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Abstract fective in many applications. However, while computers are
getting faster and more powerful, they cannot sustain the
When computationally feasible, mining extremely large tremendous increase in data collection we are able to amass
databases produces tremendously large numbers of frequentoday. New strategies are needed to scale with the ampli-
patterns. In many cases, it is impractical to mine those fied data gathering.

datasets due to their sheer size; not only the extent of the gpe of the major data mining techniques for pattern dis-
existing patterns, but mainly the magnitude of the search coyery and consequently one of the most studied in the data
space. Many approaches have been suggested such as sgjining community, is association rule analysis in which
quential mining for maximal patterns or searching for all  gtrong relationships between co-occurring items in trans-
frequent patterns in parallel. So far, those approaches are yctional data are discovered. Association rules are based
still not genuinely effective to mine extremely Iarge_datas on frequent itemset mining which is, simply put, the enu-
In this work we propose a method that combines both meration of sets of items frequently occurring together.
strategies efficiently, i.e. mining in parallel for the sdt 0 The search (i.e. enumeration) is bound by count thresholds,
maximal patterns which, to the best of our knowledge, hasknown as support, or some other imposed constraints. Al-
never been proposed efficiently before. Using this approachihough mining for frequent itemsets is indeed necessary for
we could mine significantly large datasets; with sizes never ggsociation rule mining that is useful for customer behav-
reported in the literature before. We are able to effecfivel jor analysis or many other applications, frequent itemsets
discover frequent patterns in a database made of billion 5re yaluable in many other knowledge discovery tasks, from
transactions using a 32 processors cluster in less than 2he pre-processing of data to the characterization of disco
hours. ered patterns. Frequent itemsets are constructive inibgild
classification models, clustering data, discovering @sttr
sets, etc. In specific applications such as bio-informatics
1. Introduction frequent itemsets are an asset in micro-array analysis, pro
tein structure prediction, etc. Hence, discovering fredque

The last decades have witnessed a massive growth in datifemsets forms an essential canonical task in data mining.
collection techniques from different sources like satelli While discovering hidden knowledge in the available
images, surveillance cameras, commercial domain transacrepositories of data is an important goal for decision mak-
tions, etc.; this has led to huge archiving of data oftenwith ers, discovering this knowledge in a “reasonable” time is
out the ability to extract useful actionable informatiomel  capital. Despite the increase in data collection, the rapid
need to discover actionable knowledge from these massivdty of the pattern discovery remains vital and will always
data collections, for security, scientific or competitiea+ be essential. Speeding up the process of knowledge discov-
sons is obvious today. In the commercial domain alone, con-ery has become a critical problem, and parallelism is shown
sidering all the daily commercial transactions, or the good to be a potential solution for such a scalability predicatnen
movements and management with Radio Frequency IdenNaturally, parallelization is not the only and should not be
tification, RFID is phenomenal. Market competition mo- the first solution to speedup the data mining process. In-
tivates the timely discovery of useful patterns in the col- deed, other approaches might help in achieving this goal,
lected transactional data to gain competitive edge and helpsuch as sampling, attribute selection, restriction of gear
decision support. Data mining is the process in which hid- space, and algorithm or code optimization [7]. Some of
den, implicit knowledge can be extracted from a store of these approaches might be used in conjunction with paral-
databases or facts. The techniques have been proven very efelism to achieve the desired speedup. A legitimate issue is



whether parallelism is needed in data mining. Efficiency is smaller subsets are typically faster and more scalable.

crucial in knowledge discovery systems, and with the explo-

sive growth of data collection, sequential data miningalgo 1.1. Problem Statement

rithms have become an unacceptable solution to most real

size problems even after clever optimizations. To illustra The problem of mining frequent itemsets stems from

the complexity of the problem of frequent itemset enumer- the problem of mining association rules over market bas-

ation in today’s real data, assume a small token case withket analysis as introduced in [2]. The problem consists of

only 5 possible items (i.e. a store that sells only 5 distinct finding sets of items (i.e. itemsets) that are sufficientdy fr

products), the lattice that represents all possible catelid quent in a transactional database.

frequent patterns ha® — 1 = 31 itemsets. Applications Formally, as defined in [2], the problem is stated as fol-

that generate transactions with sizes greater than 108 itemlows: Let] = {iy, s, ...i,, } be a set of literals, called items

per transaction are common. In those cases, to find a fre-andm is considered the dimensionality of the problem. Let

guent itemset with size 100, it would take a search space ofp be a set of transactions, where each transadficna set

2100 — 1 = 1.27 % 10% itemsets. Adding the fact that most of items such thaf” C I. A transactiorT is said to con-

real transactional databases are in the order of millidns, i tain X, a set of items i, if X C T. An itemsetX is said

not billions, of transactions and the problem becomes in-to befrequentif its supports (i.e. ratio of transactions in

tractable with current sequential solutions. With hundred D that containX) is greater than or equal to a given mini-

of gigabytes, and often terabytes and thousands of distincimum support threshold. A frequent itemsei\ is consid-

items, it is unrealistic for one processor to mine the data se ered maximal if there is no other frequent set that is a super-

quentially, especially when multiple passes over these-eno set of M. Consequently, any subset of a maximal pattern is

mous databases are required. a frequent pattern. Discovering all Maximal patterns effor
Dividing the mining task among different processors rep- lessly yields the complete set of frequent patterns. There-

resents a potential solution for the above-mentioned prob-fore, we solely contemplate the discovery of maximals in

lem especially if this parallelism provides answers foridec this paper.

sion makers in a reasonable time period and time is of the

essence. 1.2. Contributions in this paper

Finding the set of frequent patterns is the first step in
finding association rules. Once frequentitemsets are known  In this paper we present a new parallel frequent min-
generating the association rules is trivial. Discovering t ing algorithm that is based on our previous work of leap-
frequent patterns is essentially pinpointing some itemset traversal[17] that generates the set of maximal patteres. W
with high supportin this massive lattice of candidateshint ~ Show that using the traversal approach while parallelizing
literature, there are different approaches for efficienteia ~ the mining approach allows us to mine databases of sizes
fective counting and enumeration of frequent itemsets. Pri Never reported before, and in a reasonable time using a clus-
marily, these approaches differ in the way they traverse theter made of 32 processors.
lattice, or search space. Most algorithms apply bottom up The rest of this paper is organized as follows: In section
traversal of the lattice in order to enumerate the frequent2: We discuss our leap-traversal approach and describe our
itemsets. In other words, they search for short frequent pat Proposed parallel approach in Section 3. We evaluate some
terns and build up on those that are frequent. Others mightstrategies for load sharing and present performance sesult
use top down search in cases of long frequentitemsets. Then experiments assessing scalability and speed-up in Sec-
discover the long patterns before focusing on shorter onestion 4. Finally, we highlight some related work in Section 5
Some have also proposed hybrid strategies that merge top@nd conclude the paper.
down with bottom-up approaches.

Other fundamental differences between approaches are. The Leap Traversal Approach
in the type of frequent patterns they aim at discovering.
Rather than discovering all the frequent itemsets, onedcoul ~ Contrary to most existing parallel algorithms for min-
discover a representative subset of these itemsets and theimg frequent patterns, our algorithm is not apriori-basgd [
generate all the needed patterns. The set of frequent itemTo mine for maximal patterns in parallel, we rely on a com-
sets contains indeed many redundancies and could be represletely new and different approach and use special struc-
sented by a smaller set called the frequent closed itemsetstures that fit well a distributed or cluster environment. Be-
or an even smaller set called the maximal frequent itemsetsfore elaborating on our parallel algorithm, we first present
from which all the frequent itemsets can be generated. Athe data structures and explain the general concepts. Our
detailed definition of frequent and maximal patterns is ex- algorithm is based on our recent lattice traversal strategy
plained in the next section. The strategies aiming at theseHFP-Leap [17]. In our parallel approach, HFP-Leap still



performs the actual leap-traversal to find maximal patterns adding any new item-node to the FP-Tree, a link is main-
We first present the idea behind HFP-Leap then show howtained between this item-node in the tree and its entry in the
this idea can be parallelized. header table. The header table holds one pointer per item
The Leap-Traversal approach we discuss consists of twathat points to the first occurrences of this item in the FP-
main stages: the construction of a Frequent Pattern tre€lree structure.
(HFP-tree); and the actual mining for this data structure by ~ Our tree structure is the same as the FP-tree except
building the tree of intersected patterns. for the following differences. We call this tree Headerless
Frequent-Pattern-Tree or HFP-tree.

éllbg_?rrétehm 1 HFP-Leap: Leap-Traversal with Headerless 1. We do not maintain a header table, as a header table is

Input. D (tansactional database)(Support threshold). used to facilitate the generation of the conditional trees
Output: Maximal patterns with their respective supports. in the FP-growth model [9]. It is not needed in our leap
traversal approach;

ScanD to find the set of frequent 1-itemsefsl ] . )
ScanD to build the Headerless FP-tréeF P 2. We do not need to maintain the links between the same

FPB — FindFrequentPattemnBasés(" ) itemset across the different tree branches (horizontal
Mazimals «— FindMaximals¢' P B, o) Iinks)'

Output M aximals
3. The links between nodes are bi-directional to allow
top-down and bottom-up traversals of the tree;

2.1. Frequent Pattern Tree Construction 4. All leaf nodes are linked together as the leaf nodes are
the start of any pattern base and linking them helps the
The goal of this stage is to build a compact data structure, discovery of frequent pattern bases;
which is a prefix tree representing sub-transactions pertai 5 |, addition tosupport each node in the HFP-tree has a
ing to a given minimum support threshold. This data struc- second variable callegarticipation

ture, compressing the transactional data, is based the FP-

tree by Han et al. [9]. The tree structure we use, called HFP-  Basically, the support represents the support of a node,
tree is a variation of the original FP-tree. We start introdu ~ While participation represents, at a given time in the mgnin
ing the original FP-tree before discussing the differencesProcess, the number of times the node has participated in
with our data structure. The construction of the FP-tree is @lready counted patterns. Based on the difference between
done in two phases, where each phase requires a full |yothe two variablegparticipationandsupport the special pat-
scan of the database. A firstinitial scan of the database identérns calledrequent-path-baselSPB are generated. These
tifies the frequent 1-itemsets. The goal is to generate an or2re simply the paths from a given nodewith participa-
dered list of frequent items that would be used when build- tion smaller than the support, up to the root, (i.e. nodes tha
ing the tree in the second phase. did not fully participate yet in frequent patterns).

After the enumeration of the items appearingin the trans-  Algorithm 1 shows the main steps in our approach. Af-
actions, infrequent items with a support less than the sup-ter building the Headerless FP-tree with 2 scans of the
port threshold are weeded out and the remaining frequentdatabase, we mark some specific nodes in the pattern lat-
items are sorted by their frequency. This list is organized i tice usingFindFrequentPatternBaseshere patterns in the
a table, called header table, where the items and their reJattice are marked. The linked list of leaf nodes in the HFP-
spective supports are stored along with pointers to the firstiree is traversed to find upward the unique paths represent-
occurrence of the item in the frequent pattern tree. The ac-iNg sub-transactions. Using the FPBs, the leap-travensal i
tual frequent pattern tree is built in the second phase. ThisFindMaximalsdiscovers the maximal patterns at the fre-
phase requires a second complete 1/O scan of the databas@Uent pattern border in the lattice.

For each transaction read, only the set of frequent items

present in the header table is collected and sorted in de2.2. The Leap-Traversal approach

scending order according to their frequency. These sorted

transaction items are used in constructing the FP-Tree. Algorithm 2 is the actual leap traversal to find max-

Each ordered sub-transaction is compared to the prefiximals using FP-trees generated all at one time using the
tree starting from the root. If there is a match between the Headerless FP-tree. It starts by listing some candidate max
prefix of the sub-transaction and any path in the tree startin imals stored irfPotentialMaximalswhich is initialized with
from the root, the support in the matched nodes is simply in- the frequent pattern bases that are frequent. All the non-
cremented, otherwise new nodes are added for the items ifrequent FPBs are used for the jumps of the lattice leap
the suffix of the transaction to continue a new path, eachtraversal. These FPBs are stored in thellist and inter-
new node having a support of one. During the process ofmediary listsNList and NList2 will store the nodes in the



lattice that the intersection of FPBs would point to; in athe presents the steps needed to generate the set of maximal pat-

words, the nodes that may lead to maximals. The nodes interns in parallel.

the lists have two attributeflag andstartpoint For a node

n, flagindicates that a subtree in the intersection tree shouldAlgorithm 2 FindMaximals: The actual leap-traversal

not be considered starting from the nodeFor example,
if node (A N B) has a flagC, then the subtree under the
node A N B N C) should not be considered. For a given
noden, startpointindicates which subtrees in the intersec-
tion tree, descendants ef should be considered. For ex-
ample, if a node 4 N B) has the startpoinD, then only
the descendantsi(n B N D) and so on are considered, but
(AN BnC)isomitted. Note tha BC'D are ordered lex-
icographically. At each level in the intersection tree, whe
NList2is updated with new nodes, the theorems in [17] are
used to prune the intersection tree. In other words, the the-
orems help avoid useless intersections (i.e. useless maxi-
mal candidates). The same process is repeated for all levels
of the intersection tree until there is no other intersetgio
to do (i.e.NList2 is empty). At the end, the set of poten-
tial maximals is cleaned by removing subsets of any sets in
PotentialMaximals

It is obvious in the Leap-traversal approach that super-
set checking and intersections play an important role. We
found that the best way to work with this is by using the bit-
vector approach where each frequent item is represented by
one bit in a vector. In this approach, intersection is noth-
ing but applying the AND operation between two vectors,
and subset checking is nothing but applying the AND op-
eration followed by equality checking between two vectors.
If An B = Athen Ais a subset of B.

3. Paralle Leap Traversal Approach

The parallel leap traversal approach starts by partition-
ing the data among the parallel nodes. Each processor scans
its partition to find the frequency of candidate items. The
list of all supports is reduced to the master node to get the
global list of frequent 1-itemsets. The second scan of each
partition starts with the goal of building a local headesles
frequent patterns tree. From each tree, the local set of fre-

Input: F'PB (Frequent Pattern Bases)(Support threshold).
Output: Maximals (Frequent Maximal patterns)

{which FPBs are maximal$?
List «— FPB; Potential M azimals —
for each: in List do
Find support of {using branch supports
if supportf) > o then
Add : to Potential M azimals
Remove: from List
end if
end for

Sort List based on support

NList « List; NList2 «— ()

Vi € N List initialize i.flag «— NU LL AND q.startpoint— index of
1in N List

while N List # () do
{Intersections of FPBs to select nodes to jump to
for eachi in N List do
g < Intersect(, j) {wherej € List AND ¢ < j (in lexico-
graphic order) AND noy.flag}
g.startpoint— j; Add g to N List2
end for
for eachi in N List2 do
Find support of {using branch suppors
if supportf) > o then
Add i to Potential M aximals
Remove all duplicates or subsetsiah N List2; Remove:
from N List2
ese
if duplicates of: exist in N List2 then remove them except
the most right one then removérom N List2
Remove all non frequent subsetsidfom N List2

for all 7 in List do
if 7 > d.startpoint (in lexicographic ordethen
n « Intersectt, j)
Find support of» {using branch suppors
if supportf) < o then
Remove: from N List2
end if
end if
end for
end if
end for
NList + NList2; NList2 «— ()

guent path bases is generated. Those sets are broadcastedend while

to all processors. Identical frequent path bases are merged
and sorted lexicographically, the same as with the sequen-
tial process. At this stage the pattern bases are split among
the processors. Each processor is allocated a carefully se-

Remove any x from Potential Maximals if
Potential M aximals AND = C M)

Mazximals «— Potential M aximals
RETURN M aximals

(3M €

lected set of frequent pattern bases to build their respecti
intersection trees. This distribution is discussed furtiee

low. Pruning algorithms are applied at each processor to re-3.

duce the size of the intersection trees [17]. Maximal pat-

1. Load sharing among processors

terns are generated at each node. Each processor then sendsWhile the trees of intersections are not physically built,
its maximal patterns to one master node, which filters themthey are virtually traversed to complete the relevant inter
to generate the set of global maximal patterns. Algorithm 3 sections of pattern bases. Since each processor can handle



independently some of these trees and the sizes of thes8.2. Example: Parallel Leap Traversal

trees of intersections are monotonically decreasingijiitis

portant to cleverly distribute these among the processors t

avoid significant load imbalance. A naive and direct ap-

proach would be to divide the trees sequentially. Giyen The following example illustrates how the leap traversal
processors we would give the firgt: trees to the first pro- ~ approach is applied in parallel. Figure 1.A presents 7 rans
cessor, the next fraction to the second processor, and so orictions made of 8 distinct items which ar: B, C, D, E,

This strategy unfortunately leads to eventual imbalanee be I, G, andH. Assuming we want to mine those transactions
tween processors since the last processor getting all smalwith a support threshold equal to at least 3, using two pro-
trees would undoubtedly terminate before other nodes incessors, Figure 1 illustrates all the needed steps to accom-
the cluster. A more elegant and effective approach would beplish this task. The database is partitioned among the two
a round robin approach considering the sizes of the treesprocessors where the first three transactions are assigned t
when ordered by size, the firstrees are distributed one to  the first processo#?1, and the remaining ones are assigned
each processor and so on for each settoées. This avoids ~ to the second processdr2 (Figure 1.A).

having a processor dealing with only large trees while an-

other processor is intersecting with only small ones. Again local support for each itemP1 finds the support ofl, B

this s:]rategy n;ay stll tcrfr?te ;?balgncz_bettween grzc?rs-c, D, E, F andG which are 3, 2, 2, 2, 2, 1 and 2 respec-
SOrs, ow;,\ver, ess acute ag ﬁg‘?"vel_ |recd_apptr)o en. tively, and P2 the supports oA, B, C, D, E, F, and H
strategy that we Propose, an 'IC'? | Irst-Last, |str(|j t?]mes Iwhich are 2, 3, 3, 3, 3, 3, 2. A reduced operation is exe-
trees per processor at a time. The largest tree and the smally 4+ find that the global support & B, C, D, E, F,

est tree are assigned to the first processor, then the seconéj and I items is5. 5 5 5 5 4.2 and 2. The last two
largest tree and penultimate small tree to the second p!roceslte;mS are pruned as' tr;ey’ d(’) n’ot’méet the threshold crite-
sor, the third largest tree and third smallest tree to threl thi

ria (support> 2), and the remaining ones are declared fre-

processor and so on in a loop. This approach seems to ad(quent items of size 1. The set of Global frequent 1-itemset

\F/)Z(r:i?‘rt\;?t: etter load balance as is demonstrated by our Xjs broadcasted to all processors using the first round of mes-

sages.

In the first scan of the database, each processor finds the

The second scan of the database starts by building the lo-
cal headerless tree for each processor. From each tree the
local frequent path bases are generated1rthe frequent-
path-bases\BCDE, ABE, andAC DF with branch sup-

Algorithm 3 Parallel-HFP-Leap: Parallel-Leap-Traversal
with Headerless FP-tree

Input: D (transactional database);(Support threshold).
Output: Maximal patterns with their respective supports.

- D is already distributed otherwise partitidn between the available
p Processors;
- Each processap scans its local partitiorD,, to find the set of local
candidate 1-itemsets, C'1 with their respective local support;
- The supports of alL;C'1 are transmitted to the master processor;
- Global Support is counted by master afid is generated;
- F'1is broadcasted to all nodes;
- Each processq scans its local partitioD,, to build the local Head-
erless FP-tred.,, H F'P based orF'1;
- L, F PB « FindFrequentPatternBasés(H F' P);
- All L, F PB are sent to the master node ;
- Master node generates the glotéaP B from all L, F' P B;
- The globalF' P B are broadcasted to all nodes;
- Each Processqr is assigned a set of local header nodg$ D from
the globalF" P B; {this is the distribution of trees of intersectigns
for each: in LHD do
LOCALM azimals «— FindMaximals§' P B, o);
end for
- Send allLOC AL M aximals to the master node;
- The master node prunes &AIDC AL M aximals that have supersets
itemsets iNLOC AL M aximals to produceG LOBALM aximals;

- The master node outputsLO BALM aximals.

port equal to 1 are generate&2 generatesACDEF',
BCDF, BEF, and ABC DFE with branch supports equal

to 1 for all of them (Figure 1.B). The second set of mes-
sages is executed to send the locally generated frequént pat
bases taP1. Here, identical ones are merged and the final
global set of frequent path bases are broadcasted to all pro-
cessors with their branch support (Figure 1.C).

Each processor is assigned a set of header nodes to build
their intersection tree as in Figure 1.D. In our example, the
first, third, and sixth frequent path bases are assignéd to
as header nodes for its intersection trge2.is assigned to
the second, fourth, and fifth frequent path bases. The first
tree of intersection inP1 producesACDE, BCD, and
ABE, with support equal to 3, 3, and 3 respectively. The
second assigned tree produced F' with support equal to
3. P1 produces 4 local maximals which ai~, AE, BE,
CDF with support equal to 4, 4, 4, 3 respectiveB32 pro-
ducedCDF, BE, and AE with support equal to 3, 4, and
4 respectively. All local maximals are sent B in which
any local maximal that has any other superset of local max-
imals from other processors are removed. The remaining
patterns are declared as global maximals (Figure 1.E).
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Figure 1. Example of Parallel Leap Traversal:
Finding and intersecting the path-bases

4. Performance Evaluations

To evaluate our parallel leap-traversal approach, we
ducted a set of different experiments using a cluster n
of sixteen boxes. Each box has Linux 2.4.18, dual pro
sor 1.533 GHz AMD Athlon MP 1800+, 1.5 GB of RAN
Nodes are connected by Fast Ethernet and Myrinet -
networks. In this set of experiments, we generated syiat|
datasets using [10]. All transactions are made of 100
distinct items with an average transaction length of 12 &
per transaction. The size of the transactional databasek
varies from 100 million transactions to 1 billion trans:
tions.

With our best efforts and literature searches, we were
able to find a parallel frequent mining algorithm that co

mine more than 10 million transactions, which is far less
than our target size environment. Due to this large discrep-
ancy in transaction capacity, we did not compare our algo-
rithm against any other existing algorithm.

We conducted a battery of tests to evaluate the process-
ing load distribution strategy, the scalability vis-&\the
size of the data to mine, and the speed-up gained from
adding more parallel processing power. Some of the results
are portrayed hereafter.

4.1. Effect of load distribution strategy

We enumerated above three possible strategies for tree
of intersection distribution among the processors. As ex-
plained, the trees are in decreasing order of size and tiney ca
either be distributed arbitrarily using the naive appmac
more evenly using a round robin approach, or finally with
our suggested First-Last approach.

From our experiments in Figure 2 we can see that the
First-Last distribution gave the best results. This carubke j
tified by the fact that since trees are lexicographically or-
dered then in general trees on the left are larger than those
on the right. By applying the First-Last distributions we al
ways try to assign largest and smallest tree to the same node.
All our remaining experiments use the First-Last distribu-
tion methods among intersected trees.

01%

600 Support %

@ 10%

500 1% @ 10%)
0,

400 | 5% . D01% B 5%

) 5%
300 4 o108 | o

Time in seconds

Direct Round Robin
Distributions

First-Last

Figure 2. Effect of Leap node distributions

4.2. Scalability: Database size

One of the main goals in this work is to mine extremely
large datasets. In this set of experiments we tested the ef-
fect of mining different databases made of different trans-
actional databases varying from 100 million transactigns u
to one billion transactions. To the best of our knowledge,
experiments with such big sizes have never been reported
in the literature. We mined those datasets using 32 pro-
cessors, with three different support thresholds: 10%, 5%



and 1%. Figure 3.A shows the results of this set of experi- only a predefined set of candidate items and scans the en-
ments. While the curve does not illustrate a perfect lingari tire database, leading to prohibitive 1/O costs. In cases of
in the scalability, the execution time for the colossal oite b extremely large databases these algorithms collapse due to
lion transaction dataset was a very reasonable one hour anéxcessive 1/0 scans required of them. In general they are
forty minutes with a 0.01% support and 32 relatively inex- used to mine relatively small databases with limited mem-
pensive processors. We were able to mine one billion trans-ory bandwidth. Some of these algorithms are Data Distribu-
actions in 5020 seconds for a support of 0.1% up to 6100tion algorithm, Candidate Distribution algorithm [14],-In
seconds for a support of 0.01%. telligent Data Distribution algorithm [8].

Most of the above mentioned algorithms are based on
4.3. Scalability: Number of Processors the apriori algorithm[1], which requires multi-scan of the
database and a massive candidate generation phase. That is
To test the speed-up of our algorithm with the increase why most of them are not fully scalable for extremely large
of processors we fixed the size of the database to 100 mil-datasets.

lion transactions and examined the execution time on this o . : .
. A parallelization of the MaxMiner [3] is presented in [6].
dataset with one processor up to 32 processors. The ex-

ecution time is reduced sharply when two to four paral- The algorithm inherits the effective pruning of MaxMiner

. .~ . put also its drawbacks. It is efficient for long maximal pat-
lel processors are added then continues to decrease S|gn|*2 9 X

. . " : terns but not as capable when most patterns are short. It also
icantly afterward with additional processors (Figure 3.B) : . S
. requires multiple scans of the data making it inefficient for
The speedup was fairly acceptable as almost two folds were
i . . . extremely large datasets.
achieved with 4 processors, 4 folds while using 8 proces-

sors, and almost 13 folds while using 32 processors. This A PC-cluster based algorithm proposed in [13], derived

results are depicted in Figure 3.C. from the sequential FP-growth algorithm [9], exhibits good
load balancing. Being a non-apriori based approach, the
5. Reated work candidacy generation is significantly reduced. However,

node-to-node communication is considerable especially fo
sending conditional patterns. The algorithm displays good
In the realm of association rules, existing parallel fre- speedup, but on the other hand it does not scale to extremely
quent itemset mining algorithms are divided among two |arge datasets as the larger the dataset, the more coradition
parallel environments which have been described either as @atterns are found, and the more node-to-node communica-
single computer with multiple processors sharing the sametion is required.
address space (i.e. Shared Memory) or as multiple intercon- ) .
nected computers where each one has its own independent 'V'Y”ad shared me-mory-.based parallel frequent mining
local memory (i.e. Shared Nothing), or Distributed Memory algorithms are descrllb_ed in the literature such as Asyn-
[16]. In any of these environments distributed algorithms ch.ronous Pargllel Mining [4], Parallel Eplat, MaxEcIat,
are grouped into two main categories based on how candi-Cliaue, Max_Chque, TopDown, af‘d AprClique _algonth_m.f,
date sets are handled. Some algorithms rely on replica‘tion{f}lII reported in [12]. These algonthms are mainly apriorl-
of candidate sets while others partition the candidate set. ased ar?d syffer from expensive candidacy generation and
Replication is the simplest approach. In this approach thecommunlcatlon costs. Multiple Local Frequent Pattern tree

candidate generation process is replicated and the C@mthIgorlthm [18], which was among the first non apriori-

step is performed in parallel where each processor is as__based parallel mining algorithm, was our attempt paraheli

signed part of the database to mine. This method suffers"9 FP-grQWth. Such algorithms show good performance
mainly from three problems. First, not all local frequent while mining for frequ_ent patterns, bu_t (_jue 0 the nature
items are global frequent items, the “false positive phe- of Shafed memory environments with limited bus and com-
nomenon.” Second, not all non-local frequentitems are non-"o"N disks, they are not suitable to be scaled for extremely

global frequent items, the “false negative phenomenon.” Fi large dataset.

nally, it depends heavily on the memory size. The main  What distinguishes our approach from the afore men-
algorithms on this class are: Count Distribution algorithm tioned algorithms is the strategy for traversing the lattic

[14], Parallel Partition algorithm [15], Fast Distributistin- of candidate patterns. Candidate checking was significant|
ing algorithm [5], Fast Parallel Mining algorithm [5], P&ra  reduced by using pattern intersections and communication
lel Data Mining algorithm [11]. costs are condensed thanks to the self-reliant and indepen-

Partitioning Algorithms are the second type of parallel dent processing modules, and finally, the data structure we
algorithms that rely on the concept of partitioning the can- use and the approach of sharing tasks support a quasi de
didate set among processors. Here, each processor handléacto load balance.
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6. Conclusion

Parallelizing the search for frequent patterns plays an
important role in opening the doors to the mining of ex-
tremely large datasets. Not all good sequential algorithms

can be effectively parallelized and parallelization alime

[3] R. J. Bayardo.

Efficiently mining long patterns from

databases. IACM SIGMOD 1998.
D. Cheung, K. Hu, and S. Xia. Asynchronous parallel al-

gorithm for mining association rules on a shared-memory
multi-processors. IiProc. 10th ACM Symp. Parallel Algo-

rithms and Architectures, I\vﬁa'\?es 279 — 288, 1998,
D. W-L. Cheung, J. Han, V. Ng, A. W.-C. Fu, and Y. Fu.

A fast distributed algorithm for mining association rulés.

not enough. An algorithm has to be well suited for paral-
lelization, and in the case of frequent pattern mining,etev  [6]
methods for searching are certainly an advantage. The al-
gorithm we propose for parallel mining of frequent maxi-
mal patterns is based on a new technique for astutely jump-
ing within the search space, and more importantly, is com-
posed of autonomous task segments that can be performeds]
separately and thus minimize communication between pro-

huing an

E.-H. Han, G.
mining for association rules.

PDIS Bages 31-42, 1996. - .
S. M. d C.’Luo. Parallel mining of maximal fre-

guent itemsets from databases. 15th IEEE International

Conference on Tools with Artificial In,telligeBTcEOOS.
[7] A. Freitas. Survey of parallel data mining.

Conf. on the Practical Applications of Knowledge Discovery

and Data Mining pages 287-300, January 1996.
arypis, and V. Kumar. Scalable parallelada

Im ACM SIGMOD Conf.

oc. 2nd Int.

cessaors.

Our proposal is based on the finding of particular pat-
terns, called pattern bases, from which selective jumps in[ ]
the search space can be performed in parallel and indepenp1]
dently from each other pattern base in the pursuit of maxi-
mal patterns. The success of this approach is attributed t
the fact that pattern base intersection is independent an
each intersection tree can be assigned to a given processor.
The decrease in the size of intersection trees allows a fair
strategy for distributing work among processors and in the [13]
course reducing most of the load balancing issues. While
other published works claim results with millions of trans-
actions, our approach allows the mining in reasonable time
of databases in the order of billion transactions using-rela
tively inexpensive clusters; 16 dual-processor boxes in ou [15]
case. This is mainly credited to the low communication cost.
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