frequency of the new transaction is 1, 

this implies that the frequency of descendant node must 
be equal to that of its ancestor. There can only be one 
node if we need to search downward. If the ordering of 
sibling node becomes out of order after merging, the 
offending node is repositioned to maintain the structural 
integrity of the tree. The algorithm CATS Tree Builder is 
listed as the following: 
 

Algorithm : CATS Tree Builder 
Input : set of transactions 
Output : CATS Tree 
1. PROCEDURE CATSTreeBuilder(input_set S) 
2.   for all transactions t ∈ S  
3.    for all i ∈ t 
4.    i.(frequency in  header)++; 
5.   root.add(t); 
6. PROCEDURE add(transaction t) 
7.   if (this.children ∩ t ≠ ∅) 
8.     child node.merge(t);  
9.   else if (this.descendant ∩ t ≠ ∅)) 
10.    swap descendant node and split child  

   node if necessary; 
11.    descendant.merge(t); 
12.   else  
13.    this.children ← t; 
14.   Reposition the merged node if necessary; 
15. PROCEDURE merge(transaction t) 
16.   this.frequency++; 
17.   remove this.item from t; 
18.   node.add(t); 

Pseudo Code 1. CATS Tree Builder 

In general, it is impossible to build a CATS Tree 
with maximal compression and without prior knowledge 
of the data. Therefore the compression of a CATS Tree 
is sensitive to both ordering of transaction and items 
within the transactions. However based on experiments, 
the size difference between maximal compressed CATS 
Tree and a CATS Tree produced by heuristic search is 
about 5 - 10%. A maximal compressed CATS Tree is an 
optimal tree where further loss-less compression is not 
possible. Different CATS Trees from the same database 
can be converted into a maximal compressed CATS Tree 
by recursively extracting the most compact item 
sequentially at each node. Thus, the ordering issues 
become irrelevant since the maximal compressed CATS 
Tree is insensitive to the order of input. CATS Tree 
based frequent patterns mining algorithm, FELINE, 
produces an identical set of frequent patterns as long as 
the underlying database remains the same. 



4. FrEquent/Large patterns mINing with 
CATS trEe (FELINE) 

Unlike FP-tree, once the CATS Tree is built, it can 
be mined repeatedly for frequent patterns with different 
support thresholds without the need to rebuild the tree. 
Like FP-growth [3], FELINE employs divide and 
conquer, fragment growth method to generate frequent 
patterns without generating candidate itemsets. FELINE 
partitions the dataset based on what patterns transactions 
have. For a pattern called p, a p’s conditional CATS Tree 
is a tree built from all transactions that contain pattern p. 
Transactions contained in a conditional CATS Tree can 
be easily gathered by traversing the item links of pattern 
p. A conditional condensed CATS Tree is one in which 
all infrequent items are removed and it is different 
enough from a conditional FP-Tree that FP-growth 
cannot be applied. By traversing upward only like FP-
growth, the algorithm cannot guarantee that all frequent 
patterns in a conditional condensed CATS Tree are 
gathered. In order to ensure all frequent patterns are 
captured by FELINE, FELINE has to traverse both up 
and down to include all frequent items. However, this 
may cause duplications of frequent patterns in different 
conditional condensed CATS Trees because the same 
frequent pattern could appear in all trees of the frequent 
pattern’s constituents. While building conditional 
condensed CATS Tree, items are excluded if the items 
are infrequent or the items have been mined. A detailed 
example of FELINE’s execution can be found in [18]. 
The pseudo code for FELINE is given as follows: 

 
Algorithm : FELINE 
Input : a CATS Tree and required support 
Output : a set of frequent pattern 
1. PROCEDURE FELINE(required support ε)  
2.  sort(header.frequent items α); 
3.   for each frequent item α 
4.   build αTree = α’s conditional condensed  

   CATS Tree; 
5.     mineCATSTree(αTree, ε, null) 
6. PROCEDURE mineCATSTree(αTree, ε, stack ps) 
7.  if (αtree’s support > ε) 
8.   ps ← α; 
9.   frequent pattern FP ← ps; 
10.   FP’s support = αtree’s support; 
11.    frequent itemsets ← FP; 
12.   processed set s ← ∅; // prevent duplication 
13.    if (αtree.children ≠∅) 
14.     for all item i ∈ αtree ∧ i ∉ ps ∧ i ∉ s 
15.      s ← i;  
16.               build iTree = i’s conditional  

     condensed CATS Tree; 

17.      mineCATSTree(iTree, ε, ps); 
18.      pop ps; // keep only the path to root 

Pseudo Code 2. FELINE 

CATS trees can be used with incremental updates of 
the transactional database. Indeed transactions could be 
added or deleted on the fly while the mining is still 
possible without having to rebuild the whole structure. 
Algorithms that add or remove a set of transactions from 
an already built CATS Tree, or merge trees can be found 
in [18]. 

5. Experiments and Results 

The goal of the experiments is to find out the extent 
of different dataset properties that could affect the 
performance of CATS Tree algorithms and the relative 
performance compares with other algorithms. Datasets 
are generated with the data generator by IBM QUEST. 
To avoid implementation bias, external Apriori 
implementation, by Christian Borgelt [19], is used; FP-
growth is provided by the original authors. To allow a 
fair comparison of algorithms, Apriori is also run in 
cached mode where all transactions are loaded into the 
main memory. Experiments are performed on a Pentium 
4 1.6GHz PC with 512Mb RAM running on Window 
2000 server. All programs are complied with the same 
compiler. They all yield the same patterns with the same 
dataset and the same parameters. All data files are 
generated with default parameters: 1 million transactions; 
average pattern length is 4; average transaction length is 
10; number of unique items is 23,890 and the minimum 
support is 0.15%, unless stated otherwise. 

Most of the previous published literature deals with 
database sized around 100k [3,4,12,14,16,20,21]. In our 
experiments, our database size is over a million 
transactions, which is a reasonable size for a respectable 
department store-like transactional database.  

5.1. Scalability  

The first experiment measures scalability of CATS 
Tree algorithms with respect to the number of 
transactions. 

As shown in Figure 4, both CATS Tree Builder and 
FELINE scale linearly to the number of transactions. 
FELINE is very efficient while building the CATS Tree 
may seem expensive. However, the cost of building the 
CATS tree is quickly amortized in an ad-hoc interactive 
association rule mining context, since the tree needs only 
be built once. This matches the design goal: building 
once and mining multiple times with low overhead. 
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The goal of the second experiment is to examine the 
effect of support on CATS Tree algorithms. In addition, 
the unique characteristic of CATS Tree, that “build once, 
mine many”, is put to the test. A single CATS Tree is 
built from the data file. Frequent pattern mining 
iterations with different supports are performed on the 
same CATS Tree. In Figure 5, for comparison purposes, 
time required to build CATS Tree is added to the time 
for Total CATS Tree. In Figure 6, cumulated time from 
the adding of the first transaction until completion of 
frequent pattern mining at each data point is calculated. 
In other words, seven experiments with different supports 
were done on the same dataset. 
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Time required by all algorithms increases as the 
support decreases. However, the rate of increase in 
Apriori is much faster than that of FELINE. Eventually, 
CATS Tree algorithms become faster than cached 
Apriori because FELINE does not generate candidate 
itemsets. Other than performance, the memory 
requirement for CATS Tree is smaller than other 
algorithms when support is low. Apriori and FP-tree runs 
out of memory at when the support is 0.02% and 0.15% 
respectively. 

Unlike other frequent pattern mining algorithms, 
CATS Tree algorithms do not require to be started from 

scratch when the minimum support is decreased. The 
same CATS Tree can be used to mine frequent patterns 
with different supports; only FELINE needs to be rerun. 
As shown in Figure 6, the benefits of CATS Tree 
algorithms increase as the number of frequent pattern 
mining increases.  
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5.2. Memory Usage  

In this experiment, the memory usages of different 
algorithms are compared. The amounts of memory usage 
are the peak memory usage reported by the process 
monitor. In FP-Tree, the theoretical number of nodes is 
used because the source code of FP growth is not 
available. Only the executable code was provided to us. 
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As shown in Figure 7, the memory usage of CATS 
Tree is relatively insensitive to the support while both 
FP-Tree and Cached Apriori are very sensitive to the 
support. As the support decreases, the memory 
consumption of FP-Tree increases exponentially and 
over takes that of CATS Tree at around 0.16% support.  

From the theoretical aspect, CATS Tree is smaller 
than FP-Tree when the support is low. Because of the 
local memory management technique, CATS Tree will 
always consume less memory than a FP-Tree with 0% 
support. Furthermore, the structure of FP-Tree is based 



on the frequency list of the items. As soon as a 
transaction is added, the frequency list could be changed 
and the FP-Tree may require a significant rearrangement 
of nodes to maintain the structure. 

6. Conclusion 

We propose a novel data structure, CATS Tree and 
an algorithm to build it. The algorithm FELINE is also 
proposed to mine frequent patterns from CATS Trees.  

There are many advantages of CATS Tree 
algorithms over the existing algorithms. 1) Once a CATS 
Tree is built, frequent pattern mining with different 
supports can be performed without rebuilding the tree. 
The benefit of “build once, mine many” increases with 
the number of frequent patterns mining performed, i.e., 
interactive mining with different supports; the cost of 
CATS Tree construction is amortized over multiple 
frequent patterns mining. 2) CATS Tree allows single 
pass frequent pattern mining. 3) CATS Tree algorithms 
allow addition and deletion of transactions in the finest 
granularity, i.e., a single transaction. See [18] for more 
details. Currently, there is no known and published 
algorithm that can provide the same functionalities 
efficiently. This makes CATS Tree algorithm suitable for 
real time transactional frequent pattern mining where 
modifications and frequent patterns mining are common. 
Moreover, with the addition and deletion capability, 
CATS trees algorithms are appropriate to mine 
transaction streams since one single scan of the data 
suffices [18]. 

We have implemented CATS Tree algorithms and 
compared our approach with other algorithms. CATS 
Tree algorithms are shown to be efficient and scalable to 
large amount of transactions and outperform other 
algorithms in interactive setting. 
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