
Detecting Communities in Social Networks using
Local Information

Jiyang Chen and Osmar R. Zaı̈ane and Randy Goebel

Abstract Much structured data of scientific interest can be represented as networks,
where sets of nodes or vertices are joined together in pairs by links or edges. Al-
though these networks may belong to different research areas, there is one property
that many of them do have in common: the network community structure. There has
been much recent research on identifying communities in networks. However, most
existing approaches require complete network information, which is impractical for
some networks, e.g. the World Wide Web or the cell phone telecommunication net-
work. Local community detection algorithms have been proposed to solve the prob-
lem but their results usually contain many outliers. In this paper, we propose a new
measure of local community structure, coupled with a two-phase algorithm that ex-
tracts all possible candidates first, and then optimizes the community hierarchy. We
also propose a community discovery process for large networks that iteratively finds
communities based on our measure. We compare our results with previous methods
on real world networks such as the co-purchase network from Amazon. Experimen-
tal results verify the feasibility and effectiveness of our approach.

1 Introduction

Many datasets can be represented as networks composed of vertices and edges, in-
cluding the World Wide Web (WWW), organization structures [35], academic col-
laboration records [23, 34] and even political elections [1]. A community in the net-
work can be seen as a subgraph such that the density of edges within the subgraph is
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greater than the density of edges between inside and outside nodes [15]. The ability
to identify communities could be of significant practical importance. For example,
groups of web pages that link to more web pages in the community than to pages
outside might correspond to sets of web pages on related topics, which could enable
search engines to increase the precision and recall of search results by focusing on
narrow but topically-related subsets of the web [11]; groups within social networks
might correspond to communities, which can be used to understand organization
structures. Moreover, the influence of the community structure may reach further
than these: a number of recent results suggest that networks can have properties at
the community level that are quite different from their properties at the level of the
entire network, so that analysis that focus on whole networks and ignore commu-
nity structure may miss many interesting features [26]. For example, we may find
that people in different community groups have different mean numbers of contacts
in some social networks, i.e, individuals in one group might have many neighbours
while members of another group are more reticent. Such social networks are re-
ported in [2] and [13] for the study of HIV in sexual contact networks. Therefore,
characterizing such networks by only quoting a single figure for the average number
of contacts an individual has, and without considering the community structure, will
definitely miss important features of the network, which is relevant to questions of
scientific interest such as epidemiological dynamics [17].

The problem of finding communities in social networks has been studied for
decades. Recently, several quality metrics for community structure have been pro-
posed [25, 28, 37]. Among them, modularity Q is proved to be the most accurate
[7] and has been pursued by many researchers [6, 10, 16, 26, 36]. However, most of
those approaches require knowledge of the entire graph structure to identify com-
munities, which we call global communities. A global community is a community
defined based on global information about the entire network. That is, one needs to
access and see the whole network information. This constraint is problematic for
networks which are too large to know completely, e.g., the WWW. In spite of these
limitations, finding communities, which we call local communities, would still be
useful, albeit constrained by the small volume of accessible information about the
network in question. A local community is a community defined based on local in-
formation without having access to the entire network. For example, we might like
to quantify local communities of either a particular webpage given its link structure
in the WWW, or a person given his social network in Facebook. Existing approaches
[28, 6] also assume that each entity belongs to only one community, however in the
real world one entity usually belongs to multiple communities, e.g., one researcher
could publish in both the data mining community and the visualization community.
We refer to these as overlapping communities.

Several techniques [3, 4, 5, 22] have been proposed to identify local community
structure given limited information about network. However, parameters that are
hard to obtain are usually required, such as the community size or density. More-
over, communities discovered by these algorithms include many outliers, which are
nodes that are weakly connected to the community, and thus suffer from low ac-
curacy. In this paper, we propose a new metric, which we call L, to evaluate the
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local community structure for networks in which we lack global information. We
then define a two-phase algorithm based on L to find the local community of given
starting nodes. Moreover, we propose a community discovery process to discover
overlapping communities in a large network where global information is not avail-
able. Given one or a set of start nodes, our algorithm starts from a local commu-
nity, then iteratively identifies communities while expanding to the whole graph.
We compare our algorithm’s performance with previous methods on several real
world networks. In contrast to existing approaches, our metric L is robust against
outliers. The proposed algorithm not only discovers local communities without an
arbitrary threshold, but also determines whether a local community exists or not for
certain nodes. Our iterative community discovery process is able to discover over-
lapping communities with only local information. Additionally it does not require
any arbitrary thresholds or other parameters.

The rest of the paper is organized as follows. We discuss related work in Section
2. Section 3 defines the problem and reviews existing solutions. We describe our
approach in Section 4 and report experimental results in Section 5, followed by
conclusions in Section 6.

2 Related Work

Traditional data mining algorithms, such as association rule mining, supervised clas-
sification and clustering analysis, commonly attempt to find patterns in a data set
characterized by a collection of independent instances of a single relation. How-
ever, for social networks, where entities are related to each other in various ways,
naively applying traditional statistical inference procedures, which assume that in-
stances are independent, can lead to inappropriate conclusions about the data [18].
For example, for a search engine, indexing and clustering web pages based on the
text content without considering their linking structure would definitely lead to bad
results for queries. The relations between objects should be taken into considera-
tion and can be important for understanding community structure and knowledge
patterns.

Generally speaking, we can divide previous research of finding communities in
networks into two main principle lines of research: graph partitioning and hierar-
chical clustering. These two lines of research are really addressing the same ques-
tion, albeit by somewhat different means. There are, however, important differences
between the goals of the two camps that make quite different technical approaches
desirable [27]. For example, graph partitioning approaches usually know in advance
the number and size of the groups into which the network is to be split, while hi-
erarchical clustering methods normally assume that the network of interests divide
naturally into some subgroups, determined by the network itself and not by the user.

Graph Partitioning. There is a long tradition of research by computer scien-
tists on graph partitioning [31]. Generally, finding an exact solution to a partitioning
task is believed to be an NP-complete problem, making it prohibitively difficult to
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solve for large graphs. However, a wide variety of heuristic algorithms have been
developed and give good solutions in many cases [12], e.g., multilevel partitioning
[19], k-partite graph partitioning [20], relational clustering [21], flow-based meth-
ods [11], information-theoretic methods [8] and spectral clustering [30]. The main
problem for these methods is that input parameters such as the number of the parti-
tions and their sizes are usually required, but we do not typically know how many
communities there are, and there is no reason that they should be roughly the same
size. Various benefit functions have been proposed to avoid the problem, such as
the normalized cut [33] and the min-max cut [9]. However, these approaches are bi-
ased in favour of divisions into equal-sized parts and thus still suffer from the same
drawbacks that make graph partitioning inappropriate for community mining.

Hierarchical Clustering. The approaches developed by sociologists in their
study of social networks for finding communities are perhaps better suited for our
current purpose than the aforementioned clustering methods. The principle popular
technique in use is hierarchical clustering [32]. The main idea of this technique is to
discover natural divisions of social networks into groups, based on various metrics
of similarity (usually represented as similarity xi j between pairs (i, j) of vertices).
The hierarchical clustering method has the advantage that it does not require the
size or number of groups we want to find beforehand, therefore, it has been applied
to various social networks with natural or predefined similarity metrics, such as the
modularity and betweenness measure [6, 14, 25, 28]. However, they are usually slow
and the performance depends highly on the corresponding metrics.

Recently, real world networks have been shown to have an overlapping commu-
nity structure, which is hard to grasp with classical clustering methods where every
vertex of the graph belongs to only one community. Based on these observations,
fuzzy methods [15, 24, 29, 38] have been proposed for overlapping structure. Re-
cent work by Xu et al. [37] proposed a fast SCAN algorithm to detect not only
clusters, but also hubs and outliers in networks. However, the performance of these
approaches depends on input parameters, which are very sensitive.

While all these methods successfully find communities, they implicitly assume
that global information is always available. However, that is usually not the case for
large networks in the real world. Clauset [5] and Luo et al. [22] proposed similar
metrics for community detection with local information, which are presented in
detail in Section 3. Bagrow et al. proposed an alternative method to detect local
communities [4], which spreads an l-shell outward from the starting node n, where l
is the distance from n to all shell nodes. The performance of their approach depends
on the parameter l and the starting node, because the result communities could be
very different if the algorithm starts from border nodes instead of cores. The authors
later proposed the “outwardness” metric Ω [3] to measure local structure, however,
their method lacks an appropriate stopping criteria and thus still relies on arbitrary
thresholds.
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Fig. 1 Local Community Definition

3 Preliminaries

Here we first define the problem of finding local communities in a network, then
focus our efforts on reviewing existing algorithms.

3.1 Problem Definition

As mentioned in the introduction, local communities are densely-connected node
sets that are discovered and evaluated based only on local information. Suppose
that in an undirected network G (directed networks are typically first transformed to
undirected ones), we start with perfect knowledge of the connectivity of some set
of nodes, i.e., the known local portion of the graph, which we denote as D. (Note
that D may start with one node, but can later contain a set of nodes and connections
between them as a local community.) This necessarily implies that we also have lim-
ited information for another shell node set S, which contains nodes that are adjacent
to nodes in D but do not belong to D (note “limited” means that the complete con-
nectivity information of any node in S is unknown). In such circumstances, the only
way to gain additional information about the network G is to visit some neighbour
nodes si of D (where si ∈ S) and obtain a list of adjacent nodes of si. As a result, si is
removed from S and becomes a member of D while additional nodes may be added
to S as neighbours of si. This typical one-node-at-one-step discovery process for
local community detection is analogous to the method that is used by web crawling
systems to explore the WWW. Furthermore, we define two subsets of D: the core
node set C, where any node ci ∈ C have no outward links, i.e., all neighbours of
ci belong to D; and the boundary node set B, where any node bi ∈ B has at least
one neighbour in S. Figure 1 shows node sets D, S, C and B in a network. Similar
problem settings can be found in [3, 4, 5, 22], however, the metrics used to discover
and evaluate the local community are different, as explained in the next section.
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3.2 Previous Approaches

Clauset has proposed the local modularity measure R [5] for the local community
detection problem. R focuses on the boundary node set B to evaluate the quality of
the discovered local community D.

R =
Bin edge

Bout edge +Bin edge
(1)

where Bin edge is the number of edges that connect boundary nodes and other nodes
in D, while Bout edge is the number of edges that connect boundary nodes and nodes
in S. In other words, R measures the fraction of those “inside-community” edges in
all edges with one or more endpoints in B. Therefore, the community D is measured
by the ”sharpness” of the boundary given by B.

Similarly, Luo et al. later proposed the measure called modularity M [22] for lo-
cal community evaluation. Instead of measuring the internal edge fraction of bound-
ary nodes, they directly compare the ratio of internal and external edges.

M =
number o f internal edges
number o f external edges

(2)

where “internal” means two endpoints are both in D and “external” means only one
of them belongs to D. An arbitrary threshold is set for M so that only node sets
that have M ≥ 1 are considered to be qualified local communities. M is strongly
related to R. Consider a candidate node set D where every node in D has external
neighbours, thus we have |C|= 0 and B = D, which means Bin edge = internal edges
and Bout edge = external edges. The threshold M ≥ 1 is equivalent to R ≥ 0.5. It
is straight-forward to identify local communities with the R or M metric. Given a
starting set D, in every step we merge the node into D from S which most increases
the metric score, and then update D, B and S. This process is repeated until all nodes
in S give negative value if merged in D, i.e., ∆R < 0 or ∆M < 0.

Indeed algorithms using these metrics are able to detect communities in complex
networks, however, their results usually include many outliers, i.e., the discovered
communities have high recall but low accuracy, which reduces the overall commu-
nity quality. Figure 2 illustrates the problem for R and M. In the figure, we have a
local community D, its boundary B and nodes O1, ...,O11, which are outliers since
they are barely related to nodes in D. Without loss of generality, let us assume that
all nodes in S, except O1 and O9, will decrease the metric score if included in D.
Now if we try to greedily maximize the metric R or M, all outliers (O1 to O8 and
O9 to O11) will be merged into D, one by one. The reason is that every merge of
node Oi does not affect the external edge number but will increase the internal edge
number by one. Similarly, the algorithm would merge any node into D as long as
it connects to the same number of nodes inside and outside the local community
node set. Therefore, in addition to actual members, the resulting community would
contain many weak-linked outliers, whose number can be huge for some networks,
e.g., the WWW.
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Fig. 2 Problem of Previous Approaches

4 Our Approach

Existing approaches discussed in Section 3 are relatively simple: an effective local
community detection method should be simple, not only because the accessible in-
formation of the network is restricted to merely a small portion of the whole graph,
but also because the only means to incorporate more information about the structure
is by expanding the community, by one node at one step. With these limitations in
mind, we present our L metric and the local community discovery algorithm.

4.1 The Local Community Metric L

Intuitively, there are two factors one may consider to determine whether a node set in
the network is a community or not: 1) high value node relations within the set, and 2)
low value relations between inside nodes and the rest of the graph. Therefore, almost
all existing metrics directly use the internal and external degrees to represent these
two significant factors, and identify local communities by maximizing the former
while minimizing the latter. However, their community results might include many
outliers and the overall community quality is questionable (See Section 3.2 and
Section 5.1.1 for examples). The important missing aspect in these metrics is the
connection density, because is not the absolute number of connections that matters
in community structure evaluation. For instance, even if there are one million edges
within one node set N and no outward links at all, it is not sensible to identify N
as a strong community if every node in N connects only one or two neighbours.
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We therefore propose to measure the community internal relation Lin by the average
internal degree of nodes in D:

Lin =
∑i∈D IKi

|D|
(3)

where IKi is the number of edges between node i and nodes in D. Similarly, we
measure the community external relation Lex by the average external degree of nodes
in B:

Lex =
∑ j∈B EK j

|B|
(4)

where EK j is the number of connections between node j and nodes in S. Note that
Lex only considers boundary nodes instead of the whole community D, i.e., the core
nodes are not included since they do not contribute any outward connections. Now
we want to maximize Lin and minimize Lex at the same time. Fortunately, this can
be achieved by maximizing the following ratio:

L =
Lin

Lex
(5)

Note that it is possible to quantify the density Lex by other means, e.g., by using the
average number of connections from the shell nodes to community nodes to mea-
sure Lex. However, this method fails for the local community identification problem
because the shell set is usually incomplete. For example, while the friend list of user
A is available in Facebook, the list of the users that choose A as a friend is hard to
obtain.

4.2 Local Community Structure Discovery

Using L to evaluate the community structure, one can identify a local community
by greedily maximizing L and stopping when there are no remaining nodes in S
that increases L if merged in D. However, this straight-forward method is not robust
enough against outliers. Take Figure 2 as an example. Although Lin for O1 would
decrease because O1 only connects to one node in D, the overall L might increase
because the denominator Lex decreases as well (O1 only connects to one node out-
side D). Therefore, it is still possible to include outlier O1 in the community. To deal
with this problem, we look further into the metric instead of simply maximizing the
score in a greedy manner. We note there are three situations in which we have an
increasing L score. Assume i is the node in question and L′

in, L′
ex and L′ are corre-

sponding scores if we merge i into D, the three cases that will probably result in
L′ > L are:
1. L′

in > Lin and L′
ex < Lex

2. L′
in < Lin and L′

ex < Lex

3. L′
in > Lin and L′

ex > Lex
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Obviously nodes in the first case belong to the community since they strengthen
the internal relation and weaken the external relation. Nodes in the second case,
e.g., O1 in Figure 2, are outliers. They are weakly connected to the community as
well as the rest of the graph. Finally, the role of nodes in the third case cannot
be decided yet, since they are strongly connected to both the community and the
network outside the community. More specifically, when we meet a node i, which
falls into this case during the local community discovery process, there are two
possibilities. First, node i can be the first node of an enclosing community group
that is going to be merged one by one; Second, i connects to many nodes, inside or
outside the community, and can be referred to as a “hub.” We do not want hubs in
the local community. However, it is too early to judge whether the incoming node
is a hub or not. Therefore, we temporarily merge nodes in the first and third cases
into the community. After all qualified nodes are included, we re-examine each node
by removing it from D and check the metric value change of its merge again. Now
we only keep nodes in the first case. If node i is a member of an enclosing group,
L′

ex should decrease because all its neighbours are now in the community as well,
while hub nodes would still belong to the third case (See Algorithm 1). Finally, the
starting node should still be found in D, otherwise, we believe a local community
does not exist if we start from n0. (See Algorithm 2.)

Algorithm 1 General Local Community Identification
Input: A social network G and a start node n0.
Output: A local community with its quality score L.
1. Discovery Phase:
Add n0 to D and B, add all n0’s neighbours to S.
do
for each ni ∈ S do
compute L′

i
end for
Find ni with the maximum L′

i, breaking ties randomly
Add ni to D if it belongs to the first or third case
Otherwise remove ni from S.
Update B, S, C, L.

While (L′
> L)

2. Examination Phase:
for each ni ∈ D do
Compute L′

i, keep ni only when it is the first case
end for

Algorithm 2 Single Local Community Identification
Input: A social network G and a start node n0.
Output: A local community D for node n0.
1. Apply algorithm 1 to find a local community D for n0.
2. If n0 ∈ D, return D, otherwise there is no local community for n0.
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The computation of each L′
i can be done quickly using the following expression.

L′
i =

Ind+2∗Indi
|D|+1

Outd−Indi+Outdi
|B′|

(6)

where Ind and Outd are the number of within and outward edges of D before merg-
ing i, and should be updated after each merge; Indi and Outdi are the number of
edges from node i to the community and the rest of network; B′ is the new bound-
ary set after examining all i’s neighbour in D. In the discovery phase, L′

i need to
be recomputed for every node in S to determine the one with the maximum ∆L,
thus the complexity of the algorithm is O(kd|S|), where k is the number of nodes
in the D, and d is the mean degree of the graph. However, in networks for which
local community algorithms are applied, e.g., the WWW, and where adding a new
node to D requires the algorithm to obtain the link structure, the running time will
be dominated by this time-consuming network information retrieval. Therefore, for
real world problems the running time of our algorithm is linear in the size of the
local community, i.e., O(k). Note that in Algorithm 1 we begin with only one node
n0, but the same process could apply for multiple nodes to allow a larger starting D,
C, B and S.

4.3 Iterative Local Expansion

Algorithm 1 is for identifying one local community for a specific set of starting
nodes. However, we could apply this algorithm iteratively to cover the whole graph
or a large section of the graph if the iterative process is terminated. In other words,
instead of one-node-at-one-step, we expand as one-community-at-one-step to dis-
cover the community structure in the network. See Algorithm 3.

Algorithm 3 Iterative Expansion Algorithm
Input: A social network G, a start node n0 and the community number m (optional).
Output: A list of local communities.
1. Apply algorithm 1 to find a local community l0 for n0.
2. Insert neighbours of l0 into the shell node set S
3. While (|S|! = 0 && (i ≤ m))

Randomly pick one node ni ∈ S.
Apply algorithm 1 to find a local community li

for ni.
Remove ni and nodes in S that are covered by li.
Update S by neighbours of li that are not covered
yet.

4. Output m local communities l0, l1, l2..., lm, m could be given as a stop parameter if necessary.
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In algorithm 3, we recursively apply the local community identification algo-
rithm to expand the community structure. Every time we find a local community,
we update the shell node set, which is actually a set of nodes whose community
information is still unclear. Note that here we accept identified local communities
even if the starting node is not included. The shown algorithm stops when we have
learned the whole structure of the network; however, we could also give parameters
as stopping criteria if exploring the whole network is unnecessary or impractical,
such as the number of discovered communities (m), or the number of nodes that
has been visited (k). The algorithm could also be parallel and have multiple starting
nodes, where several local community identification procedures start simultaneously
from different locations of the network. Obviously, the complexity of the Algorithm
3 is still O(kd|S|).

As previously discussed, in real world networks, one entity usually belongs to
multiple communities. However, most of the existing approaches cannot identify
such overlapping communities. Fortunately, even though we do not specifically fo-
cus on finding the overlapping property, our approach is able to discover overlap-
ping communities, since in our algorithm nodes could be included in multiple local
communities based on their connection structure.

5 Experiment Results

In this section we conducted several experiments to validate the effectiveness of the
proposed approach.

5.1 Comparing Metric Accuracy

Since the ground truth of local communities in a large network is hard to define,
previous research usually apply their algorithms on real networks and analyze the
results based on common sense, e.g., visualizing the community structure or manu-
ally evaluating the relationship between disclosed entities [4, 5, 22]. Here we adapt
a different method to evaluate the discovered local communities. We provide a so-
cial network with absolute community ground truth to the algorithm, but limit its
access to network information to local nodes only. The only way for the algorithm
to obtain more network knowledge is to expand the community, one node at a time.
Therefore, we can evaluate the result by its accuracy, while satisfying limitations
for local community identification. Based on our observations, the greedy algorithm
based on metric R [5] (we refer to it as algorithm R) outperforms all other known
methods for local community detection. Furthermore, similar to our approach, R
does not require any initial parameters while other methods [3, 4, 22] rely on pa-
rameter selection. Therefore, in this section we compare the results of our algorithm
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and algorithm R on different real world networks to show that our metric L is an
improvement for local community detection.

5.1.1 The NCAA Football Network

The first dataset we examine is the schedule for 787 games of the 2006 National
Collegiate Athletic Association (NCAA) Football Bowl Subdivision (also known as
Division 1-A) [37]. In the NCAA network, there are 115 universities divided into 11
conferences1. In addition, there are four independent schools, namely Navy, Army,
Notre Dame and Temple, as well as 61 schools from lower divisions. Each school
in a conference plays more often with schools in the same conference than schools
outside. Independent schools do not belong to any conference and play with teams
in all conferences, while lower division teams play only few games. In our network
vocabulary, this network contains 180 vertices (115 nodes as 11 communities, 4
hubs and 61 outliers), connected by 787 edges.

We provide this network as input to our algorithm and algorithm R. Every node in
a community, which represents one of the 115 schools in an official conference, has
been taken as the start node for both algorithms. Based on the ground truth posted
online, the precision, recall and f-measure score, which is defined as the harmonic
mean of precision and recall, of all the discovered local communities are calculated.
We average the score for all schools in one conference to evaluate the accuracy of
the algorithm to detect that particular community. Finally, an overall average score
of the precision, recall and f-measure score of all communities is calculated for
comparison.

The experiment results are shown in Table 1. We first note the disadvantage of
metric R we reviewed theoretically in Section 3.2, which is vulnerability against
outliers, has been confirmed by the results: for all communities, Algorithm R gets a
higher recall but a much lower precision, which eventually leads to an unsatisfactory
f-measure score. On the other hand, the accuracy of our algorithm is almost perfect,
with a 0.952 f-measure score on average. Second, we see that our algorithm does not
return local communities if starting with certain nodes in the network, namely 34 of
the 115 schools representing 29.6%. (Note that in these cases the local community
is considered not existent and is not included in the average accuracy calculation
even though the starting nodes are not outliers.) However, this result actually shows
merit of our approach instead of weak points. Generally speaking, in one local com-
munity, nodes can be classified into cores and peripheries. It would be easier for an
algorithm to identify the local community if it began from cores rather than periph-
eries. For example, if the algorithm starts from a periphery node i in community c,
the expansion step might fall into a different neighbour community d, which has
some members connecting to i, due to lack of local information. It would be more
and more difficult to return to c as the algorithm proceeds, because members of d are
usually taken in one after another and finally, the discovered local community would
1 The ground truth of communities (conferences) can be found at
http://sports.espn.go.com/ncf/standings?stat=index&year=2006
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be d plus node i, instead of c. Fortunately, our algorithm detects such phenomena
in the examination phase since i will be found as an outlier to d. Therefore we do
not return the result as a local community for i since we realize that it is misdirected
in the beginning. As a possible solution for this problem, we can always start with
multiple nodes, by which we provide more local information to avoid the possi-
ble misdirection. Note that while our algorithm handles such situations, algorithm
R returns communities for every node without considering this problem, which is
one reason for its low accuracy. Also note that another approach [22] has a similar
“deletion step”, however, that approach depends on arbitrarily selected thresholds.

2006 NCAA League Algorithm Results
Algorithm using metric R Algorithm using metric L

Conference Size P R F No Community P R F
Mountain West 9 0.505 0.728 0.588 0 node 0.944 1 0.963
Mid-American 12 0.392 0.570 0.463 1 nodes 0.923 1 0.96
Southeastern 12 0.331 0.541 0.410 3 nodes 1 1 1

Sun Belt 8 0.544 0.891 0.675 3 nodes 1 1 1
Western Athletic 9 0.421 0.716 0.510 4 nodes 0.6 1 0.733

Pacific-10 10 0.714 1 0.833 0 nodes 1 1 1
Big Ten 11 0.55 1 0.710 9 nodes 0.729 1 0.814
Big East 8 0.414 0.781 0.534 5 nodes 1 1 1

Atlantic Coast 12 0.524 0.924 0.668 3 nodes 1 1 1
Conference USA 12 0.661 1 0.796 1 nodes 1 1 1

Big 12 12 0.317 0.465 0.355 5 nodes 1 1 1
Total 115 0.488 0.783 0.595 34 nodes (29.6%) 0.927 1 0.952

Table 1 Algorithm Accuracy Comparison for the NCAA Network (Precision (P), Recall (R) and
F-measure (F) score are all average values for all nodes in the community).

5.1.2 The Amazon Co-purchase Network

While mid-size networks with ground truth provide a well-controlled testbed for
evaluation, it is also desirable to test the performance of our algorithm on large real
world networks. However, since ground truth of such large networks is elusive, we
have to justify the results by common sense. We applied our algorithm and algo-
rithm R to the recommendation network of Amazon.com, collected in January 2006
[22]. The nodes in the network are items such as books, CDs and DVDs sold on the
website. Edges connect items that are frequently purchased together, as indicated by
the “customers who bought this book also bought these items” feature on Amazon.
Note that in this dataset we are looking for communities of “items” instead of com-
munities of “people”. There are 585,283 nodes and 3,448,754 undirected edges in
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Alg. Items (Books) in the Local Community

Both

Smith of Wootton Major∗
LoR: A Reader’s Companion#

LoR: 50th Anniversary, One Vol. Edition∗
(The starting node) LoR [BOX SET]∗

L

On Tolkien: Interviews, ... and Other Essays#

Tolkien Studies: ... Scholarly Review, Vol. 2#

Tolkien Studies: ... Scholarly Review, Vol. 1#

... Grammar of an Elvish Language from LoR#

J.R.R. Tolkien Companion and Guide#

The Rise of Tolkienian Fantasy#

... Celtic And Norse in Tolkien’s Middle-Earth#

R

Farmer Giles of Ham & Other Stories∗
... Farmer Giles of Ham∗

Roverandom∗

Letters from Father Christmas, Revised Edition∗
Bilbo’s Last Song∗

... Wonderful Adventures of Farmer Giles∗
Poems from The Hobbit∗

Father Christmas Letters Mini-Book∗
Tolkien: The Hobbit Calendar 2006∗

Table 2 Algorithm Comparison for the Amazon Network. ∗ indicates the author is J.R.R. Tolkien
while # is not.

this network with a mean degree of 5.89. Similar datasets have been used for testing
in previous works [5, 22].

In table 2, we present discovered local communities for one popular book (The
Lord of the Rings (LOR) by J.R.R. Tolkien), which is used as the starting node.
While both algorithms find communities, our algorithm detects books by authors
other than Tolkien but are strongly related to the topic. On the other hand, more
than 90% of the books in R’s community are written by Tolkien. Moreover, after
reading the reviews and descriptions on Amazon, we found that many of the books
are for children, e.g, Letters from Father Christmas. These books are not related to
dragons and magic, but are included in the community because they weakly connect
to the starting node since they share the same author, as we discussed in Section 3.2.

5.2 Iteratively Finding Overlapping Communities

After evaluating the accuracy of the L metric and our algorithm for single com-
munity identification, here we apply Algorithm 3 on the Amazon network to find
overlapping communities iteratively. Table 3 shows several local community exam-
ples of our result. Note that start nodes of some communities may be removed by
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Items (Books) in the Local Communities
1 Mozart: A Cultural Biography
2 The Cambridge Companion to Mozart (Cambridge Companions to Music)
3 The Mozart Compendium: A Guide to Mozart’s Life and Music
4 Mozart: The Golden Years
... ...
19 The Complete Mozart: A Guide to the Musical Works ...
1 Chopin In Paris: The Life And Times Of The Romantic Composer
2 The Cambridge Companion to Chopin (Cambridge Companions to Music)
3 Chopin (Master Musicians Series)
4 Chopin: The Man and His Music
5 Chopin’s Letters
... ...
15 The Parisian Worlds of Frederic Chopin
1 The Cambridge Companion to Schubert (Cambridge Companions to Music)
2 The Cambridge Companion to Mozart (Cambridge Companions to Music)
3 The Cambridge Companion to Chopin (Cambridge Companions to Music)
4 The Cambridge Companion to Stravinsky (Cambridge Companions to Music)
5 The Cambridge Companion to Ravel (Cambridge Companions to Music)
... ...
9 The Cambridge Companion to Beethoven (Cambridge Companions to Music)
1 The New Webster’s Grammar Guide
2 Hardcover, Longman Grammar of Spoken and Written English
3 Editorial Freelancing: A Practical Guide
4 The Oxford Dictionary for Writers and Editors
... ...
52 Modern American Usage: A Guide
1 Shakespeare’s Language
2 Imagining Shakespeare
3 Hamlet: Poem Unlimited
4 ... A Complete Pronunciation Dictionary for the Plays of William Shakespeare
... ...
66 William Shakespeare: A Compact Documentary Life
Table 3 Overlapping Local Community Examples for the Amazon Network
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our algorithm. Such communities are not included using Algorithm 2 for single local
community identification in earlier experiments.

The first community has 19 nodes, originated at the book Mozart: A Cultural Bi-
ography. It naturally includes other books about the life and music of the legendary
musician. Similarly, we have another 15-node-community about the famous Polish
pianist Chopin. The third community is a book series, which is the Cambridge Com-
panions to Music. Finally, the fourth community and fifth community contain books
about English grammar and William Shakespeare. Note that many other global com-
munity detection algorithms, e.g., FastModularity [6], become slow for such huge
networks. Moreover, they may not apply if the global network information is un-
available.

Aside from local communities of books in Amazon, our approach also finds over-
laps between communities. For example, the two books The Cambridge Compan-
ion to Mozart (Cambridge Companions to Music) and The Cambridge Companion
to Chopin (Cambridge Companions to Music) are found both in the community of
the book series and the community of the subject. One could easily justify there is
indeed some overlap.

6 Conclusion and Future Work

We have reviewed problems of existing methods for constructing local communi-
ties, and propose a new metric L to evaluate local community structure when the
global information of the network is unavailable. Based on the metric, we develop a
two-phase algorithm to identify the local community of a set of given starting nodes.
Our method does not require arbitrary initial parameters, and it can detect whether a
local community exists or not for a particular node. Moreover, we extend the algo-
rithm to an iterative local expansion approach to detect communities to cover large
networks. We have tested our algorithm on real world networks and compared its
performance with previous approaches. Experimental results confirm the accuracy
and the effectiveness of our metric and algorithm.

In this work, we assume the social network to be “static”. It would be interesting
to investigate the possibility of extending the proposed metric and algorithms to
discover communities in a dynamic social network. Our future work also includes
the investigation of a means to validate the effectiveness of overlapping community
detection in a large network without ground truth.
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