
Finding Similar Queries to Satisfy Searches based on
Query Traces

Osmar R. Zaïane1 Alexander Strilets1

1 University of Alberta, Edmonton, Alberta, Canada T6G 2E8
{zaiane, astrilet}@cs.ualberta.ca

Abstract. Many agree that the relevancy of current search engine results
needs significant improvement. On the other hand, it is also true that finding
the appropriate query for the best search engine result is not a trivial task. Of-
ten, users try different queries until they are satisfied with the results. This
paper presents a method for building a system for automaticall y suggesting
similar queries when results for a query are not satisfactory. Assuming that
every search query can be expressed differently and that other users with
similar information needs could have already expressed it better, the system
makes use of collaborative knowledge from different search engine users to
recommend new ways of expressing the same information need. The ap-
proach is based on the notion of quasi-similarity between queries since full
similarity with an unsatisfactory query would lead to disappointment. We
present a model for search engine queries and a variety of quasi-similarity
measures to retrieve relevant queries.

1 Introduction

Many commercial search engines boast the fact that they have already indexed
hundreds of milli ons of web pages. While this achievement is surely remarkable, the
large indexes without doubt compromise the precision of the search engines adding
to the frustration of the common users. Many agree that the relevancy of current
search engine results needs significant improvement. Search engines present users
with an ordered and very long li st of websites that are presumably relevant to the
query specified based on criteria specific to each different search engine. Users
typicall y consult the first ten, twenty or maybe thirty results returned and give up if
relevant documents are not found among them. Results are normally ranked by
relevance, which is calculated based mainly on the terms present in the query and
not necessaril y on the semantics or meaning of the query. Some Search engines li ke
Google [2] use the notion of incoming and outgoing hyperlinks from documents
containing the query terms to rank the relevant URLs [1]. It remains, however, that
these li sts are too long to browse. While users are at the mercy of the result ranking
procedure of the search engine, they are also constrained by the expressiveness of
the query interface, and often have diff iculty articulating the precise query that

could lead to satisfactory results. It happens also that users may not exactly know
what they are searching for and thus don’ t know how to effectively express it and
end up selecting terms for the search engine query with a trial and error process.
Indeed, often users try different queries until they are satisfied with the results. If the
results are not satisfactory, they modify the query string and repeat the search proc-
ess again. Many commercial search engines provide possibiliti es to narrow searches
by either searching within search results or augmenting a query to help users narrow
their search [8]. However, these query augmentations just append terms to the exist-
ing terms in the query. For example a search on AltaVista with the term “avocado”
leads to the following suggestions: avocado trees, growing avocados, avocado reci-
pes, avocado oil , avocado plant, etc. This is comparable to our first quasi-similarity
measure presented below. We call this method the “Naïve approach” because it
simply looks in the query trace for queries having terms similar to the terms in the
current query. In other words, it considers only the terms in the queries and simply
performs intersections (see below). This example, however, shows that it is conceiv-
able that more than one user would send a search query for a similar need and it is
possible that these queries are differently expressed. A study by Markatos shows that
many queries sent to a search engine can be answered directly from cache because
queries are often repeated (by presumably different users). The study reports that 20
to 30% of queries in an Excite query trace with 930 thousand queries, were repeated
queries [6]. A similar study using AltaVista query logs demonstrated that each query
was submitted on average four times. This average is for identical queries not taking
into account upper/lower case, word permutations, etc. This justifies the assumption
that when one user submits a query to a search engine, it is highly li kely that another
user already submitted a very similar query. The queries can be identical as found
and reported by the studies mentioned above, or articulated differently with different
terms but for the same information needs. This is the major argument to put forward
the idea of using query collective memory to assist individual users in articulating
their information needs differently by suggesting quasi-similar queries. We define
quasi-similarity in the next section.

The idea of tapping into the collective knowledge of users, embodied as a set of

search queries, is not new. Fitzpatrick et al. studied the effect of using past queries
to improve automatic query expansions in the TREC (Text REtrieval Conference)
environment [4]. The idea is that top documents returned by the query from a pool
of documents are also top documents returned by similar queries and are good
source for automatic query expansions. They compared the performance of this
method against the unexpanded baseline queries and against the baseline queries
expanded with top-document feedback. The authors present a query similarity met-
ric that empiricall y derives a probabilit y of relevance. They also introduce the no-
tion of threshold to control on per query basis whether or not a query should be
expanded. In a similar study, Glance describes the community search assistant, a
software agent that recommends queries similar to the user query [5]. The similarity
between queries is measured using the number of common URLs returned from
submitting both queries to the search engine. The main contribution is the notion of

collaborative search using query traces in the web search engine context. However,
if two queries have the same search results and the user is not satisfied with the
result of one of them, the results of the second ought to be unsatisfactory. Thus, the
suggested similar query is inadequate; hence, the notion of quasi-similarity of que-
ries presented in the next section.
A query trace is basicall y a log containing previously submitted queries. This log is
not enough to compute similarities between queries. In Section 2 we introduce
Query Memory, a data structure that holds not only the collective query trace but
also extra information pertaining to the queries that would help in measuring simi-
larities between queries. We introduce our query quasi-similarity measures using the
Query Memory in Section 3. In Section 4 we depict our prototypical implementa-
tion. Some examples are discussed in Section 5. Finall y, Section 6 presents our
conclusions.

2 Query Memory Data Structure

We have collected a large Query Memory from a popular meta-crawler and saved
these queries locall y in our database. A query in our view is not just a string, but a
bag of words and associated to it is the li st of documents that are returned by differ-
ent query engines (via a meta-search-engine). Each document consists of a URL, a
document title and a snippet (short text returned by the search engine). Each title
and snippet is considered as a bag of words as well .
A Query Memory is a set of queries where each query is modeled as follows:
1- BagTerms: unordered set of terms (bag of words) from the query string;
2- Count: number of times the query was encountered in the query trace;
3- Ldate: last time encountered in the query trace;
4- Fdate: first time encountered in the query trace;
5- QResults: ordered li st of URLs and titles returned when the query is submitted, in
addition to the snippets (i.e. text that accompany URLs in the result page). The text
is modeled as bags of words containing terms from the snippets and titl e as well as
the words in the document path in the URL;
6- Rdate: date the QResults was obtained. Notice that this is the date for the results
and it is not necessaril y related to Fdate and Ldate.

The words in BagTerms as well as the bag of words associated with the URLs in
QResults are stemmed using Porter’s algorithm [7] and filtered from stop-words.
QResults elements are composed of: (1) Rurl: the URL of the result entry; (2) Rtitle:
the title of the result entry; and (3) Rsnippet: bag of words from either the snippet
accompanying the result entry or from the document itself pointed to by the URL.

Using the Query Memory model described above we propose different similarity
measures that, given a user query, allow finding all other similar queries from our
Query Memory. Notice that an exact similarity is not desired. If a user is unsatisfied

with search results and wants hints for queries, if these hinted queries are identical
or give an identical result to the original query, the user would not be satisfied. In-
stead, we want to suggest queries that are close enough in terms of query, or queries
that yield results that are comparable in content or description. We have tested dif-
ferent measures for quasi-similarity using either the terms in the query, the terms in
the title or snippet of the search results, or the URL of the search results. Notice that
we used the snippets returned by the search engines with the results to represent the
document content instead of actuall y fetch the documents and retrieve the terms
from their content. Fetching the documents would necessitate accessing the docu-
ments at their respective Web locations and parsing them, which would have added
significant overhead. In theory, the real content of a document is the best representa-
tive of the document, but we noticed that using the snippets alone was suff icient and
lead to acceptable results in a reasonable and practical time. Our model also keeps
track of the timestamp when a query is first and last time encountered in the query
trace. These timestamps are used in the ranking of similar queries, but they are also
used to purge the Query Memory from old queries. It appears that some queries are
cycli c (i.e. appearing and disappearing at different periods), or simply periodic (i.e.
they appear very frequently but in a short time period, then never again). An ill ustra-
tive example would be the queries: “ terrorism” , “El Quaeda” or “Afganistan” . They
appear after an major event, persist in popularity for some time then fade out when
the general interest shifts somewhere else. This is also true with Olympics and other
events. Currently, we did not implement the purging of old queries from the Query
Memory. However, we use the timestamps for ranking results and introduce the
notion of query aging.

3 Overview of different similar ity measures

In this section we use the following notation: Q denotes the current query; ∆ de-
notes the Query Memory database; Q.terms indicates the set of terms in the query;
Q.Results is the set returned by a search with Q.Results[i] symbolizing the i th entry
in the li st of results; Q.Results[i].Title and Q.Results[i].Text represent respectively
the set of words extracted from the title and URL, and the set of words extracted
from the snippet of the search result entry. We should point out that the notion of
query results (Q.Results) is non-deterministic. In other words the same query sub-
mitted to the same search engine at a different time can, and usually will produce
different results. This is because search engines constantly update their databases
and indexes. Some search engines even rotate the order of returned results. For ex-
ample submitting query “car” twice to the Metacrawler search engine will result in
the following three top results respectively for the first and second submission: (1-
“Factory Invoice Prices and Dealer Cost” , 2-“Free New Car Quotes!” , 3-“Car Buy-
ing Information”) and (1-“Factory Invoice Prices and Dealer Cost” , 2-“Shopping for
a New Car? Try InvoiceDealers!” , 3-“Classic Cars Photo Ads”). Top results retuned
by the same search engine are quite different, even though the same query was sub-
mitted to the search engine within a few minutes of each other. In our Query Mem-

ory, we do not store all results returned by search engines, but only the first 200
results.

Using the notations described above we define the different quasi-similarity

measures as follows:
1- Naïve query-based method:
∀∀q ∈∈ ∆∆ / q.terms ∩∩ Q.terms ≠≠ ∅∅

This is a method used by some existing search engines to recommend expending
queries. It simply finds queries with common terms as the current query. There is no
word semantics directly or indirectly involved. The results are ordered based on the
values of Count and Ldate (see above). While it is very simplistic, it sometimes
yields interesting results. For example “car parts” is found similar to “automotive
parts” and “Honda parts” . However, it wouldn’ t be able to find “salsa food” similar
to “Mexican recopies” . The next method, however, could.

2- Naïve simpli fied URL-based method:
∀∀q ∈∈ ∆∆ / q.Results.URL ∩∩ Q.Results.URL ≠≠ ∅∅

This is a method similar to the first one, except instead of looking for common
words in the text of a query, we are looking for common URLs returned by the
search engines. The reasoning is that if URLs returned by two queries at least have
one URL in common, then these queries might be related. All the queries that are
found to be similar are then sorted by the occurrence frequencies and are presented
in that order. In other words the most common queries that have at least one com-
mon URL with the result of the user query are suggested to be similar. This particu-
lar method works well on a small dataset of collected queries but has a tendency of
making bad suggestions more often than the next method.

3- Naïve URL-based method:

∀∀q ∈∈ ∆∆ / θθm <
URLsultsQ

URLsultsQURLsultsq

.Re.

.Re..Re. ∩
< θθ

M

This method considers the URL set in the search results of the queries. θm is a mini-
mum threshold, while θM is a maximum threshold. We found that this method could
yield interesting results depending upon the thresholds we set. If θM is too close to
100%, the queries become too similar. If θm is too small , completely different and
irrelevant queries could be suggested. In the current prototype implementation we
set θm to 0.2 and θM to 0.8. Method 3 is more specific and more flexible than method
2.

4- Query-Title-based method:
∀∀q ∈∈ ∆∆ / ∃∃ i, q.Results[i].Title ∩∩ Q.terms ≠≠ ∅∅ and q.Results[i] ∉∉Q.Results

This method looks for queries that have in the titles (or URL path) of their results
terms appearing in the original query. The idea is that queries that return results with
titles related to the original query and the results were not retrieved by the original
query could be indeed related to the original query.

5- Query-Content-based method:

∀∀q ∈∈ ∆∆ / ∃∃ i, q.Results[i].Text ∩∩ Q.terms ≠≠ ∅∅ and q.Results[i] ∉∉Q.Results
The idea is similar to the previous method except that the snippets of the results
from the candidate queries are considered instead of the titles.

6- Common query title method:
∀∀q ∈∈ ∆∆ / ∃∃ i,j , q.Results[i].Title ∩∩ Q.Result[j] .Title ≠≠ ∅∅

The objective in this method is to compare the terms in the titles returned by the
original query with the terms in the titles returned by the candidate queries. No
comparison of the query terms per se is done. The main idea of this method is that
if two queries return results such that title words in the results returned are similar
(there are some common words), then queries are also similar.

7- Common query text method:
∀∀q ∈∈ ∆∆ / ∃∃ i,j , q.Results[i].Text ∩∩ Q.Result[j] .Text ≠≠ ∅∅

This method is similar to the previous one except that the snippets are compared
instead of the titles. The last two methods are particularly good at finding queries
that are syntacticall y different but semanticall y similar. Our experiments showed
that on a small set of processed queries this method performs better than the previ-
ous one, however it is in an order of magnitude more computationally intensive than
the previous one. Selecting the content of pages instead of the snippets returned by
the search engines would make the computation is more time-consuming.

For all these methods, results are sorted. The ranking of the suggested queries is
based on either the Count and Fdate, or the number of common URLs. Only a lim-
ited number of quasi-similar queries are presented to the user. Notice that we can
easil y combine these measures, in particular 3 and 4, or 5 and 6. The last two simi-
larity measures are particularly computationally expensive and their time complex-
ity is proportional to the size of the collected database. We are considering new
indexes to reduce the time it takes to recommend queries with measure 6 or 7.

4 Prototype Implementation Overview

Figure 1 ill ustrates the general architecture of our prototype constructing the
Query Memory. A query collector collects queries from a popular metacrawler and
stores them in a query database with a timestamp. Query processors submit these
queries to other search engines to collect results and store these results in the Query
Memory with updated counts and timestamps. Different search engines are used to
harvest search results and the original metacrawler is not used to submit queries in
order to avoid affecting the query trace of the metacrawler, and thus avoid compro-
mising the counts of the queries in our Query Memory by processing collected que-
ries.

We have implemented our prototype on NetBSD, an operating system allowing

large disk partitions, and MySQL database. The query database collected quickly
reached more that 2 Gigabytes, the largest disk partition allowed by Linux. The

collection and processing of the queries is implemented with Python scripting lan-
guage, while the similarity engine is in C++. Figure 2 shows an overview of the query
recommendation phase.

Fig. 1. Constructing the Query Memory

Fig. 2. Query quasi-similarity engine.

Our system consists of three major parts: a web query collector, a web query

processor (Figure 1) and a quasi-similarity engine (Figure 2) that finds similar que-
ries among previously collected queries to the one specified by the user. The query
collector simply collects queries submitted to the Metacrawler search engine1 and
puts them in the query queue along with the timestamp when these queries were
obtained. The Metacrawler search engine provides its query trace by displaying at
regular times a li st of currently submitted search queries2. The query collector agent
is simply a Python script that at regular time intervals consults the Metacrawler
query trace provided and parses it to extract the query strings. The query processor
verifies for each query if it already exists in the Query Memory, as described above.
If the query already exists in the Query Memory, then it just updates the relevant
counters and timestamps. Otherwise, the query is submitted to the Google search
engine and AltaVista search engine to harvest the corresponding search results.
These results are then parsed, processed, and added in the Query Memory.

The quasi-similarity engine is triggered whenever a suggestion for queries is re-

quested. The user specifies which similarity measure he or she wants to use to find
similar queries. The similarity engine uses previously collected queries stored in the
Query Memory to return suggested similar queries. We implemented a basic web-
based interface that allows the submission of a web search query. The submitted
query is sent to Metacrawler and the search results are displayed. If the user is unsat-
isfied with the results a recommendation for similar queries is requested and similar
queries are displayed based on the similarity measure chosen. Because of lack of
space we are not showing a snapshot of our prototypical user interface implemented.
The entire web page of the prototype is divided into 4 frames. The top frame allows
the user to specify a query, which is sent to the Metacrawler search engine. The

1 MetaCrawler: http://www.metacrawler.com
2 MetaSpy: http://www.metaspy.com/spymagic/Spy?filter=false

Query
Memory

Query
Recommender

Q

Search Engine

Q

Q.Results
Q.Results

Q

{ similar queries}

Metacrawler
Query Trace

Query
Collector

Local
Query
Database

Query
Processor

qi

{ q + q.Fdate}

Query
Memory

Google
Search Engine

Altavista
Search Engine

qi

qi

qi.Results

qi.Results

results returned are displayed integrall y in the results frame (second from the bot-
tom). Note that Metacrawler was arbitraril y selected for our prototype. Other search
engines could be used or the choice could be given to the user. If the user is not
satisfied with the results, he or she can request similar queries after selecting a
quasi-similarity measure in the second frame. Suggested new queries are displayed
in the bottom frame along with hyperlinks that would automaticall y submit the
query if cli cked, thus allowing an interactive process of query refinement.

5 Discussion on Some Experimental Results

This section presents some examples of similar queries using our measures of
quasi-similarity for ill ustration purposes. We have implemented in our prototype the
quasi-similarity measures 1, 2, 3, 6 and 7 as presented in Section 3. Using the inter-
face described in Section 4, we submitted many queries and checked the suggested
similar queries based on all implemented measures. While the similarity measures
are different, it was common that the recommended queries with the different meas-
ures were ali ke. Moreover, it was diff icult to find a winner (i.e. the similarity meas-
ure with the best recommendation) because: (1) for each different query we experi-
mented with, a different winner could be proclaimed; (2) the search results and the
recommendation are nondetermininstic (i.e. we can expect different results for the
same query submitted twice); and (3) the validation is very subjective. The results of
the query recommender, however, are very encouraging. Below we present two of
our results randomly selected from the different experiments we performed: “salsa
food” and “computer prices” . Tables 1 and 2 do not contain all recommended que-
ries but a top ranked selection. We found indeed queries such as “hot girls” , latina
porn” , or “BBC News” as matches to the “salsa food” query for example. The
match, however, is understandable. First these queries were submitted by someone,
and thus were in the query trace. Second, there is a connection between “salsa”,
“hot” and “ latina” indirectly discovered using our quasi-similarity measures by
intersecting the search engine results. The “BBC News” match, on the other hand, is
more diff icult to explain. It is possible that at the time the “BBC News” query was
processed, the results could have contained links to recipes, hence the intersection
with salsa food. This also demonstrates the diff iculty to use precision and recall as
validating measures, given the subjectivity of the similarity.
 Query: “salsa food”

Measure 1: Food Recipes, Japanese Food, genetically engineered food, food pictures

Measure 2: recipes, Mexican Recipes, All Recipe.com, french cooking

Measure 3: recipes, Mexican Recipes, All Recipe.com, french cooking

Measure 6: junkfood, foods history, black pepper health benefit, Food Cooperative

Measure 7: peruvian dry rubs, green curry recipes, black pepper health benefit, australian foods

Table 1. Recommended quasi-similar queries for the query “salsa food”

Query: “computer pr ices”

Measure 1: car prices, computer hardware, computer dictionary, airline ticket prices, computer parts

Measure 2: computer memory, consumer price index, toms hardware, cheap computer upgrades,

Hardware Stores

Measure 3: price search, price compare, pricewatch.com, toms hardware, low cost computers, Whole-

sale Computer Pricewatch

Measure 6: buying laptops, IBM Aptiva, online trading, ps one memory card, Shopping

Measure 7: buying laptops, bid software, DVD Player & Review, christmas online shopping

Table 2. Recommended quasi-similar queries for the query “computer prices”

While measure 1 is very simplistic and matches only queries with terms in the
original query, some of the results are nevertheless relevant to some extent. Meas-
ures 2 and 3, in the case of “salsa food” , returned almost the same results; which is
to be expected, since we do not have many queries processed in our Query Memory
database yet. Therefore we set the threshold parameter θm to fairly a low level of
0.2. Measures 6 and 7 are looking for the common words in query titles or snippets
and are capable of suggesting more “diverse” queries. The later measure, however,
seems to make more relevant suggestions than the former one. This should not be a
big surprise, since it looks for common words in snippets that are more descriptive
than the title pages. On the down side, it is computationally very expensive.

There are two major observations from our experiments with our proposed quasi-

similarity measures. First, the more queries we process, the richer the Query Mem-
ory is, and the better the recommendations are. While we have collected more than
half a milli on different queries from the Metacrawler search engine, we have proc-
essed and harvested the results of only about 70,000 queries (which constitutes the
Query Memory). Submitting queries to the search engine and harvesting result is
very computationally and network intensive process. Ideally, if the query recom-
mender is on the search engine side, not only the query trace would be immediately
available, but also the inverted indexes of the search engine would also be available
avoiding the submission of queries for results harvesting. Also because of the limita-
tions of the MySQL database and the file systems file size problems, it would be
better to directly process queries collected and populate the Query Memory rather
than storing collected queries in a large queue. Only queries in the Query Memory
can be used in the similarity measures. The second observation is that it seems diff i-
cult to select the best method. Apparently some combination of different methods
with weights assigned might produce better results than every single similarity taken

alone. This is another open problem that we will be addressing in our future re-
search.

6 Conclusion and Remarks

We have implemented a recommender system to suggest similar queries for search
engine users when they are not satisfied with the result of an original query and
would li ke help in expanding or improving the search query terms. We proposed
some quasi-similarity measures to ensure that the suggested queries are not too simi-
lar to the unsatisfactory original query but analogous enough to be suitable. We
have experimented with all these measures isolated or combined, and have noticed
that it is very diff icult to find an absolute winner. Each quasi-similarity measure
could indeed generate very good results depending upon the query. In some cases
what we expected to be the winner actuall y produced irrelevant queries. We have
thus kept all the measures and left it to the user to select and experiment with the
desired methods. It is important to notice that since the Query Memory is updated in
real time by adding new queries, and since some queries could be removed if con-
sidered too old based on Ldate, the recommendation is never deterministic. In other
words, the system, for the same original query, could suggest different similar que-
ries at different times. In the current work we are also investigating the use of time
constraints to limit the queries to those submitted in a time range. This is useful
because queries could be time sensiti ve, appearing frequently at one point than dis-
appearing completely later. We are also investigating the use of Latent Semantic
Indexing [3] for finding relevant associations between titles or text returned in the
search engine results. Finall y, we are analysing the possibilit y to validate these
quasi-similarity measures using precision and recall , and studying the effect of purg-
ing old queries from the Query Memory on the precision and recall .

References

1. Junghoo Cho, Hector Garcia-Molina and Lawrence Page, Eff icient Crawling Through
URL Ordering, 7th International Conference on WWW, Brisbane, Australia, 1998

2. Sergey Brin and Lawrence Page, The Anatomy of a Large-Scale Hypertextual Web Search
Engine, 7th International Conference on WWW, Brisbane, Australia, 1998

3. S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer and R. Harshman, Indexing by
Latent Semantic Analysis, in Journal of the American Society of Information Science,
1990

4. Fitzpatrick, Larry and Dent, Mei 1997 Automatic Feedback Using Past Queries: Social
Searching? In Proeedings of SIGIR’97, Philadelphia, PA.

5. Natalie S. Glance, Community search assistant, Workshop on Artificial Intell igence for
Web Search, In conjunction with the AAA I conference, Austin, Texas, USA, 2000

6. Evangelos P. Markatos. On Caching Search Engine Results. In Technical Report 241,
ICSFORTH, January 1999. available at: http://archvlsi.ics.forth.gr/html_pages/TR241/

7. M. F. Porter, An algorithm for suff ix stripping, Program, pp 130-137, vol 14, n 3, 1980.
8. Danny Sulli van, Search Assistance Features: Related Searches, 2001 available at:

http://www.searchenginewatch.com/facts/assistance.html

