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Abstract

When computationally feasible, mining extremely large
databases produces tremendously large numbers of frequent
patterns. In many cases, it is impractical to mine those
datasets due to their sheer size; not only the extent of the
existing patterns, but mainly the magnitude of the search
space. Many approaches have been suggested such as se-
quential mining for maximal patterns or searching for all
frequent patterns in parallel. So far, those approaches are
still not genuinely effective to mine extremely large datasets.

In this work we propose a method that combines both
strategies efficiently, i.e. mining in parallel for the set of
maximal patterns which, to the best of our knowledge, has
never been proposed efficiently before. Using this approach
we could mine significantly large datasets; with sizes never
reported in the literature before. We are able to effectively
discover frequent patterns in a database made of billion
transactions using a 32 processors cluster in less than 2
hours.

1. Introduction

The last decades have witnessed a massive growth in data
collection techniques from different sources like satellite
images, surveillance cameras, commercial domain transac-
tions, etc.; this has led to huge archiving of data often with-
out the ability to extract useful actionable information. The
need to discover actionable knowledge from these massive
data collections, for security, scientific or competitive rea-
sons is obvious today. In the commercial domain alone, con-
sidering all the daily commercial transactions, or the goods
movements and management with Radio Frequency Iden-
tification, RFID is phenomenal. Market competition mo-
tivates the timely discovery of useful patterns in the col-
lected transactional data to gain competitive edge and help
decision support. Data mining is the process in which hid-
den, implicit knowledge can be extracted from a store of
databases or facts. The techniques have been proven very ef-

fective in many applications. However, while computers are
getting faster and more powerful, they cannot sustain the
tremendous increase in data collection we are able to amass
today. New strategies are needed to scale with the ampli-
fied data gathering.

One of the major data mining techniques for pattern dis-
covery and consequently one of the most studied in the data
mining community, is association rule analysis in which
strong relationships between co-occurring items in trans-
actional data are discovered. Association rules are based
on frequent itemset mining which is, simply put, the enu-
meration of sets of items frequently occurring together.
The search (i.e. enumeration) is bound by count thresholds,
known as support, or some other imposed constraints. Al-
though mining for frequent itemsets is indeed necessary for
association rule mining that is useful for customer behav-
ior analysis or many other applications, frequent itemsets
are valuable in many other knowledge discovery tasks, from
the pre-processing of data to the characterization of discov-
ered patterns. Frequent itemsets are constructive in building
classification models, clustering data, discovering contrast
sets, etc. In specific applications such as bio-informatics,
frequent itemsets are an asset in micro-array analysis, pro-
tein structure prediction, etc. Hence, discovering frequent
itemsets forms an essential canonical task in data mining.

While discovering hidden knowledge in the available
repositories of data is an important goal for decision mak-
ers, discovering this knowledge in a “reasonable” time is
capital. Despite the increase in data collection, the rapid-
ity of the pattern discovery remains vital and will always
be essential. Speeding up the process of knowledge discov-
ery has become a critical problem, and parallelism is shown
to be a potential solution for such a scalability predicament.
Naturally, parallelization is not the only and should not be
the first solution to speedup the data mining process. In-
deed, other approaches might help in achieving this goal,
such as sampling, attribute selection, restriction of search
space, and algorithm or code optimization [7]. Some of
these approaches might be used in conjunction with paral-
lelism to achieve the desired speedup. A legitimate issue is



whether parallelism is needed in data mining. Efficiency is
crucial in knowledge discovery systems, and with the explo-
sive growth of data collection, sequential data mining algo-
rithms have become an unacceptable solution to most real
size problems even after clever optimizations. To illustrate
the complexity of the problem of frequent itemset enumer-
ation in today’s real data, assume a small token case with
only 5 possible items (i.e. a store that sells only 5 distinct
products), the lattice that represents all possible candidate
frequent patterns has25 − 1 = 31 itemsets. Applications
that generate transactions with sizes greater than 100 items
per transaction are common. In those cases, to find a fre-
quent itemset with size 100, it would take a search space of
2
100 − 1 = 1.27 ∗ 10

30 itemsets. Adding the fact that most
real transactional databases are in the order of millions, if
not billions, of transactions and the problem becomes in-
tractable with current sequential solutions. With hundreds
of gigabytes, and often terabytes and thousands of distinct
items, it is unrealistic for one processor to mine the data se-
quentially, especially when multiple passes over these enor-
mous databases are required.

Dividing the mining task among different processors rep-
resents a potential solution for the above-mentioned prob-
lem especially if this parallelism provides answers for deci-
sion makers in a reasonable time period and time is of the
essence.

Finding the set of frequent patterns is the first step in
finding association rules. Once frequent itemsets are known,
generating the association rules is trivial. Discovering the
frequent patterns is essentially pinpointing some itemsets
with high support in this massive lattice of candidates. In the
literature, there are different approaches for efficient and ef-
fective counting and enumeration of frequent itemsets. Pri-
marily, these approaches differ in the way they traverse the
lattice, or search space. Most algorithms apply bottom up
traversal of the lattice in order to enumerate the frequent
itemsets. In other words, they search for short frequent pat-
terns and build up on those that are frequent. Others might
use top down search in cases of long frequent itemsets. They
discover the long patterns before focusing on shorter ones.
Some have also proposed hybrid strategies that merge top-
down with bottom-up approaches.

Other fundamental differences between approaches are
in the type of frequent patterns they aim at discovering.
Rather than discovering all the frequent itemsets, one could
discover a representative subset of these itemsets and then
generate all the needed patterns. The set of frequent item-
sets contains indeed many redundancies and could be repre-
sented by a smaller set called the frequent closed itemsets,
or an even smaller set called the maximal frequent itemsets
from which all the frequent itemsets can be generated. A
detailed definition of frequent and maximal patterns is ex-
plained in the next section. The strategies aiming at these

smaller subsets are typically faster and more scalable.

1.1. Problem Statement

The problem of mining frequent itemsets stems from
the problem of mining association rules over market bas-
ket analysis as introduced in [2]. The problem consists of
finding sets of items (i.e. itemsets) that are sufficiently fre-
quent in a transactional database.

Formally, as defined in [2], the problem is stated as fol-
lows: LetI = {i1, i2, ...im} be a set of literals, called items
andm is considered the dimensionality of the problem. Let
D be a set of transactions, where each transactionT is a set
of items such thatT ⊆ I. A transactionT is said to con-
tain X , a set of items inI, if X ⊆ T . An itemsetX is said
to be frequentif its supports (i.e. ratio of transactions in
D that containX) is greater than or equal to a given mini-
mum support thresholdσ. A frequent itemsetM is consid-
ered maximal if there is no other frequent set that is a super-
set ofM. Consequently, any subset of a maximal pattern is
a frequent pattern. Discovering all Maximal patterns effort-
lessly yields the complete set of frequent patterns. There-
fore, we solely contemplate the discovery of maximals in
this paper.

1.2. Contributions in this paper

In this paper we present a new parallel frequent min-
ing algorithm that is based on our previous work of leap-
traversal [17] that generates the set of maximal patterns. We
show that using the traversal approach while parallelizing
the mining approach allows us to mine databases of sizes
never reported before, and in a reasonable time using a clus-
ter made of 32 processors.

The rest of this paper is organized as follows: In section
2, we discuss our leap-traversal approach and describe our
proposed parallel approach in Section 3. We evaluate some
strategies for load sharing and present performance results
on experiments assessing scalability and speed-up in Sec-
tion 4. Finally, we highlight some related work in Section 5
and conclude the paper.

2. The Leap Traversal Approach

Contrary to most existing parallel algorithms for min-
ing frequent patterns, our algorithm is not apriori-based [1].
To mine for maximal patterns in parallel, we rely on a com-
pletely new and different approach and use special struc-
tures that fit well a distributed or cluster environment. Be-
fore elaborating on our parallel algorithm, we first present
the data structures and explain the general concepts. Our
algorithm is based on our recent lattice traversal strategy
HFP-Leap [17]. In our parallel approach, HFP-Leap still



performs the actual leap-traversal to find maximal patterns.
We first present the idea behind HFP-Leap then show how
this idea can be parallelized.

The Leap-Traversal approach we discuss consists of two
main stages: the construction of a Frequent Pattern tree
(HFP-tree); and the actual mining for this data structure by
building the tree of intersected patterns.

Algorithm 1 HFP-Leap: Leap-Traversal with Headerless
FP-tree

Input: D (transactional database);σ (Support threshold).
Output: Maximal patterns with their respective supports.

ScanD to find the set of frequent 1-itemsetsF1

ScanD to build the Headerless FP-treeHFP
FPB ← FindFrequentPatternBases(HFP )
Maximals← FindMaximals(FPB, σ)

OutputMaximals

2.1. Frequent Pattern Tree Construction

The goal of this stage is to build a compact data structure,
which is a prefix tree representing sub-transactions pertain-
ing to a given minimum support threshold. This data struc-
ture, compressing the transactional data, is based the FP-
tree by Han et al. [9]. The tree structure we use, called HFP-
tree is a variation of the original FP-tree. We start introduc-
ing the original FP-tree before discussing the differences
with our data structure. The construction of the FP-tree is
done in two phases, where each phase requires a full I/O
scan of the database. A first initial scan of the database iden-
tifies the frequent 1-itemsets. The goal is to generate an or-
dered list of frequent items that would be used when build-
ing the tree in the second phase.

After the enumeration of the items appearing in the trans-
actions, infrequent items with a support less than the sup-
port threshold are weeded out and the remaining frequent
items are sorted by their frequency. This list is organized in
a table, called header table, where the items and their re-
spective supports are stored along with pointers to the first
occurrence of the item in the frequent pattern tree. The ac-
tual frequent pattern tree is built in the second phase. This
phase requires a second complete I/O scan of the database.
For each transaction read, only the set of frequent items
present in the header table is collected and sorted in de-
scending order according to their frequency. These sorted
transaction items are used in constructing the FP-Tree.

Each ordered sub-transaction is compared to the prefix
tree starting from the root. If there is a match between the
prefix of the sub-transaction and any path in the tree starting
from the root, the support in the matched nodes is simply in-
cremented, otherwise new nodes are added for the items in
the suffix of the transaction to continue a new path, each
new node having a support of one. During the process of

adding any new item-node to the FP-Tree, a link is main-
tained between this item-node in the tree and its entry in the
header table. The header table holds one pointer per item
that points to the first occurrences of this item in the FP-
Tree structure.

Our tree structure is the same as the FP-tree except
for the following differences. We call this tree Headerless-
Frequent-Pattern-Tree or HFP-tree.

1. We do not maintain a header table, as a header table is
used to facilitate the generation of the conditional trees
in the FP-growth model [9]. It is not needed in our leap
traversal approach;

2. We do not need to maintain the links between the same
itemset across the different tree branches (horizontal
links);

3. The links between nodes are bi-directional to allow
top-down and bottom-up traversals of the tree;

4. All leaf nodes are linked together as the leaf nodes are
the start of any pattern base and linking them helps the
discovery of frequent pattern bases;

5. In addition tosupport, each node in the HFP-tree has a
second variable calledparticipation.

Basically, the support represents the support of a node,
while participation represents, at a given time in the mining
process, the number of times the node has participated in
already counted patterns. Based on the difference between
the two variables,participationandsupport, the special pat-
terns calledfrequent-path-basesFPB are generated. These
are simply the paths from a given nodex, with participa-
tion smaller than the support, up to the root, (i.e. nodes that
did not fully participate yet in frequent patterns).

Algorithm 1 shows the main steps in our approach. Af-
ter building the Headerless FP-tree with 2 scans of the
database, we mark some specific nodes in the pattern lat-
tice usingFindFrequentPatternBaseswhere patterns in the
lattice are marked. The linked list of leaf nodes in the HFP-
tree is traversed to find upward the unique paths represent-
ing sub-transactions. Using the FPBs, the leap-traversal in
FindMaximalsdiscovers the maximal patterns at the fre-
quent pattern border in the lattice.

2.2. The Leap-Traversal approach

Algorithm 2 is the actual leap traversal to find max-
imals using FP-trees generated all at one time using the
Headerless FP-tree. It starts by listing some candidate max-
imals stored inPotentialMaximals, which is initialized with
the frequent pattern bases that are frequent. All the non-
frequent FPBs are used for the jumps of the lattice leap
traversal. These FPBs are stored in the listList and inter-
mediary listsNList andNList2 will store the nodes in the



lattice that the intersection of FPBs would point to; in other
words, the nodes that may lead to maximals. The nodes in
the lists have two attributes:flag andstartpoint. For a node
n, flag indicates that a subtree in the intersection tree should
not be considered starting from the noden. For example,
if node (A ∩ B) has a flagC, then the subtree under the
node (A ∩ B ∩ C) should not be considered. For a given
noden, startpointindicates which subtrees in the intersec-
tion tree, descendants ofn, should be considered. For ex-
ample, if a node (A ∩ B) has the startpointD, then only
the descendants (A ∩ B ∩ D) and so on are considered, but
(A ∩ B ∩ C) is omitted. Note thatABCD are ordered lex-
icographically. At each level in the intersection tree, when
NList2 is updated with new nodes, the theorems in [17] are
used to prune the intersection tree. In other words, the the-
orems help avoid useless intersections (i.e. useless maxi-
mal candidates). The same process is repeated for all levels
of the intersection tree until there is no other intersections
to do (i.e.NList2 is empty). At the end, the set of poten-
tial maximals is cleaned by removing subsets of any sets in
PotentialMaximals.

It is obvious in the Leap-traversal approach that super-
set checking and intersections play an important role. We
found that the best way to work with this is by using the bit-
vector approach where each frequent item is represented by
one bit in a vector. In this approach, intersection is noth-
ing but applying the AND operation between two vectors,
and subset checking is nothing but applying the AND op-
eration followed by equality checking between two vectors.
If A ∩ B = A then A is a subset of B.

3. Parallel Leap Traversal Approach

The parallel leap traversal approach starts by partition-
ing the data among the parallel nodes. Each processor scans
its partition to find the frequency of candidate items. The
list of all supports is reduced to the master node to get the
global list of frequent 1-itemsets. The second scan of each
partition starts with the goal of building a local headerless
frequent patterns tree. From each tree, the local set of fre-
quent path bases is generated. Those sets are broadcasted
to all processors. Identical frequent path bases are merged
and sorted lexicographically, the same as with the sequen-
tial process. At this stage the pattern bases are split among
the processors. Each processor is allocated a carefully se-
lected set of frequent pattern bases to build their respective
intersection trees. This distribution is discussed further be-
low. Pruning algorithms are applied at each processor to re-
duce the size of the intersection trees [17]. Maximal pat-
terns are generated at each node. Each processor then sends
its maximal patterns to one master node, which filters them
to generate the set of global maximal patterns. Algorithm 3

presents the steps needed to generate the set of maximal pat-
terns in parallel.

Algorithm 2 FindMaximals: The actual leap-traversal
Input: FPB (Frequent Pattern Bases);σ (Support threshold).
Output: Maximals (Frequent Maximal patterns)

{which FPBs are maximals?}
List← FPB; PotentialMaximals ← ∅
for eachi in List do

Find support ofi {using branch supports}
if support(i) > σ then

Add i to PotentialMaximals
Removei from List

end if
end for

SortList based on support
NList← List; NList2← ∅
∀i ∈ NList initialize i.flag← NULL AND i.startpoint← index of
i in NList

while NList 6= ∅ do
{Intersections of FPBs to select nodes to jump to}
for eachi in NList do

g ← Intersect(i, j) {wherej ∈ List AND i ≪ j (in lexico-
graphic order) AND notj.flag}
g.startpoint← j; Add g to NList2

end for
for eachi in NList2 do

Find support ofi {using branch supports}
if support(i) > σ then

Add i to PotentialMaximals
Remove all duplicates or subsets ofi in NList2; Removei
from NList2

else
if duplicates ofi exist in NList2 then remove them except
the most right one then removei from NList2
Remove all non frequent subsets ofi from NList2
if ∃j ∈ NList2 AND j ⊇ i then

i.flag← j
end if
for all j in List do

if j ≫ i.startpoint (in lexicographic order)then
n← Intersect(i, j)
Find support ofn {using branch supports}
if support(n) < σ then

Removei from NList2
end if

end if
end for

end if
end for
NList← NList2; NList2← ∅

end while

Remove any x from PotentialMaximals if (∃M ∈
PotentialMaximals AND x ⊂M )
Maximals← PotentialMaximals

RETURNMaximals

3.1. Load sharing among processors

While the trees of intersections are not physically built,
they are virtually traversed to complete the relevant inter-
sections of pattern bases. Since each processor can handle



independently some of these trees and the sizes of these
trees of intersections are monotonically decreasing, it isim-
portant to cleverly distribute these among the processors to
avoid significant load imbalance. A naı̈ve and direct ap-
proach would be to divide the trees sequentially. Givenp

processors we would give the first1
pth trees to the first pro-

cessor, the next fraction to the second processor, and so on.
This strategy unfortunately leads to eventual imbalance be-
tween processors since the last processor getting all small
trees would undoubtedly terminate before other nodes in
the cluster. A more elegant and effective approach would be
a round robin approach considering the sizes of the trees:
when ordered by size, the firstp trees are distributed one to
each processor and so on for each set ofp trees. This avoids
having a processor dealing with only large trees while an-
other processor is intersecting with only small ones. Again
this strategy may still create imbalance between proces-
sors, however, less acute than the naı̈ve direct approach. The
strategy that we propose, and call First-Last, distributestwo
trees per processor at a time. The largest tree and the small-
est tree are assigned to the first processor, then the second
largest tree and penultimate small tree to the second proces-
sor, the third largest tree and third smallest tree to the third
processor and so on in a loop. This approach seems to ad-
vocate a better load balance as is demonstrated by our ex-
periments.

Algorithm 3 Parallel-HFP-Leap: Parallel-Leap-Traversal
with Headerless FP-tree

Input: D (transactional database);σ (Support threshold).
Output: Maximal patterns with their respective supports.

- D is already distributed otherwise partitionD between the available
p processors;
- Each processorp scans its local partitionDp to find the set of local
candidate 1-itemsetsLpC1 with their respective local support;
- The supports of allLiC1 are transmitted to the master processor;
- Global Support is counted by master andF1 is generated;
- F1 is broadcasted to all nodes;
- Each processorp scans its local partitionDp to build the local Head-
erless FP-treeLpHFP based onF1;
- LpFPB ← FindFrequentPatternBases(Lp HFP );
- All LpFPB are sent to the master node ;
- Master node generates the globalFPB from all LpFPB;
- The globalFPB are broadcasted to all nodes;
- Each Processorp is assigned a set of local header nodesLHD from
the globalFPB; {this is the distribution of trees of intersections}
for eachi in LHD do

LOCALMaximals← FindMaximals(FPB, σ);
end for
- Send allLOCALMaximals to the master node;
- The master node prunes allLOCALMaximals that have supersets
itemsets inLOCALMaximals to produceGLOBALMaximals;

- The master node outputsGLOBALMaximals.

3.2. Example: Parallel Leap Traversal

The following example illustrates how the leap traversal
approach is applied in parallel. Figure 1.A presents 7 trans-
actions made of 8 distinct items which are:A, B, C, D, E,
F , G, andH . Assuming we want to mine those transactions
with a support threshold equal to at least 3, using two pro-
cessors, Figure 1 illustrates all the needed steps to accom-
plish this task. The database is partitioned among the two
processors where the first three transactions are assigned to
the first processor,P1, and the remaining ones are assigned
to the second processor,P2 (Figure 1.A).

In the first scan of the database, each processor finds the
local support for each item:P1 finds the support ofA, B,
C, D, E, F andG which are 3, 2, 2, 2, 2, 1 and 2 respec-
tively, andP2 the supports ofA, B, C, D, E, F , andH

which are 2, 3, 3, 3, 3, 3, 2. A reduced operation is exe-
cuted to find that the global support ofA, B, C, D, E, F ,
G, andH items is 5, 5, 5, 5, 5, 4, 2, and 2. The last two
items are pruned as they do not meet the threshold crite-
ria (support> 2), and the remaining ones are declared fre-
quent items of size 1. The set of Global frequent 1-itemset
is broadcasted to all processors using the first round of mes-
sages.

The second scan of the database starts by building the lo-
cal headerless tree for each processor. From each tree the
local frequent path bases are generated. InP1 the frequent-
path-basesABCDE, ABE, andACDF with branch sup-
port equal to 1 are generated.P2 generatesACDEF ,
BCDF , BEF , andABCDE with branch supports equal
to 1 for all of them (Figure 1.B). The second set of mes-
sages is executed to send the locally generated frequent path
bases toP1. Here, identical ones are merged and the final
global set of frequent path bases are broadcasted to all pro-
cessors with their branch support (Figure 1.C).

Each processor is assigned a set of header nodes to build
their intersection tree as in Figure 1.D. In our example, the
first, third, and sixth frequent path bases are assigned toP1

as header nodes for its intersection trees.P2 is assigned to
the second, fourth, and fifth frequent path bases. The first
tree of intersection inP1 producesACDE, BCD, and
ABE, with support equal to 3, 3, and 3 respectively. The
second assigned tree producesCDF with support equal to
3. P1 produces 4 local maximals which areBE, AE, BE,
CDF with support equal to 4, 4, 4, 3 respectively.P2 pro-
ducedCDF , BE, andAE with support equal to 3, 4, and
4 respectively. All local maximals are sent toP1 in which
any local maximal that has any other superset of local max-
imals from other processors are removed. The remaining
patterns are declared as global maximals (Figure 1.E).
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Figure 1. Example of Parallel Leap Traversal:
Finding and intersecting the path-bases

4. Performance Evaluations

To evaluate our parallel leap-traversal approach, we con-
ducted a set of different experiments using a cluster made
of sixteen boxes. Each box has Linux 2.4.18, dual proces-
sor 1.533 GHz AMD Athlon MP 1800+, 1.5 GB of RAM.
Nodes are connected by Fast Ethernet and Myrinet 2000
networks. In this set of experiments, we generated synthetic
datasets using [10]. All transactions are made of 100,000
distinct items with an average transaction length of 12 items
per transaction. The size of the transactional databases used
varies from 100 million transactions to 1 billion transac-
tions.

With our best efforts and literature searches, we were un-
able to find a parallel frequent mining algorithm that could

mine more than 10 million transactions, which is far less
than our target size environment. Due to this large discrep-
ancy in transaction capacity, we did not compare our algo-
rithm against any other existing algorithm.

We conducted a battery of tests to evaluate the process-
ing load distribution strategy, the scalability vis-à-vis the
size of the data to mine, and the speed-up gained from
adding more parallel processing power. Some of the results
are portrayed hereafter.

4.1. Effect of load distribution strategy

We enumerated above three possible strategies for tree
of intersection distribution among the processors. As ex-
plained, the trees are in decreasing order of size and they can
either be distributed arbitrarily using the naı̈ve approach, or
more evenly using a round robin approach, or finally with
our suggested First-Last approach.

From our experiments in Figure 2 we can see that the
First-Last distribution gave the best results. This can be jus-
tified by the fact that since trees are lexicographically or-
dered then in general trees on the left are larger than those
on the right. By applying the First-Last distributions we al-
ways try to assign largest and smallest tree to the same node.
All our remaining experiments use the First-Last distribu-
tion methods among intersected trees.
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Figure 2. Effect of Leap node distributions

4.2. Scalability: Database size

One of the main goals in this work is to mine extremely
large datasets. In this set of experiments we tested the ef-
fect of mining different databases made of different trans-
actional databases varying from 100 million transactions up
to one billion transactions. To the best of our knowledge,
experiments with such big sizes have never been reported
in the literature. We mined those datasets using 32 pro-
cessors, with three different support thresholds: 10%, 5%



and 1%. Figure 3.A shows the results of this set of experi-
ments. While the curve does not illustrate a perfect linearity
in the scalability, the execution time for the colossal one bil-
lion transaction dataset was a very reasonable one hour and
forty minutes with a 0.01% support and 32 relatively inex-
pensive processors. We were able to mine one billion trans-
actions in 5020 seconds for a support of 0.1% up to 6100
seconds for a support of 0.01%.

4.3. Scalability: Number of Processors

To test the speed-up of our algorithm with the increase
of processors we fixed the size of the database to 100 mil-
lion transactions and examined the execution time on this
dataset with one processor up to 32 processors. The ex-
ecution time is reduced sharply when two to four paral-
lel processors are added then continues to decrease signif-
icantly afterward with additional processors (Figure 3.B).
The speedup was fairly acceptable as almost two folds were
achieved with 4 processors, 4 folds while using 8 proces-
sors, and almost 13 folds while using 32 processors. This
results are depicted in Figure 3.C.

5. Related work

In the realm of association rules, existing parallel fre-
quent itemset mining algorithms are divided among two
parallel environments which have been described either as a
single computer with multiple processors sharing the same
address space (i.e. Shared Memory) or as multiple intercon-
nected computers where each one has its own independent
local memory (i.e. Shared Nothing), or Distributed Memory
[16]. In any of these environments distributed algorithms
are grouped into two main categories based on how candi-
date sets are handled. Some algorithms rely on replications
of candidate sets while others partition the candidate set.

Replication is the simplest approach. In this approach the
candidate generation process is replicated and the counting
step is performed in parallel where each processor is as-
signed part of the database to mine. This method suffers
mainly from three problems. First, not all local frequent
items are global frequent items, the “false positive phe-
nomenon.” Second, not all non-local frequent items are non-
global frequent items, the “false negative phenomenon.” Fi-
nally, it depends heavily on the memory size. The main
algorithms on this class are: Count Distribution algorithm
[14], Parallel Partition algorithm [15], Fast DistributedMin-
ing algorithm [5], Fast Parallel Mining algorithm [5], Paral-
lel Data Mining algorithm [11].

Partitioning Algorithms are the second type of parallel
algorithms that rely on the concept of partitioning the can-
didate set among processors. Here, each processor handles

only a predefined set of candidate items and scans the en-
tire database, leading to prohibitive I/O costs. In cases of
extremely large databases these algorithms collapse due to
excessive I/O scans required of them. In general they are
used to mine relatively small databases with limited mem-
ory bandwidth. Some of these algorithms are Data Distribu-
tion algorithm, Candidate Distribution algorithm [14], In-
telligent Data Distribution algorithm [8].

Most of the above mentioned algorithms are based on
the apriori algorithm[1], which requires multi-scan of the
database and a massive candidate generation phase. That is
why most of them are not fully scalable for extremely large
datasets.

A parallelization of the MaxMiner [3] is presented in [6].
The algorithm inherits the effective pruning of MaxMiner
but also its drawbacks. It is efficient for long maximal pat-
terns but not as capable when most patterns are short. It also
requires multiple scans of the data making it inefficient for
extremely large datasets.

A PC-cluster based algorithm proposed in [13], derived
from the sequential FP-growth algorithm [9], exhibits good
load balancing. Being a non-apriori based approach, the
candidacy generation is significantly reduced. However,
node-to-node communication is considerable especially for
sending conditional patterns. The algorithm displays good
speedup, but on the other hand it does not scale to extremely
large datasets as the larger the dataset, the more conditional
patterns are found, and the more node-to-node communica-
tion is required.

Myriad shared memory-based parallel frequent mining
algorithms are described in the literature such as Asyn-
chronous Parallel Mining [4], Parallel Eclat, MaxEclat,
Clique, MaxClique, TopDown, and AprClique algorithms
all reported in [12]. These algorithms are mainly apriori-
based and suffer from expensive candidacy generation and
communication costs. Multiple Local Frequent Pattern tree
Algorithm [18], which was among the first non apriori-
based parallel mining algorithm, was our attempt paralleliz-
ing FP-growth. Such algorithms show good performance
while mining for frequent patterns, but due to the nature
of shared memory environments with limited bus and com-
mon disks, they are not suitable to be scaled for extremely
large dataset.

What distinguishes our approach from the afore men-
tioned algorithms is the strategy for traversing the lattice
of candidate patterns. Candidate checking was significantly
reduced by using pattern intersections and communication
costs are condensed thanks to the self-reliant and indepen-
dent processing modules, and finally, the data structure we
use and the approach of sharing tasks support a quasi de
facto load balance.
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Figure 3. A. Scalability: Different transaction Size TS (p= 32)), B. Scalability: Different number of pro-
cessors, C. Speedup: Different support values (TS = 100M For Figures B and C)

6. Conclusion

Parallelizing the search for frequent patterns plays an
important role in opening the doors to the mining of ex-
tremely large datasets. Not all good sequential algorithms
can be effectively parallelized and parallelization aloneis
not enough. An algorithm has to be well suited for paral-
lelization, and in the case of frequent pattern mining, clever
methods for searching are certainly an advantage. The al-
gorithm we propose for parallel mining of frequent maxi-
mal patterns is based on a new technique for astutely jump-
ing within the search space, and more importantly, is com-
posed of autonomous task segments that can be performed
separately and thus minimize communication between pro-
cessors.

Our proposal is based on the finding of particular pat-
terns, called pattern bases, from which selective jumps in
the search space can be performed in parallel and indepen-
dently from each other pattern base in the pursuit of maxi-
mal patterns. The success of this approach is attributed to
the fact that pattern base intersection is independent and
each intersection tree can be assigned to a given processor.
The decrease in the size of intersection trees allows a fair
strategy for distributing work among processors and in the
course reducing most of the load balancing issues. While
other published works claim results with millions of trans-
actions, our approach allows the mining in reasonable time
of databases in the order of billion transactions using rela-
tively inexpensive clusters; 16 dual-processor boxes in our
case. This is mainly credited to the low communication cost.
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