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Abstract

The function of proteins in the living cells varies with
respect to their localizations. Extracellular plant proteins
are responsible for vital functions such as nutrition acquisi-
tion, protection from pathogens, communication with other
soil organisms, etc. Hence, characterizing these proteins
and distinguishing them from intracellular proteins is of
high interest to biologists. Nonetheless, the small number
of available extracellular proteins for training makes clas-
sifying them difficult and challenging. This work focuses on
distinguishing extracellular proteins using partition-based
subsequences, i.e., subsequences of amino acids in special
partitions within the protein sequences. The use of an as-
sociative classifier in this work helps to acquire a set of ac-
curate, small and interpretable localization rules that can
be used for further biological analysis. The achievement
of 98.83% F-Measure for identifying extracellular proteins
shows the appropriateness of the selected features and the
classification method.

1 Introduction

Proteins are one of the main structures of the living
cells that conduct different processes and functions in the
cell. Proteins are linear sequences of amino acids, and
so far twenty amino acids have been identified in the na-
ture. These amino acids are coded by twenty alphabetic
characters [5]. Therefore, proteins can be considered as
character strings of different length varying from 41 amino
acids or less, for a mitochondrial protein, to 3705 or more,
for an outer membrane protein. Biological experiments
indicate that amino acid sequences encode information
about protein structures, functions, localizations,etc.Many
datasets of raw biological sequences are collected through
genome sequencing projects, and are publicly available for

researchers.
One of the important problems in the biology commu-

nity is the functional classification of proteins based on their
structures, localizations, or other properties. In order for
proteins to accomplish a specific function, they localize in
different locations inside the cell and sometimes they are
transported to the extracellular space. There is a variety of
localization sites within plant cells such as nucleus, mito-
chondria, cytoplasm, membrane,etc. that are generally re-
ferred to as intracellular (IC) localizations. When outside
the cell, we refer to them as extra-cellular (EC). Protein
sub-cellular localization is the key characteristic to study the
function of proteins. In plants, EC proteins are responsible
for vital functions such as ”nutrition acquisition, communi-
cation with other soil organisms, protection from pathogens,
and resistance to disease and toxic metals” [25]. Therefore,
they are of high importance for the cells and are a target
of analysis in the biology community. Herein, we particu-
larly focus on characterizing and predicting EC proteins by
learning and classifying proteins to EC or IC locations.

Localization of proteins has been a research interest for
bio-informaticiens and machine learners for some time, but
it is a challenging problem mainly due to the lack of train-
ing data, and when data exists, to severe imbalance in the
training data. Another difficulty is the identification of ap-
propriate features in the data to accurately localize proteins.
Some have used simple distribution of amino acids (i.e.,
protein composition), subsequences, special signatures or
combinations. In this paper we introduce the idea of tak-
ing advantage of partitioning sequences of amino acids and
identifying the relevant partition where some subsequences
occur. These partitions appear to have discriminative power
with regard to localization of proteins.

To do so, we transform the proteins that are originally
represented as strings of amino acids into sets of frequent
motifs extracted from these strings. Motifs are subse-
quences of amino acids that are frequently occurring in the
collection. Then, proteins are partitioned in equal parti-
tions and each motif in a protein is labeled by the parti-



Figure 1. Structure of Protein [1]. The loca-
tions that may interact due to their close dis-
tance are circled.

tion in which it occurs. This is more complex than it ap-
pears, since each protein has to be expressed by some iden-
tified motifs, and identifying all partitions where motifs oc-
cur, given different partitioning intervals, is a hard problem.
These features (i.e., motif and partition pairs) are frequent
subsequences associated with their discriminative partitions
along the protein sequence, which we call Partition-Based
Subsequence (or PBS). They constitute our input for classi-
fying proteins.

Our inspiration comes from the following observation.
Proteins are of complicated shapes in 3-dimensional space.
At this level, proteins of the same class may present
higher similarity than at the simple level of amino acid se-
quences [19]. On the other hand, it is difficult to charac-
terize the 3-D specifications of proteins. Discovering the
special regions of protein structures where frequent subse-
quences appear most may encode significant information
about the structure of proteins. For example, EC proteins
may be folded such that some regions may have biochemi-
cal effects on each other due to their close distance (as Fig-
ure 1 illustrates). Such effects may cause special patterns
to be formed in these regions. This is what motivated us to
discover subsequence patterns that are frequent in special
regions of protein sequences.

We use an associative classifier to predict EC proteins.
The reason for our choice is that associative classifiers con-
struct an interpretable rule-based model that can be used for
further biological analysis. As the popularity of SVM’s [15]
is increasing in the biological data mining field, we also
compare our results with those of SVM. Our experiments
on a biologically verified dataset, show that the localiza-
tion prediction is more accurate when PBS features are used
rather than simple subsequences. Moreover, it is shown that
associative classifier on such feature datasets predicts the
localization of proteins better than the state-of-the-artalgo-
rithms.

The rest of the paper is organized as follows: Section 2
is a review of the related work. Section 3 explains the al-
gorithm of mining discriminative frequent partition-based
subsequences. In section 4 the associative classifier for the

special case of our problem is explained. Experimental re-
sults are discussed in section 5, and finally section 6 con-
cludes the paper.

2 Related Work

Several approaches have been proposed to predict differ-
ent protein localizations. These approaches differ in the fea-
tures and the classification methods they have used. Gener-
ally these works can be grouped in five different categories.

For some specific cell locations, it has been shown that
N-terminal signals direct proteins to their localization sites.
Signals are “short subsequences of approximately 3 to 70
amino acids and can be identified by looking at the primary
protein sequence” [23]. SignalP [10] and ChloroP [16]
identify these signals by means of neural networks. Tar-
getP [17] integrates the last two algorithms with some ex-
tension to predict four different localizations. The highest
reported overall accuracy for these locations among these
three tools is 90% which is the result of TargetP for non-
plant proteins.

Textual annotations of a protein, which is available in
SWISS-PROT [4], can also be used to predict protein lo-
calization. Based on lexical analysis, keywords from the
textual annotations of homologous proteins are extracted.
Then, a protein is represented in terms of the keywords
that are contained within the annotation of the protein. Us-
ing these features, LOCKey [18] employs Multiple category
classifiers and PA-SUB [23] uses different classifiers (Naı̈ve
Bayes as its default classifier) for sub-cellular localization
prediction. PA-SUB with the overall accuracy of about 98%
outperforms LOCKey.

It has been shown that EC and IC proteins differ in their
amino acid compositions [9],i.e., the relative frequency of
the twenty amino acids in the sequence of a protein. Based
on protein composition, predicting subcellular localization
has been done by applying statistical analysis-based algo-
rithms [9, 11, 13], SVM [20], Neural Networks [3], Markov
chain models [24]. Among these approaches, the SVM-
based method has reported the highest overall accuracy of
91.4% on prokaryotic proteins.

Frequent subsequences within proteins are other features
used for subcellular localization. Afrequent subsequence
is a consecutive series of amino acids that appear in more
than a certain number of proteins of a specific class. In
this context, proteins are represented in terms of frequent
subsequences that they contain. Zaı̈aneet al. [25] used
such features and applied SVM and boosting methods to
predict EC localization. They have achieved the F-Measure
of 80.4% with boosting. In another effort, they have used
discriminative frequent sequential patterns as rules [25]. A
frequent sequentialpattern is of the form∗X1 ∗ X2 ∗ ... ∗
Xn∗ whereXi is a frequent subsequence and∗ represents a

2



variable-length-don’t-care. The same method for localizing
outer membrane proteins has been used by Sheet al. [19].
Their approach suffers from low recall although they have
achieved high precision.

The last category of approaches is the combination of
different methods. Zaı̈aneet al. [25] have applied the
boosting methods with the combination of frequent sub-
sequences and amino acid compositions to predict EC lo-
calization. The F-Measure of their algorithm is 83.1% on
plant proteins. With SVM as the learning algorithm, Li
and Liu [21] predict protein locations by combining N-
terminal signals and amino acid compositions. Their high-
est achievement is 91.9% overall accuracy on non-plant pro-
teins. Höglundet al. has achieved the overall accuracy of
more than 74% by combining N-terminal signals, amino
acid compositions and sequence motifs [2]. PSORT [12],
probably the most complete tool for predicting many differ-
ent localization sites, integrates various statistical methods
and classification algorithms. However, its overall accuracy
is less than 66%.

The approach we propose is different from the above in
some aspects. First, most of these methods are for predict-
ing different sub-cellular localizations while we only focus
on a two-class problem of EC and IC localization predic-
tion. Second, most of them use the overall classification ac-
curacy for evaluation, while in our case where only 4% of
the data is EC, a classifier that always classifies as IC will
achieve an overall accuracy of at least 96%. For evaluation
we use the F-measure instead. Finally, by partition-based
subsequences, we probably indirectly exploit information
about the folded structures of proteins in our prediction,
something that is not considered in the mentioned works.

3 Subsequence Based Feature Extraction

Proteins should be re-expressed in terms of their features
extracted from the sequence of amino-acids. The features
that we focus on in this paper are based on frequent subse-
quences or motifs because:

• “Common subsequences among related proteins may
perform similar functions via related biochemical
mechanisms” [19] and are of great interest to biolo-
gists.

• “Frequent subsequences capture local similarity that
may relate to important functional or structural infor-
mation of extracellular proteins” [22].

In mining discriminative features (patterns) for a class
C of proteins, a “frequent pattern” refers to a pattern that
occurs in more than a certain fraction (MinSup) of proteins
of classC. The confidence of such a pattern (discriminative

Figure 2. The GST of three strings: 1) JKLMK,
2) JKDL, 3) MEJK

of classC) is:

Confidence(M) =
frequency of M in class C

frequency of M in both classes
(1)

The less a pattern appears in the other class, the higher
its confidence is. If the confidence is more than a certain
threshold (MinConf ), it is called “discriminative”.

The ability of frequent subsequences to discriminate EC
and IC proteins has been already studied [25]. However,
we believe that the presence of a subsequence in special
partitions of protein sequences might be more discrimina-
tive than the subsequence itself. For example,“ACDE”
may be a frequent subsequence among both IC and EC pro-
teins, thus is not distinguishing. Nonetheless,“ACDE”
may appear in the first half of EC protein sequences while
in IC proteins it may occur in the second half of the se-
quences. Here the association of“ACDE” and its re-
spective location along proteins is a discriminative pattern.
Such a pattern is called “Partition-Based Subsequence”, or
in short PBS. PBSs are the generalized form of simple sub-
sequences. Simple subsequences are the PBSs whose parti-
tion is the whole protein.

If a PBS is frequent, its subsequence regardless of parti-
tion is more (or equally) frequent. Thus, to find frequent
PBSs, frequent subsequences should be mined first. To
mine frequent subsequences, there are algorithms based on
the Generalized Suffix Tree of protein sequences (GST) [8].
Figure 2 shows the GST of three strings. As this figure
shows, edges are labeled with character strings and leaf
nodes are associated with an index. The concatenation of
edge labels from the root to a leaf node with indexi is a
suffix of the ith string. Each internal node stores the fre-
quency of the substring which is constructed by concate-
nating the edge labels from the root to that node. There
are efficient algorithms for online construction of GST in
linear time [8]. After the GST is constructed, frequent sub-
sequences are mined through a single traversal of the tree.
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Mining frequent subsequences does not guarantee that
all the proteins contain at least one of the subsequences.
A protein that can not be expressed by any of the fre-
quent subsequences is calledsilent. To avoid silent proteins,
MinSup should be set to a low value. On the other hand,
low frequency leads a huge number of subsequences, which
adds complexity to the classification later. Even for small
MinSup values, ifMinLen (minimum length of motifs)
is not short enough,i.e., in our case less than 4, silent pro-
teins are still observed. Because of the imbalance between
the two classes, short motifs that appear in the smaller class,
i.e., EC, also appear in the larger class,i.e., IC. Therefore,
short subsequences cannot be discriminative. Considering
the partitioning of protein sequences for motif occurrences
is a solution to resolving silent proteins.

Since proteins differ greatly in length, the partition
should be defined relative to the length (partition-based)i.e.,
a protein sequence is divided into 2, 3 or more equal parti-
tions. The presence of frequent subsequences in different
partitions is investigated. If protein sequences are assumed
to be divided intoP partitions, the presence of a subse-
quenceS in thei’th partition of proteins, where1 ≤ i ≤ P ,
is denoted bySi/P . The problem is to find subsequencesS
with their particions,i.e.,values fori andP , such thatSi/P

is frequent and discriminative with respect toMinSup and
MinConf .

In other words, our approach looks at a partition of
100%, then two partitions of 50%, then three partitions of
33% and so on. To explain the algorithm of mining PBSs,
a Partition-Frequency Table of a subsequenceS should be
defined first. In this table, theP ’th row is an array of
length P . The value in rowP and columni indicates
frequency(Si/P ). The first row of this table shows the
frequency of subsequenceS where each protein is consid-
ered as only one sequence (no partitioning). The last row of
this table is related to partitioning proteins to a maximum
number, namelyMaxPart, which is given by the user. If
MaxPart is chosen to be 3, for example, each frequent
subsequence possesses a Partition-Frequency Table which
is filled as Figure 3 illustrates.

frequency(S)
frequency(S1/2) frequency(S2/2)
frequency(S1/3) frequency(S2/3) frequency(S3/3)

Figure 3. Partition-Frequency table of a sub-
sequence S where partitioning proteins to 1,
2, and 3 is investigated (MaxPart=3)

After this table is filled with frequencies, the partitions
with enough frequency make a frequent PBS. Filling in any
slot of this table for all frequent subsequences is a complex
task. However, there is no need to fill the whole table. In-
deed, if processed top-down, some partitions can be ignored

0 1 2

.... ....

........

0 1 2

P

Q

i−1

j−1 j

i

Partition i / P

Partition j / Q

Protein Sequence

Figure 4. Illustration of Equation 2

if their subsuming partition already indicates infrequency.
For example, partition 1/2 (first half) encompasses partition
2/4 (second quarter). Therefore, if a subsequenceS is not
frequent in the partition 1/2, it cannot be frequent in parti-
tion 2/4. Assuming thatSi/P is not frequent,Sj/Q is also
infrequent for all smaller partitionsj/Q that:

Q > P And
i − 1

P
≤

j − 1

Q
And

j

Q
≤

i

P
(2)

After a frequent PBSSi/P of classC is found, its oc-
currence in the proteins of the other class is counted and
then its confidence is computed using Equation 1. If the
confidence is less than aMinConf , the PBS is considered
non-discriminative and is removed. In addition, some other
filtering techniques are applied because of the large number
of frequent discriminative PBSs. To filter PBSs, each pro-
tein is restricted to pick onlyN number of best PBSs that
match with it. If a PBS is not selected by any protein, it is
removed.

For selecting itsN best features, a protein ranks its
PBSs based on different metrics. In our approach, confi-
dence, length and frequency are respectively the primary,
secondary and final ranking metric. For example, between
two PBSs with equal confidence, the longer one has a higher
rank. Other metrics and priorities can be set by the user de-
pending on the importance of feature properties.

In order to analyze the effect of different partitions on the
discriminative power of features,MaxPart is considered
as an input parameter in this paper. However,MaxPart
can be set automatically: Starting from a frequent subse-
quenceS, i.e., S1/1, if a frequent PBSSi/p reaches the
confidence of 100%, all its sub-partitions do not need to be
considered. For example, ifS1/2 is 100% confident,S2/4

is also of the same confidence but with less frequency. Top-
down partitioning continues until all the mined PBSs at the
last partitioning are either infrequent or 100% confident.

As the discriminative and frequent PBSs are mined, the
feature dataset is constructed in the form of a transactional
dataset. Each protein is represented by a transaction with its
PBSs as items. Henceforth, we refer to PBSs and proteins
as items and transactions.
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4 Associative Classifier

An associative classifier [14] integrates methods for as-
sociation rule mining and classification. The input is a
transactional dataset and the output is a set of rules of the
form X ⇒ C, where X is a frequent itemset (a PBS
set in our case) andC is a cell location. Thus, finding
classification rules for a classC includes discovering fre-
quent itemsetsX with a support greater than a threshold
(MinSup), and then pruning rules based on a confidence
threshold (MinConf ) and some other criteria. Support of
a ruleX ⇒ c is the fraction of proteins from classC that
can matchX . The confidence of this rule is similar to Equa-
tion 1.

Building an Associative Classifier (Training
Phase)

In our feature dataset there is a large number of proteins
with long transactions. For example, with the combination
of parameters that gave us the best prediction, the transac-
tions representing proteins averaged a length of 55 and al-
most 10% of the transactions had a length between 350 and
550 PBSs, which is remarkably long. In such situations, so
many frequent itemsets (potential rules) are mined that the
classification algorithm has to consider effective means of
selecting appropriate classification rules. Moreover, before
rule pruning, excessive memory is required.

A discovered frequent itemsetX from a classC directly
corresponds to the ruleX ⇒ C. As explained below each
frequent itemset is potentially abridged, then the rule con-
fidence is used to prune those rules that are less confident
thanMinConf . Other pruning strategies can be applied.

4.1 Abridging Itemsets

Itemsets could be redundant and a simplification of some
itemsets can be helpful. Abridging consists of eliminating
from an itemset any item that is already represented. In
our context, items are motifs. In other words, If a motif is
represented by another super-motif in the same itemset, the
motif can be removed. IfM1 is a submotif ofM2 (M2 is
called super-motif) and is writtenM1 � M2 if and only if
all the proteins that matchM1, also matchM2. For ex-
ample,”JKLM”1/4 � ”KL”1/2: a protein containing
”JKLM” in its first quarter has trivially contained”KL”
in the first half.

The definition of sub-motif is as follows:
T j/Q � Si/P ⇔ S is a subsequence ofT , and partition

i/P surrounds partitionj/Q, i.e.,

Q ≥ P And
i − 1

P
≤

j − 1

Q
And

j

Q
≤

i

P

Therefore, if the predicate of a rule contains two motifs
M1 and M2 whereM1 � M2, the rule is simplified by
removingM2. For example
”KL”1/2, ”JKLM”1/4 ⇒ EC is simplified to
”JKLM”1/4 ⇒ EC.

4.2 Computing the Confidence of a Rule

The confidence ofX ⇒ C, whereX is an itemset, de-
pends on the frequency ofX in both classes. The frequency
in classC is available as soon asX is mined as a frequent
itemset of classC. The important issue is counting its fre-
quency in the other class. For fast and efficient computation
of this frequency, the following approach is used:

1. All the items (PBSs) are coded to unique numbers. The
feature dataset is then transformed in transactions of
numerical items.

2. Items in each transaction are sorted in the increasing
order.

3. Transactions of each class are inserted into two Trie
structures, namelyTrie{EC} andTrie{IC}. The in-
ternal nodes in such a trie store the items. The direct
path from the root to a leaf node is equivalent to an
itemset. For computational efficiency, the number of
leaves of the sub-trie rooted at a nodem is also stored
in nodem.

4. Whenever an itemsetX of classC is generated, we
sortX in the increasing order of its items.

5. Find all the nodesn of Trie{other class} that match
the first item inX . Rooted at nodesn, traverse (Depth-
First) the sub-tries to find the matches withX . When-
ever X matches the trie at a nodem, the algorithm
counts the number of leaves of the sub-trie rooted at
nodem (which is stored in nodem) and stops travers-
ing deeper down the nodem, and tries matchingX
with other branches. For fast finding of Nodesn,
which match the first item ofX , we use a list, called
header list, which contains all the items in the trie. By
following the pointers from an itemI in the header list,
we can find all the occurrences (matches) of itemI in
the trie. Figure 5 shows how a trie represents transac-
tions.

4.3 Pruning the Rules

The minimum confidence requirement (MinConf )
prunes many rules. However, the number of confident rules
is still large and some other pruning techniques are required:
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Localization Transaction
IC 1, 2
IC 1, 3
IC 3, 4
IC 3, 4, 5, 6
IC 3, 4, 5, 7
IC 3, 5

(a) Feature dataset of EC proteins

(b) Trie{IC}

Figure 5. The Trie representation of IC protein transaction s

1. If the confidence of a rule,X ⇒ C, reaches 100%, any
expansion of its predicate results in a rule with 100%
confidence too,i.e.,X∪Y ⇒ C, conf = 100%, where
X and Y are two disjoint itemsets andC is a class
label. In this case, keeping the first rule suffices, and
any other expanded rule is not useful. This technique
prunes many rules on the fly especially using a depth-
first search of the itemset lattice. Indeed, expansions
of a rule fall in the deeper levels of the lattice, and thus
we can stop going deeper in the recursion path as soon
as we finds a 100% confident rule.

2. If R is a rule with confidenceconf , all the sub-rules
of R with confidence less thanconf should be pruned.
R1 is a sub-rule ofR2 (R2 is called super-rule) and
is written R1 ⊑ R2 if and only if any protein that
matchesR1 can also matchR2 (i.e., R2 is more gen-
eral), further,R1 andR2 should imply the same class.
In other words ifR1 is:

n1, n2, . . . ni ⇒ C with conf = α

andR2 is:

m1, m2, . . .mj ⇒ C with conf = β

ThenR1 ⊑ R2 if and only if:

(a) i ≥ j, i.e., the length of a sub-rule can not be less
than that of its super-rule.

(b) For each itemmb (1 ≤ b ≤ j), there must be an
item na (1 ≤ a ≤ i) such thatna � mb. i.e.,at
least one sub-motif of eachmb must be found in
the sub-rule.

Therefore,R2 is a more general rule and ifα ≤ β then
R2 is much worth keeping rather thanR1. For example
supposeR1 is:

”JKLM”2/4, ”PQRST ”4/5 ⇒ EC with conf = 60%

andR2 is:

”KL”1/2 ⇒ EC with conf = 90%

R1 should be removed andR2 kept because
”JKLM”2/4 � ”KL”1/2.

When a new rule is to be added in a rule set, this rule has
to be compared to all the older rules. Any older rule that is a
removable sub-rule of the new rule, is removed. If the new
rule is a removable sub-rule of any older rule then it is not
added in the set. The data structure used for this rule set is
also a Trie similar to Figure 5.

Evaluating Associative Classifier (Testing
Phase)

Given an unknown proteinP , a set of rules can match
P when the antecedent of a rule applies for the PBSs rep-
resentingP . These rules can localize the protein as EC or
IC. To decide between the two classes, the average confi-
dence of the matching rules of each class is considered. The
class with the highest average confidence is the class label
assigned toP . There is an exceptional case for which con-
fidence averaging is not used. Whenever a rule with 100%
confidence matches a test proteinP , P is assigned the class
label of that rule as long as there is no other 100% confident
rule of the other class.

In few cases, a test protein cannot match any rule from
any class. Such a protein is calledUndecidedand is de facto
classified as EC, the rare class. The reason is that the large
community of IC proteins is more likely to include enough
samples from different distributions of IC proteins. Thus,
IC proteins are well learnt by the classifier and are not left
undecided. In contrast, the small volume of EC proteins
lacks enough samples to lead the classifier to learn the pat-
terns of EC proteins. Hence, it is more likely for an unde-
cided protein to be EC.
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To strengthen our argument, we clustered all the proteins
in our training set (after stripping them from their labels)
and identified outliers. The pattern of an outlier is very
infrequent as it belongs to no cluster and is not learnt by
the classifier. Revealing the labels demonstrated that most
of these outliers were in fact EC. Thus, undecided proteins
should be, and are, classified as extracellular.

5 Experimental Results

In this section, we evaluate the discriminative power of
partition-based subsequences to predict the two subcellular
localizations: EC and IC. The main classification algorithm
that has been the focus of this work is the associative clas-
sifier. However, because of the growing interest in SVM
and its strong ability to classify high dimensional data, we
compare our results with those of SVM.

5.1 Dataset and Evaluation Methodology

We performed our method on a plant protein dataset
from Proteome Analyst Project [23] at the University of Al-
berta. The dataset is constructed from SWISS-PROT. After
cleaning the data,i.e., removing repetitive or defected pro-
teins which contain nonexistent amino acids, 3149 proteins
remained, 4% of which are EC proteins.

To evaluate the performance of classifiers,Overall Ac-
curacyis often used. However, this is usually inappropriate
particularly with imbalanced data. In our case with 96% of
proteins being IC, a classifier that always classifies as IC
achieves the overall accuracy of 96% while no EC proteins
are correctly classified. Instead, we use precision, recalland
F-measure with respect to EC (i.e., the target class). Based
on the confusion matrix shown in table 1, Precision(P), Re-
call(R) and F-Measure (a harmonic average of precision and
recall) of EC prediction are defined as:

P =
TP

TP + FP
, R =

TP

TP + FN
, FMeasure =

2PR

P + R

Actually EC Actually IC
Predicted as EC TP FP
Predicted as IC FN TN

Table 1. Confusion Matrix

To have a more reliable evaluation, all the classification
experiments are based on a 3-fold cross validation. The
dataset is divided into three equal parts (folds) such that
the distribution of EC and IC proteins in each fold does not
change. Each run takes two folds for training and the other

fold for testing. In the end, the f-measures from each run are
averaged as EC prediction f-measure. To be fair, the exact
same folds are used for both classifiers: Ours and SVM.

5.2 Mining Frequent Partition-Based
Subsequences (PBS)

Mining frequent PBSs depends on the parametersN ,
MinConf , MinSup, MaxPart (max. number of par-
titions) andMinLen (min. length of subsequences). A
proper setting for these parameters should preventsilent
proteins. MinLen and MinSup are the most sensitive
parameters, because lengthiness and high frequency could
overshadow short and less frequent motifs that are actually
discriminating and expressing those silent proteins. For the
other parameters, we use the following setting:

• N = 1: Each protein selects its top best PBS. The
larger theN , the longer the transactions in the feature
dataset and the harder their classification.

• MinConf = 50%: If the confidence of a PBS is less
than 50%, it is useless because it is more frequent in
the other class.

• MaxPart = 10: MaxPart was initially set to 10
(i.e.,partitioning to 1 (no partitioning), 2, ... up to 10).
Based on further experiments that are discussed in sec-
tion 5.3, we found out that 9 is a good value. However,
MaxPart of 9 and 10 generate such very close re-
sults that the experiments forMaxPart = 9 is not
illustrated in the paper.

Figure 6 demonstrates the effect ofMinSup and
MinLen on the number of silent proteins in EC and IC
classes. Note thatMinSup starts from 2% because less
than this value is equivalent to the absolute frequency of
1 for the 127 proteins of EC class, which is meaningless.
Based on Figure 6, atMinLen = 3 no silent protein is
found for differentMinSup values. Selecting the best
MinSup, whereMinLen is fixed to 3, is based on the
length of subsequences. The longer subsequences convey
more information and are preferred. Figure 7 plots the aver-
age length of EC and IC frequent subsequences in the mined
PBSs. It shows that increasingMinSup results in shorter
subsequences as they are more frequent than long ones. At
MinSup = 2%, longer subsequences are mined, however,
we chooseMinSup = 3% because 2% is a very low sup-
port (would mean an absolute frequency of 2 for EC). More-
over, atMinSup = 3% the average length of subsequences
in both classes agree.

Therefore,MinSup = 3% andMinLen = 3 are the
best settings. With the parameters set as mentioned, a fea-
ture dataset with very long transactions is produced. Table2
shows some statistics about the feature dataset.
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(b) IC Silent Proteins

Figure 6. Percentage of silent proteins for different min. s upport and min. length

Total # of PBSs Min-Trans-Len Max-Trans-Len Ave-Trans-Len
738 1 553 54.24

Table 2. The number of PBSs, and the size of
transactions in th feature dataset

5.3 Associative Classifier

We used an efficient, publicly available implementations
of Eclat algorithm [6] to mine frequent itemsets. Eclat uses
a depth-first traversal of the itemset lattice.

The feature dataset we mentioned in 5.2 is used for clas-
sification. The result of the classifier is expected to depend
on parametersMinSup andMinConf . However, the ex-
periments showed thatMinConf does not influence the
accuracy of EC prediction. The reason is that PBSs are so
discriminative that each individual PBS of a class is a rule
of size 1 with the confidence equal or very close to 100%.
Based on our pruning techniques, 100% confident rules do
not expand to longer rules, and the other individual PBS
rules with confidence close to 100%, do not reach a higher
confidence in association with other PBSs in most cases.
Thus, the expansion of such rules is also pruned. What re-
mains is the population of rules of size 1 as well as very
few longer rules, all with very high confidences. This is
why MinConf is ineffective. Table 3 shows that regard-
less ofMinConf , the minimum support of 2-3% results in
98.83% EC prediction accuracy (F-Measure).

However, we cannot claim that the best parameter values
are found. In fact, the effect ofMaxPart on the predic-
tion of EC proteins is not considered yet. We built differ-
ent feature datasets withMaxPart ranging from 1 to 14.
Then, the classification on the dataset derived from each
MaxPart setting is evaluated. Figure 8 shows the com-
parison of the highest F-Measure of the classifiers trained
on the datasets related to differentMaxPart values. Ac-
cording to the diagram, as more partitions along protein se-

MinSup of Rules
2% 3% 4% 5%

Average Precision (%) 97.71 97.71 83.39 80.06
Average Recall (%) 100 100 100 100

Average F-Measure (%) 98.83 98.83 90.69 88.74

Table 3. Evaluation of associative classi-
fier wtih different minimum supports (3-fold
cross validation)

quences are considered, the power of PBSs to discriminate
the two classes becomes higher. Moreover, beyond 9 parti-
tions, we observe no increase in the F-Measure.

Note that withMaxPart = 1, no partitioning is per-
formed on the sequences. Therefore, PBSs are exactly the
same as discriminative frequent subsequences regardless of
their location along the sequences. For such features, the F-
Measure of 96.16% is achieved, which clearly outperforms
the F-Measure of 83.1% of the state-of-the-art algorithm for
EC localization prediction [25]
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Figure 7. Average length of subsequences in
the PBSs mined for proteins of each class
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Figure 8. The effect of different partitionings
of PBS mining on the prediction accuracy (F-
Measure)

5.4 SVM-based Classifier

With data represented as vectors in the multi-
dimensional feature space, SVM [15] finds the hyperplane
that best separates instances of two classes. The hyperplane
divides the feature space into two sub-spaces each for one
class. Unknown data is simply classified based on the sub-
space it is located in.

To use SVM, our feature dataset, which obtained the best
result with our approach, is transformed from transactional
to a relational dataset with a fixed dimensionality (738).
This is simply done by creating a matrix in which each col-
umn represents a PBS, and each row represents a protein as
a binary vector.

We used LIBSVM, an available implementation of
SVM [7]. In SVM, there are two important parameters to
be set: the kernel function and the parameterC (Cost). Ta-
ble 4 shows the F-Measures obtained from different param-
eter settings. The highest F-Measure of 84.87% is achieved
by using Radial Basis Function kernel withC = 1000. Note
that polynomial kernel function (degree 2 and 3) was also
tried but it could never predict EC proteins.

F-Measure
Linear Kernel Sigmoid Kernel Radial Basis

Function kernel
C = 1 85.1 4.58 0
C = 10 84.49 4.58 4.58
C = 100 84.49 4.58 71.70
C = 1000 84.49 4.58 84.87

Table 4. SVM Classification using different
Kernels

6 Conclusion

In this paper, we proposed a new discriminative feature
for predicting extracellular proteins. Partition-Based Sub-
sequences have strong ability to discriminate between the
proteins of different localizations. Moreover, they seem
to encode more information about the structure of proteins
by showing the regions along the protein sequences where
special subsequences appear most. We applied an asso-
ciative classifier on the feature datasets. With some short,
interpretable and highly confident rules, the F-Measure of
98.83% for predicting extracellular proteins was achieved,
significantly above the current state-of-the-art. In our case,
associative classifier outperforms SVM on the same feature
space with a large difference in the F-Measure. The ap-
plication and evaluation of our approach on other protein
localizations remain as a future work
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