Finding Similar Queriesto Satisfy Searches based on
Query Traces

Osmar R. Zaiane! Alexander Stril etst

1 University of Alberta, Edmonton, Alberta, Canada T6G 2E8
{zai ane, astrilet}@s.ual berta.ca

Abstract. Many agree that the relevancy of current seach engine results
neeals sgnificant improvement. On the other hand, it is aso true that finding
the gpropriate query for the best seach engineresult isnot atrivia task. Of-
ten, users try different queries until they are satisfied with the results. This
paper presents a method for building a system for automaticaly suggesting
similar queries when results for a query are not satisfadory. Asaming that
every seach query can be expressd dfferently and that other users with
similar information reeds could have drealy expressd it better, the system
makes use of collaborative knowledge from different seach engine users to
reoommend rew ways of expressng the same information reel. The &-
proach is based onthe nation d quasi-similarity between queries since full
similarity with an ursatisfadory query would lead to dsappantment. We
present a model for seach engine queries and a variety of quasi-similarity
measures to retrieve relevant queries.

1 Introduction

Many commercial seach engines boast the fad that they have dready indexed
hundeds of milli ons of web pages. Whil e this achievement is aurely remarkable, the
large indexes withou doult compromise the predsion d the seach engines adding
to the frustration o the cmmon wsers. Many agree that the relevancy of current
seach engine results needs sgnificant improvement. Search engines present users
with an ardered and very long list of websites that are presumably relevant to the
query spedfied based on criteria spedfic to ead dfferent search engine. Users
typicdly consult the first ten, twenty or maybe thirty results returned and gve up if
relevant documents are nat found among them. Results are normally ranked by
relevance, which is cdculated based mainly on the terms present in the query and
not necessarily onthe semantics or meaning d the query. Some Seach engines like
Goode [2] use the nation d incoming and ougoing hyperlinks from documents
containing the query terms to rank the relevant URLs [1]. It remains, however, that
these lists are too longto browse. Whil e users are & the mercy of the result ranking
procedure of the seach engine, they are dso constrained by the expressveness of
the query interface and dten have difficulty articulating the predse query that

could lea to satisfadory results. It happens also that users may nat exadly know
what they are seaching for and thus dor't know how to effedively expressit and
end upseleding terms for the search engine query with a trial and error process
Indeed, often userstry diff erent queries until they are satisfied with the results. If the
results are not satisfacory, they modify the query string and repea the seach proc-
essagain. Many commercial search engines provide posshiliti es to narrow seaches
by either searching within search results or augmenting a query to help users narrow
their search [8]. However, these query augmentations just append terms to the exist-
ing terms in the query. For example aseach onAltaVista with the term “avocado’
leads to the following suggestions. avocado trees, growing avocados, avocado red-
pes, avocado dl, avocado dant, etc. Thisis comparable to ou first quasi-simil arity
measure presented below. We cdl this method the “Naive gproadh” because it
simply looks in the query tracefor queries having terms gmilar to the terms in the
current query. In ather words, it considers only the terms in the queries and simply
performs intersedions (seebelow). This example, however, showsthat it is conceiv-
able that more than ore user would send a seach query for a similar need andit is
possble that these queries are diff erently expressed. A study byMarkatos sows that
many queries ent to a search engine can be answered dredly from cade because
queries are often repeaed (by presumably different users). The study reports that 20
to 30% of queriesin an Excite query tracewith 930thousand qLeries, were repeaed
queries [6]. A similar study wsing AltaVista query logs demonstrated that ead query
was sibmitted onaverage four times. This average isfor identica queries nat taking
into acournt upper/lower case, word permutations, etc. This justifies the assumption
that when ore user submits a query to a search engine, it is highly likely that another
user aready submitted a very similar query. The queries can be identicd as found
and reported by the studies mentioned abowe, or articulated dfferently with different
terms but for the same information reeds. Thisis the major argument to pu forward
the idea of using query colledive memory to asdst individual users in articulating
their information reads differently by suggesting quasi-similar queries. We define
quasi-simil arity in the next sedion.

The ideaof tapping into the alledive knowledge of users, emboded as a set of
seach queries, is not new. Fitzpatrick et al. studied the dfed of using past queries
to improve aitomatic query expansions in the TREC (Text REtrieval Conference)
environment [4]. The ideais that top dacuments returned by the query from a pod
of documents are dso top dauments returned by similar queries and are good
source for automatic query expansions. They compared the performance of this
method againgt the unexpanded baseline queries and against the baseline queries
expanded with top-document feedback. The authors present a query similarity met-
ric that empiricaly derives a probability of relevance. They also introduce the no-
tion d threshald to control on per query basis whether or not a query shoud be
expanded. In a similar study, Glance describes the ommmunity seach asdstant, a
software ayent that recommends queries smilar to the user query [5]. The simil arity
between queries is measured using the number of common URLs returned from
submitting bah gueries to the search engine. The main contribution is the notion o

collaborative seach using guery traces in the web search engine mntext. However,
if two gueries have the same search results and the user is not satisfied with the
result of one of them, the results of the second ouglh to be unsatisfadory. Thus, the
sugeested similar query is inadequate; hence, the notion d quasi-similarity of que-
ries presented in the next sedion.

A query traceis basicdly alog containing previously submitted queries. Thislogis
not enough to compute similarities between queries. In Sedion 2 we introduce
Query Memory, a data structure that hods not only the wlledive query tracebut
also extra information pertaining to the queries that would help in measuring simi-
lariti es between queries. We introduce our query quasi-simil arity measures using the
Query Memory in Sedion 3 In Sedion 4 we depict our prototypica implementa
tion. Some examples are discused in Sedion 5 Finaly, Sedion 6 pesents our
conclusions.

2 Query Memory Data Structure

We have mlleded alarge Query Memory from a popuar meta-crawler and saved
these queries locdly in ou database. A query in ou view is ot just a string, but a
bag of words and associated to it is the list of documents that are returned by dffer-
ent query engines (via ameta-seach-engine). Each document consists of a URL, a
document title and a snippet (short text returned by the seach engine). Each title
and snippet is considered as a bag of words aswell.

A Query Memory is a set of queries where eat query is modeled as foll ows:

1- BagTerms: unardered set of terms (bag of words) from the query string;

2- Count: number of times the query was encourtered in the query trace

3- Ldate: last time encourtered in the query trace

4- Fdate: first time encourtered in the query trace

5- QResults: ordered list of URLs and titles returned when the query is submitted, in
addition to the snippets (i.e. text that accompany URLSs in the result page). The text
is modeled as bags of words containing terms from the snippets and title & well as
the words in the document path in the URL;

6- Rdate: date the QResults was obtained. Notice that this is the date for the results
andit isnot necessarily related to Fdate and Ldate.

The words in BagTerms as well as the bag of words associated with the URLsin
QResults are stemmed wsing Porter’s algorithm [7] and filtered from stop-words.
QResults elements are mmposed of: (1) Rurl: the URL of the result entry; (2) Rtitle:
the title of the result entry; and (3) Rsnippet: bag o words from either the snippet
acmmpanying the result entry or from the document itself pointed to bythe URL.

Using the Query Memory model described above we propaose different simil arity
measures that, given a user query, alow finding all other similar queries from our
Query Memory. Noticethat an exad similarity is not desired. If a user isunsatisfied

with search results and wants hints for queries, if these hinted queries are identicd
or give an identicd result to the original query, the user would na be satisfied. In-
stead, we want to suggest queries that are dose enoughin terms of query, or queries
that yield results that are cmparable in content or description. We have tested dif-
ferent measures for quasi-simil arity using either the terms in the query, the termsin
the title or snippet of the seach results, or the URL of the search results. Notice that
we used the snippets returned by the search engines with the results to represent the
document content instead of adually fetch the documents and retrieve the terms
from their content. Fetching the documents would necesstate accesng the docu-
ments at their respedive Web locaions and parsing them, which would have alded
significant overhea. In theory, the red content of a document isthe best representa-
tive of the document, but we naticed that using the snippets alone was aufficient and
lead to acceptable results in a ressonable and pradicd time. Our model also keeps
tradk of the timestamp when a query is first and last time encourtered in the query
trace These timestamps are used in the ranking d similar queries, but they are dso
used to puge the Query Memory from old queries. It appeas that some queries are
cyclic (i.e. appeaing and dsappeaing at different periods), or smply periodic (i.e.
they appea very frequently but in a short time period, then never again). Anill ustra-
tive example would be the queries: “terrorism”, “El Quaeda” or “Afganistan”. They
appea after an major event, persist in popdarity for some time then fade out when
the general interest shifts smewhere dse. Thisis also true with Olympics and cher
events. Currently, we did na implement the purging d old gueries from the Query
Memory. However, we use the timestamps for ranking results and introduce the
nation o query aging.

3 Overview of different similarity measures

In this dion we use the following ndation: Q denotes the arrent query; A de-
notes the Query Memory database; Q.terms indicates the set of terms in the query;
Q.Results is the set returned by a seach with Q.Results[i] symboalizing the i entry
in the list of results; Q.Resultgi].Title and Q.Resultgi].Text represent respedively
the set of words extraded from the title and URL, and the set of words extraded
from the snippet of the search result entry. We shodd pdnt out that the nation o
query results (Q.Results) is non-deterministic. In ather words the same query sub-
mitted to the same seach engine & a different time can, and wually will produce
different results. This is because seach engines constantly update their databases
and indexes. Some seach engines even rotate the order of returned results. For ex-
ample submitting query “car” twice to the Metaadawler search engine will result in
the foll owing three top results respedively for the first and second submisson: (1-
“Facory Invoice Prices and Deder Cost”, 2-“Free New Car Quotes!”, 3-“Car Buy-
ing Information”) and (1-“Fadory Invoice Prices and Deder Cost”, 2-“ Shoppng for
aNew Car? Try InvoiceDeders!”, 3-“Clasgc Cars Photo Ads’). Top results retuned
by the same search engine ae quite different, even thoughthe same query was aub-
mitted to the seach engine within a few minutes of ead ather. In ou Query Mem-

ory, we do nd store dl results returned by search engines, but only the first 200
results.

Using the notations described above we define the different quasi-simil arity
measures as foll ows:

1- Naive query-based method:

Oq O A / g.terms N Q.terms F O
This is a method wsed by some existing seach engines to recommend expending
gueries. It smply finds queries with common terms as the aurrent query. Thereisno
word semantics diredly or indiredly involved. The results are ordered based onthe
values of Count and Ldate (see dowve). While it is very smplistic, it sometimes
yields interesting results. For example “car parts’ is found similar to “automotive
parts’ and “Honda parts’. However, it wouldn't be ale to find “salsa food’ similar
to “Mexican recmpies’. The next method however, could.

2- Naive simplified URL -based method:

OgOA/g.ResultsURL n Q.Results.URL # 0O
This is a method smilar to the first one, except instead o looking for common
words in the text of a query, we ae looking for common URLSs returned by the
seach engines. The reasoning is that if URLSs returned by two queries at least have
one URL in common, then these queries might be related. All the queries that are
foundto be smilar are then sorted by the occurrence frequencies and are presented
in that order. In ather words the most common queries that have & least one wm-
mon URL with the result of the user query are suggested to be similar. This particu-
lar method works well on a small dataset of colleded gueries but has a tendency of
making bad suggestions more often than the next method

3- Naive URL -based method:

|g.ResultsURL n Q.ResultsURL| .

i |Q.ResultsURL| .

This method considers the URL set in the search results of the queries. 6, isa mini-
mum threshold, while 6,, is a maximum threshold. We foundthat this method could
yield interesting results depending uponthe thresholds we set. If 6,, is too close to
100%, the queries become too similar. If 8_istoo small, completely different and
irrelevant queries could be suggested. In the arrent prototype implementation we
set 6 to 0.2 and B,, to 0.8. Method 3is more spedfic and more flexible than method
2.

4- Query-Title-based method:

Og O A/ Oi, g.Resultdi].Title n Q.terms # 00 and g.Resultyi] 0Q.Results
This method looks for queries that have in the titles (or URL path) of their results
terms appeaingin the original query. The ideaisthat queries that return results with
titles related to the original query and the results were naot retrieved by the original
guery could be indeed related to the origina query.

5- Query-Content-based method:

Og O A / @

Og O A/ Oi, gReaultyi].Text n Q.terms # O and g.Resultyi] 0Q.Results
The ideais smilar to the previous method except that the snippets of the results
from the candidate queries are considered instead of the titl es.

6- Common query title method:

Og O A / 0O iy, g.Resultdi].Title n Q.Result[j] .Title # 0O
The objedive in this method is to compare the terms in the titles returned by the
original query with the terms in the titles returned by the candidate queries. No
comparison d the query terms per se is done. The main ideaof this methodis that
if two queries return results sich that title words in the results returned are similar
(there ae some common words), then queries are dso similar.

7- Common query text method:

Og O A / 0O iy, g.Resultdi].Text n Q.Resultj] Text # O
This method is smilar to the previous one except that the snippets are compared
instead of the titles. The last two methods are particularly goodat finding qieries
that are syntadicdly different but semanticdly similar. Our experiments $howed
that on a small set of processed gueries this method performs better than the previ-
ous one, however it isin an order of magnitude more computationally intensive than
the previous one. Seleding the content of pages instead of the snippets returned by
the seach engines would make the cmputation is more time-consuming.

For all these methods, results are sorted. The ranking d the suggested queriesis
based oneither the Count and Fdate, or the number of common URLSs. Only a lim-
ited number of quasi-similar queries are presented to the user. Notice that we can
easily combine these measures, in particular 3 and 4 or 5 and & The last two simi-
larity measures are particularly computationally expensive and their time complex-
ity is propartional to the size of the wlleced database. We ae aonsidering rew
indexes to reducethe time it takes to recommend qeries with measure 6 or 7.

4 Prototype Implementation Overview

Figure 1 illustrates the general architecure of our prototype nstructing the
Query Memory. A query colledor colleds queries from a popuar metaadawler and
stores them in a query database with a timestamp. Query processors submit these
gueries to ather search engines to colled results and store these results in the Query
Memory with updited counts and timestamps. Different seach engines are used to
harvest search results and the original metacawler is not used to submit queriesin
order to avoid affeding the query traceof the metaaawler, and thus avoid compro-
mising the murts of the queriesin ou Query Memory by processng colleded que-
ries.

We have implemented ou prototype on NetBSD, an operating system all owing
large disk partitions, and MySQL database. The query database wlleded quickly
readied more that 2 Gigabytes, the largest disk partition alowed by Linux. The

colledion and processng d the queries is implemented with Python scripting lan-
guage, while the simil arity engineisin C™. Figure 2 shows an owerview of the query
recommendation plase.

g@ : {q+ q.Fdate} Q
Metacrawler
Query Trace | Query K)J
Collector f(‘}\ Search Engine 0 Results| Recommender e
(ay 4 '
f(‘)\ g;rog'leEngne 'wk {similar queries}
T
9
S‘y\ Altavista ‘qR/S
- Search Engine |
Fig. 1. Constructing the Query Memory Fig. 2. Query quasi-simil arity engine.

Our system consists of three major parts: a web query colledor, a web query
processor (Figure 1) and a quasi-similarity engine (Figure 2) that finds smilar que-
ries among pevioudy colleded queries to the one spedfied by the user. The query
collector simply colleds queries submitted to the Metaaawler seach enginet and
puts them in the query queue dong with the timestamp when these queries were
ohtained. The Metacawler search engine provides its query traceby dsplaying at
regular times a list of currently submitted seach queries>. The query collector agent
is smply a Python script that at regular time intervals consults the Metacawler
query traceprovided and parses it to extrad the query strings. The query processor
verifies for ead query if it alrealy existsin the Query Memory, as described abowve.
If the query already exists in the Query Memory, then it just updetes the relevant
courters and timestamps. Otherwise, the query is submitted to the Goode seach
engine and AltaVista seach engine to harvest the rrespondng seach results.
These results are then parsed, processed, and added in the Query Memory.

The quasi-simil arity engine is triggered whenever a suggestion for queries is re-
quested. The user spedfies which similarity measure he or she wants to use to find
similar queries. The similarity engine uses previoudy colleded queries gored in the
Query Memory to return suggested similar queries. We implemented a basic web-
based interface that alows the submisson d a web seach query. The submitted
query is ®nt to Metaaawler and the search results are displayed. If the user is unsat-
isfied with the results a recommendation for similar queriesis requested and similar
queries are displayed based onthe similarity measure chosen. Because of ladk of
spacewe ae nat showing a snapshat of our prototypicd user interfaceimplemented.
The entire web page of the prototype is divided into 4 frames. The top frame dlows
the user to spedfy a query, which is ®nt to the Metacawler seach engine. The

1 MetaCrawler: http://www.metaaawler.com
2 MetaSpy: http://www.metaspy.com/spymagic/Spyfilter=false

results returned are displayed integrally in the results frame (second from the bot-
tom). Note that Metacrawler was arbitrarily seleded for our prototype. Other search
engines could be used o the choice muld be given to the user. If the user is nat
satisfied with the results, he or she can request similar queries after seleding a
quasi-simil arity measure in the second frame. Suggested new queries are displayed
in the bottom frame dong with hyperlinks that would automaticdly submit the
query if clicked, thus all owing an interacive processof query refinement.

5 Discusson on Some Experimental Results

This ®dion presents ome examples of similar queries usng ou measures of
quasi-simil arity for ill ustration pupaoses. We have implemented in ou prototype the
quasi-simil arity measures 1, 2, 3, 6 and 7 as presented in Sedion 3 Using the inter-
facedescribed in Sedion 4 we submitted many queries and chedked the suggested
similar queries based on all implemented measures. Whil e the simil arity measures
are different, it was common that the recommended queries with the different meas-
ures were dike. Moreover, it was difficult to find awinner (i.e. the simil arity meas-
ure with the best recommendation) because: (1) for ead dfferent query we experi-
mented with, a different winner could be proclaimed; (2) the seach results and the
recommendation are nondetermininstic (i.e. we can exped different results for the
same query submitted twice); and (3) the validationis very subjedive. The results of
the query recommender, however, are very encouraging. Below we present two of
our results randamly seleded from the different experiments we performed: “salsa
food’ and “computer prices’. Tables 1 and 2 do nocontain all recommended que-
ries but a top ranked seledion. We foundindeed queries auch as “hat girls’, latina
porn”, or “BBC News' as matches to the “salsa food' query for example. The
match, however, is understandable. First these queries were submitted by someone,
and thus were in the query trace Seoond there is a mnredion ketween “salsa”,
“hat” and “latina” indiredly discovered using ou quasi-similarity measures by
interseding the search engine results. The “BBC News’ match, onthe other hand, is
more difficult to explain. It is possble that at the time the “BBC News’ query was
processed, the results could have cntained links to redpes, hence the intersedion
with salsa food This also demongtrates the difficulty to use predsion and recdl as
vali dating measures, given the subjedivity of the simil arity.

Query: “salsa food”

Meaure1l: | FoodRedpes, Japanese Food, geneticadly engineeaed food, food pctures

Measure 2: | redpes, Mexican Redpes, All Redpe.com, french cooking

Measure 3: | redpes, Mexican Redpes, All Redpe.com, french cooking

Meaure 6: | junkfood, foods history, black pepper hedth benefit, Food Cooperative

Measure 7: | peruvian dry rubs, green curry redpes, bladk pepper hedth benefit, australian foods

Table 1. Recommended quesi-similar queries for the query “salsa food’

Query: “computer prices’

Measure1l: | ca prices, computer hardware, computer dictionary, airline ticket prices, computer parts

Measure2: | computer memory, consumer price index, toms hardware, chegp computer upgades,

Hardware Stores

Measure 3: | price seach, price ®mpare, pricewatch.com, toms hardware, low cost computers, Whole-

sale Computer Pricewatch

Measure 6: | buyinglaptops, IBM Aptiva, online trading, psone memory card, Shopping

Measure7: | buyinglaptops, bid software, DVD Player & Review, christmas online shopping

Table 2. Recommended quesi-similar queries for the query “computer prices’

While measure 1 is very simplistic and matches only queries with terms in the
original query, some of the results are neverthelessrelevant to some extent. Meas-
ures 2 and 3 in the cae of “salsafood’, returned amost the same results, which is
to be expeded, since we do nd have many queries procesed in our Query Memory
database yet. Therefore we set the threshold parameter 6, to fairly a low level of
0.2. Measures 6 and 7 are looking for the common words in guery titles or snippets
and are cgable of suggesting more “diverse” queries. The later measure, however,
seans to make more relevant suggestions than the former one. This siodd na be a
big surprise, sinceit looks for common words in snippets that are more descriptive
than the title pages. On the down side, it is computationally very expensive.

There ae two major ohservations from our experiments with ou proposed quasi-
simil arity measures. First, the more queries we process the richer the Query Mem-
ory is, and the better the recommendations are. While we have mlleded more than
half a milli on dfferent queries from the Metacawler seach engine, we have proc-
essd and harvested the results of only abou 70,000 queries (which congtitutes the
Query Memory). Submitting queries to the search engine and harvesting result is
very computationally and retwork intensive process Idedly, if the query recom-
mender is on the search engine side, not only the query tracewould be immediately
available, but also the inverted indexes of the search engine would also be available
avoiding the submisgon d queries for results harvesting. Also becaiuse of the limita-
tions of the MySQL database and the file systems file size problems, it would be
better to dredly process queries colleded and popuiate the Query Memory rather
than storing colleded queries in a large queue. Only queries in the Query Memory
can be used in the similarity measures. The second olservationisthat it seems diffi-
cult to seled the best method Apparently some aombination d different methods
with weights assgned might produce better results than every singe simil arity taken

alore. This is ancther open problem that we will be aldressng in ou future re-
seach.

6 Concluson and Remarks

We have implemented a recommender system to suggest similar queries for search
engine users when they are nat satisfied with the result of an original query and
would like help in expanding a improving the seach query terms. We propaosed
some quasi-simil arity measures to ensure that the suggested queries are not too simi-
lar to the unsatisfadory original query but analogows enoughto be suitable. We
have experimented with all these measures isolated or combined, and have naticed
that it is very difficult to find an absolute winner. Each quasi-similarity measure
could indeed generate very goodresults depending uponthe query. In some caes
what we expeded to be the winner actually produced irrelevant queries. We have
thus kept all the measures and left it to the user to seled and experiment with the
desired methodks. It isimportant to ndice that sincethe Query Memory isupdated in
red time by adding rew queries, and since some queries could be removed if con-
sidered too dd based onLdate, the recommendation is never deterministic. In cther
words, the system, for the same original query, could suggest different similar que-
ries at different times. In the aurrent work we ae dso investigating the use of time
congraints to limit the queries to those submitted in a time range. This is useful
becaise queries could be time sensitive, appeaing frequently at ore point than ds
appeaing completely later. We ae dso investigating the use of Latent Semantic
Indexing [3] for finding relevant associations between titles or text returned in the
seach engine results. Finaly, we ae analysing the possbhility to validate these
quasi-simil arity measures using redsion and recdl, and studying the dfed of purg-
ing dd gueries from the Query Memory onthe predsionandrecdl.

References

1. Junghoo Cho, Hedor GarciaMolina and Lawrence Page, Efficient Crawling Through
URL Ordering, 7th International Conference on WWW, Brisbane, Australia, 1998

2. Sergey Brin and Lawrence Page, The Anatomy of a Large-Scde Hypertextual Web Seach
Engine, 7th International Conference on WWW, Brisbane, Australia, 1998

3. S. Deawester, S.T. Dumais, G.W. Furnas, T.K. Landauer and R. Harshman, Indexing by
Latent Semantic Analysis, in Journal of the American Society of Information Science,
1990

4. Fitzpatrick, Larry and Dent, Mei 1997 Automatic Feedbac Using Past Queries: Social
Seaching? In Proeedings of SIGIR’' 97, Philadelphia, PA.

5. Natalie S. Glance, Community search asdstant, Workshop onArtificia Intelligence for
Web Seach, In conjunction with the AAA| conference, Austin, Texas, USA, 2000

6. Evangelos P. Markatos. On Caching Seach Engne Results. In Technicd Report 241,
ICSFORTH, January 1999 avail able &: http://archvisi.ics.forth.gr/html_pages/ TR241/

7. M. F. Porter, An algorithm for suffix stripping, Program, pp 136137, vol 14, n 3, 1980Q
8. Danny Sullivan, Seach Asdstance Feaures. Related Seaches, 2001 available &:
http://www.seachenginewatch.com/fads/ass stance html

