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Abstract. Co-location mining is one of the tasks of spatial data min-
ing, which focuses on the detection of the sets of spatial features fre-
quently located in close proximity of each other. Previous work is based
on transaction-free apriori-like algorithms. The approach we propose is
based on a grid transactionization of geographic space and designed to
mine datasets with extended spatial objects. A statistical test is used
instead of global thresholds to detect significant co-location patterns.

1 Introduction

Co-location mining aims to discover patterns of spatial features often located
close to each other in geographic proximity. An example is a co-location of sym-
biotic species of plants and animals depending on ecological conditions. The main
purpose of co-location mining is to come up with a set of hypotheses based on
data features and statistics that can be useful for domain experts to reduce the
range of possible patterns that are hidden and need to be checked. Even though
this task seems to be similar to association rule mining (ARM), the adaptation
of ARM techniques is not trivial due to the fact that features are embedded into
a geographic space and there is no clear notion of transactions.

Most of the existing approaches to the co-location mining problem [1–4]
deploy a framework which requires a user-defined minimum prevalence threshold.
Without prior knowledge, it could be difficult to choose a proper threshold.
Furthermore, spatial features often have various frequencies in datasets, and one
global threshold might lead to omission of some co-location patterns and rules
with rare events or detection of meaningless patterns. Another limitation of most
algorithms is that they work with point spatial features and one neighborhood
distance threshold, whereas in reality there are datasets which in addition to
point instances also have lines and polygons, e.g., a road network map.

We propose a new framework which combines co-location mining, frequent
pattern and association rule mining. A statistical test is used to determine the
significance of co-location patterns and rules. A co-location is considered as sig-
nificant if it has a surprisingly high level of prevalence in comparison with ran-
domized datasets which are built under the null hypothesis that the features are
independent from each other. We improve computation with filtering techniques.
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The motivating application of this paper is the detection of possible spatial
associations of chemicals and cases of childhood cancer. Although some people
are genetically predisposed to cancer, most of the cases of cancer are caused
by environmental factors, such as air pollutants, radiation, infections, tobacco,
and alcohol. However, the causes of childhood cancer are difficult to determine
partially because of the fact that children’s cancer cases are rare and the levels of
exposure to environmental factors are hard to evaluate. A collaborative research
effort with the Faculty of Medicine is trying to identify associations between
cancer cases and known emissions by industry. Some chemicals are proven to
be carcinogens while others are not known to cause cancer in isolation. It is
unknown if certain combinations of chemicals can be associated with higher rates
of cancer. Moreover, even if potentially problematic combinations are not emitted
by the same industry, atmospheric conditions can contribute to the mixture. We
deploy our model on the dataset containing information on chemical emission
points and amounts of release in Alberta, Canada, and childhood cancer cases
with their location when they were first diagnosed. Our data is obtained from
the National Pollutant Release Inventory (NPRI), Canada’s legislated, publicly
accessible inventory of pollutant releases, as well as the health authorities in
Alberta for 1254 cancer cases of children younger than 19 between 2002 and
2007. NPRI for the province of Alberta provided 1465 points releasing a variety
of chemicals among 47 of interest, some carcinogenic and some not classifiable
as to carcinogenicity. In this paper we explain a modeling framework which is
used to handle the data as accurately as possible. While we are not intending to
find causalities, the goal of the study is to identify potential interesting spatial
associations in order to state hypotheses and investigate further the relationship
between cancer and specific combinations of chemicals.

The remainder of the paper is organized as follows. The overview of the re-
lated work is given in Section 2. The proposed framework and its outline are
described in Section 3. Section 4 describes the challenges and modeling frame-
work used to mine the pollutants and childhood cancer cases. The experiments
are presented in Section 5, followed by conclusions.

2 Related Work

2.1 Co-Location Mining

Co-location mining algorithms can be divided into two classes of methods: spatial
statistics approaches and spatial data mining approaches.

Spatial Statistics Approaches use statistical techniques such as cross
K-functions with Monte-Carlo simulations [5], mean nearest-neighbor distance,
and spatial regression models [6]. The disadvantages of these approaches are the
expensive computation time and the difficulty of application to patterns with
more than two spatial features.

Spatial Data Mining Approaches could be categorized into several types.
Transaction-based approaches work by creating transactions over space and us-
ing association rules [7–9]. One of the ways, a reference-centric model, creates
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transactions around a reference feature. However, this approach may consider
the same instance set several times. Another approach, a window-centric model,
divides the space into cells and considers instances in each cell as a transaction
which causes a problem of some instance sets being divided by cell boundaries.

Spatial join-based approaches work with spatial data directly. They include
cluster-and-overlay methods and instance-join methods. In the cluster-and-overlay
approach a map layer is constructed for each spatial feature based on instance
clusters or boundaries of clusters [10]. The authors propose two algorithms for
cluster association rule mining, vertical-view and horizontal-view approaches.
In the former, clusters for layers are formed and layers are segmented into a
finite number of cells. Then, a relational table is constructed where the element
is equal to one if the corresponding cell satisfies the event in a layer, and zero
otherwise. The association rule mining is applied to the table. The second ap-
proach uses intersections of clustered layers. A clustered spatial association rule
is of the form X → Y (CS%, CC%), where X and Y are the sets of layers, CS%
is the clustered support and CC% is the clustered confidence.However, these
approaches might be sensitive to the choice of clustering methods, and assume
that features are explicitly clustered.

Another type of spatial join-based methods - instance-join algorithms - is
similar to classical association rule mining. Shekhar and Huang [1] proposed a
co-location pattern mining framework which is based on neighborhood relations
and the participation index concept. The basic concepts of the co-location mining
framework are analogous to concepts of association rule mining. As an input,
the framework takes a set of spatial features and a set of instances, where each
instance is a vector that contains information on the instance id, the feature
type of the instance, and the location of the instance. As an output the method
returns a set of co-location rules of the form C1 → C2(PI, cp), where C1 and
C2 are co-location patterns, PI is the prevalence measure (the participation
index), and cp is the conditional probability. A co-location pattern is considered
prevalent, or interesting, if for each feature of the pattern at least PI% instances
of that feature form a clique with the instances of all other features of the pattern
according to the neighborhood relationship. Similarly to association rule mining,
only frequent (k − 1)-patterns are used for the k-candidate generation.

The approaches mentioned above use thresholds for measures of interesting-
ness, which causes meaningless patterns to be considered as significant with a
low threshold, and a high threshold may prune interesting rare patterns.

3 Algorithm

Various approaches to the co-location mining problem have been proposed during
the past decade. However, most of them focused on improving the performance of
existing frameworks which have several disadvantages. Several studies addressed
these issues but only separately, and these issues remain major hurdles for some
real-world applications such as our motivating problem of finding co-locations of
cancer cases and pollutant emission points.
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First, the usage of thresholds for the detection of interesting co-location pat-
terns and rules is the main limitation factor of many co-location mining algo-
rithms. In spatial datasets the features usually have a varying number of in-
stances; they could be extremely rare or be present in abundance. Therefore,
one threshold for participation index (or any other significance measure) can-
not capture all meaningful patterns, while other patterns could be reported as
significant even if their relation is caused by autocorrelation or other factors.
In addition most current algorithms use a candidate generation process which
forms (k + 1)-size candidates only from significant k-size patterns. However, a
set of features could be interesting even if some of its subsets are not significant
(for example, two chemicals may not be correlated with disease separately, but
cause it when they are combined). In this work we use the statistical test which
replaces one global threshold. It is proposed for co-location mining by Barua and
Sander [11]. The pattern is considered significant, if the probability of seeing the
same or greater value of the prevalence measure in N artificial datasets is less
than α (the significance level) under the null hypothesis that there is no spatial
dependency among features of the pattern. Each candidate pattern is evaluated
separately rather than applying one threshold for all of them.

Second, most co-location mining approaches are designed for spatial datasets
with point features. However, other types of objects may exist in spatial data
such as lines (roads) and polygons (polluted regions). Even though the frame-
work for extended objects [4] deals with lines and polygons, it also uses one
threshold for the prevalence measure. If the statistical test is applied to this
model, computationally expensive GIS overlay methods should be used for each
candidate pattern in order to calculate its prevalence measure in a real and
randomized datasets. When the number of patterns and simulation runs in the
statistical test are large, this method could become prohibitively expensive.

We propose a new framework that addresses the aforementioned limitations.
It uses grid-based “transactionization” (creating transactions from a dataset).
The statistical test is performed on the derived set of transactions to get signif-
icant co-location rules or patterns.

3.1 Algorithm Design

The objective is to detect significant patterns in a given spatial dataset that have
the prevalence measure value higher than the expected one. The spatial dataset
may contain points, lines or polygons. A buffer is built around each spatial
object, and it defines the area affected by that object; for example, the buffer
zone around an emission point shows the area polluted by a released chemical.
The buffer size might be one for all objects or it might be different for each of
the spatial instances depending on various factors which may vary for different
applications. In addition, the likelihood of the presence of the corresponding
feature in the region covered by the object and its buffer is not uniform and may
depend on factors such as the distance from the object.

We propose a new transaction-based approach that is suitable for extended
spatial objects. Previous transaction-based methods have some limitations. A
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Fig. 1. Transactionization step: (a) an example spatial dataset with point feature in-
stances and their buffers; (b) a grid imposed over the space; (c) grid points which
intersect with buffers are used to create transactions.

window-centric model cuts off neighborhood relations of instances located close
to each other but in different partitions. A reference-centric model may get du-
plicate counts of spatial instances. In addition, it is nontrivial to generalize this
approach to applications with no reference feature. Instead of these models we
propose a new transactionization method. In order to transform spatial data
into transactions, we use a grid which points are imposed over the given map.
Fig. 1 (a) displays an example dataset with buffers around spatial point in-
stances, and a grid is laid over it (Fig. 1 (b)). Similarly, buffers can also be
created around linear and polygonal spatial objects. In a two-dimensional space,
the grid points represent a square regular grid.

Each point of the grid can be seen as a representation of the respective part
of the space. A grid point may intersect with one or several spatial objects and
their buffers. A transaction is defined as a set of features corresponding to these
objects. A probability of a feature being in a transaction is also stored and it
may depend on the distance from the spatial object. For example, the grid point
gp2 in Fig. 1 (c) is located closer to the point A1 than the point gp1; therefore,
p(A, gp2) > p(A, gp1). The granularity of the grid should be carefully chosen for
each application and it could depend on the average size of the region covered
by a spatial object and its buffer. Choosing too great a distance between grid
points may negatively affect the accuracy of the results because small feature
regions and their overlaps might get a different number of intersecting grid points
depending on the grid imposition. The short distance between grid points leads
to a great number of derived transactions, and the following computation of
pattern significance levels might become prohibitively expensive.

Given a set of transactions T , derived after the transactionization of the
spatial dataset, and a set of spatial features F , the prevalence measure value is
calculated for all candidate co-location patterns or rules. In some applications
experts look for sets of features that are co-located with each other. The expected
support ExpSup(P ) might be used to define the level of the interestingness of
a pattern P . For other applications, researchers intend to analyze a predefined
set of rules. For example, for a dataset of disease outbreaks and possible cause
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factors a typical co-location rule is of the form C → D, where C is a subset
of cause features and D is a disease feature. For these projects, the expected
confidence ExpConf(X → Y ) can be used as a prevalence measure of a co-
location rule (X → Y ), where X ⊆ F , Y ⊆ F , and X ∩ Y = ∅. Algorithm 1
shows the outline of our model in the case when co-location patterns are mined.

Definition 1 The probability p(P, t) of the pattern P occurring in a transaction
t is the product of the corresponding feature instance probabilities, p(P, t) =∏
f∈P

p(f, t).

Definition 2 The expected support ExpSup(P ) of a pattern P is defined as the
sum of expected probabilities of presence of P in each of the transactions t in the
database, ExpSup(P ) =

∑
t∈T

p(P, t).

Definition 3 The expected confidence ExpConf(X → Y ) of a rule X → Y is
defined as ExpConf(X → Y ) = ExpSup(X ∪ Y )/ExpSup(X).

The next step, the statistical test, helps to estimate the likelihood of seeing
the same level of the prevalence measure or greater under a null hypothesis that
features of a pattern or rule are spatially independent from each other.

Definition 4 A pattern P is said to be significant at level α, if the probability p
of seeing the observed expected support ExpSupobs or larger in a dataset, com-
plying with a null hypothesis, is not greater than α. (The same for ExpConfobs)

Let us suppose that the expected confidence ExpConf is used as a prevalence
measure. Let ExpConfobs(X → Y ) denote the expected confidence of a co-
location ruleX → Y in a real dataset, and ExpConfrand(X → Y ) - the expected
confidence of X → Y in a randomized dataset which is generated under the null
hypothesis. In order to estimate the probability p, the expected confidence of
the co-location rule in R randomized datasets is calculated. Having the number
of simulations R, the value of p is computed as:

p =
R≥ExpConfobs + 1

R+ 1
, (1)

where R≥ExpConfobs is the number of simulations in which ExpConfrand(X →
Y ) ≥ ExpConfobs(X → Y ). The observed dataset is added to both numerator
and denominator.

If the p-value is less or equal to the predefined level of significance α, the null
hypothesis is rejected. Therefore, the co-location rule X → Y is significant at
level α.

3.2 Candidate Filtering Techniques

The calculation of the p-value is repeated for all candidate co-location patterns or
rules. The number of candidates grows exponentially with the number of spatial
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features in the dataset. In addition, the accuracy of the p-value depends on the
number of simulation runs; therefore, the more randomized datasets are checked,
the more accurate are the results. These two factors may lead to an enormous
amount of computation. However, the support of a co-location decreases as the
size of a candidate pattern or rule increases, because less transactions contain all
its features. Therefore, one might put a threshold on the support or the maximal
size of a candidate in order to analyze only patterns and rules that are backed by
a meaningful number of transactions. In addition, we use the following filtering
techniques to exclude candidate patterns and rules that are de facto insignificant.

– First, after the calculation of the prevalence measure for candidate patterns
in a real dataset, a subset of patterns may have a prevalence measure value
equal to zero. Obviously, these patterns cannot be statistically significant
and they can be excluded from the set of candidate patterns (lines 6-7 in
Algorithm 1).

– Second, during the calculation of the p-value for the candidate patterns for
which the observed prevalence is higher than zero, some of the candidate
patterns might show a p-value that exceeds the level α. For example, let us
assume that the number of simulation runs is 99 and α = 0.05. If after ten
simulation runs the prevalence measure of a pattern P is greater than the
observed prevalence in 5 randomized datasets, pattern P already surpassed
the threshold ((5+ 1)/(99+ 1) > 0.05) and, therefore, can be excluded from
the following 89 checks (lines 15-17 in Algorithm 1). With this filter, after the
last simulation run the set of candidates contains only significant patterns.

4 Modeling Framework

The modeling framework that is used to handle and analyze the data is an
important part of practical research. In theoretical studies it could be simpli-
fied in order to generalize the task and define algorithms that could be applied
for a wide range of applications. However, the usage of general approaches and
algorithms may result in misleading or even wrong results. For example, the
neighborhood distance threshold is an important measure of interaction and re-
lationship between features. Obviously, one distance threshold cannot capture
accurately all links among features. In biology, various animal species have dif-
ferent home ranges, areas where they search for food; rodents may require little
space, while birds forage on wider regions. Another example is derived from ur-
ban studies. Two points of interest, e.g., a shopping mall and a grocery store,
could be situated on a distance exceeding a threshold, but if they are connected
by a high quality road, they are more likely to be co-located than other two
points positioned seemingly close to each other but separated by some obstacle.
Most domains of research, if not all, have their own nuances that must be taken
into account by researchers in order to get most accurate and significant results.

The motivating task of this paper, detecting co-locations of pollutants and
cancer cases, has unique difficulties and challenges. The distribution of a pollu-
tant is not uniform and it could depend on several factors: types of pollutants,
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Algorithm 1. Mining significant co-location patterns

Input: Spatial dataset S; Level of significance α; Number of simulation runs R.
Output: Set of significant co-location patterns P
1: Impose a grid over the real dataset
2: T ← set of derived transactions
3: CP ← set of candidate patterns
4: for each cp ∈ CP do
5: cp.ExpSupobs ← ComputeExpSup(T )
6: if cp.ExpSupobs = 0 then
7: CP ← CP/cp
8: end if
9: end for
10: for i = 1→ R do
11: Impose a grid over the i-th randomized dataset
12: T ← set of derived transactions
13: for each cp ∈ CP do
14: cp.ExpSupsim[i]← ComputeExpSup(T )
15: if cp.ExpSupsim[i] ≥ cp.ExpSupobs then
16: cp.R≥ExpSupobs ← cp.R≥ExpSupobs + 1

17: cp.α← cp.R≥ExpSupobs
+1

R+1

18: if cp.α > α then
19: CP ← CP/cp
20: end if
21: end if
22: end for
23: end for
24: P ← CP
25: return P

amounts of release, climatic conditions (wind, precipitation), topography, etc.
Various chemicals have different levels of harmfulness. In addition, the pollutant
concentration is directly proportional to the distance from an emitting point.
These are only several examples. We show how we tackled some of these prob-
lems such as pollutant amounts, wind speed and direction, and the concentration
of chemicals. Certainly, we do not aim to reproduce complicated air pollution
distribution models. Instead, our model gives a simple framework that increases
the accuracy of results while operating with available data.

4.1 Pollutant Amounts

The dataset on pollutants contains the data on yearly releases of chemicals. For
our research we take an average amount of release for a year on given facili-
ties and chemicals, which is further normalized by Toxic Equivalency Potentials
(TEPs) when they are available. TEP shows the relative risk associated with
one kilogram of a chemical in comparison with the risk caused by one kilogram
of benzene. Chemicals with high TEPs are extremely toxic. The range of the
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a b c

Fig. 2.Modeling framework usage examples: (a) an example spatial dataset (A - cancer,
B and C - pollutants); (b) buffer sizes vary depending on the pollutant release amount;
(c) buffer shapes change with the wind direction and speed (shown by arrows).

average amount values varies from several kilograms to tens of thousands tons;
the maximum average yearly release in the dataset is 80,000 tons. Certainly, one
distance threshold for all pollutant emissions is inaccurate, because the more a
chemical is released, the farther it distributes from a source point. Fig. 2 (a)
displays an example dataset containing cancer points (feature A) and chemical
points (features B and C). On Fig. 2 (b) buffer zones around pollutant points
are based on the amount released. For example, instance C1 has a larger zone
affected by this source point than instance C3 which has smaller amount of
emission. Buffer zones of cancer points denote average active living zones.

For simplicity, we decided to take the maximal distance as the natural loga-
rithm function of the release amount. This function gives a smooth curve which
does not grow as fast as linear or root functions that give large numbers for
heavier releases. Even though this technique oversimplifies the real world con-
ditions of pollutant dispersion, it helps to make the results more precise. Other
functions can be used to calculate the maximal distribution distance and they
can depend on a type of a pollutant (a heavier chemical settles faster and on a
shorter distance from a chimney) or a height of a chimney. An additional point
that could be considered in future work is that the area very close to a chimney
does not get polluted, and the higher is the chimney, the bigger is that area.

4.2 Wind Speed and Direction

The climatic conditions and topographical features may affect the distribution
of chemicals in the air. The examples of these factors are prevailing winds, pre-
cipitation, relative humidity, mountains, hills, etc. At the first step in this part
of the modeling framework we include the wind speed and the prevailing wind
direction on source points as variables of the model.
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Regarding the wind speed and direction, two situations are possible. First,
the region where a facility is located is windless throughout the year. In this case,
the pollutant is assumed to disperse in a circular region around the source point
with the radius of the circle derived from the released amount as discussed in
the previous subsection. However, the second situation is more frequent - there
is nonzero wind speed with a prevailing wind direction. In this case we presume
that the original distribution circle is morphed into a more ellipse-like region.
Our calculations of the characteristics of the ellipse are based on the works by
Getis and Jackson [12], and Reggente and Lilienthal [13]. The major axis of the
ellipse is in the direction of the prevailing wind. Furthermore, the coverage area
of the ellipse is supposed to remain constant. The source point can be placed on
the major axis of the ellipse between the center and upwind focus; in our model
we locate it in the middle of the segment between these two points. Fig. 2 (c)
illustrates elliptical buffer regions; their forms are dependent on the wind speed
and its frequent direction.

The lengths of the major semi-axis a and minor semi-axis b are derived from

the equations: a = r+ γ|v|, b = r2

a , where r - the radius of the original circle, v
- the wind speed, and γ - the stretching coefficient.

The larger the value of the stretching coefficient, the longer is the length of
the ellipse’s major axis. We fixed γ at 0.3, but it could have a different value for
each of the pollutants. The calculation of b follows our assumption that the area
of the ellipse is equal to the area of the original circle.

In order to get the values of the wind speed and prevailing wind direction,
the interpolation of wind fields between weather stations is used. The data of
monitoring stations comes from two sources. First, the data on 18 stations is ob-
tained from Environment Canada, which provide climate normals that are based
on climate stations with at least 15 years of data between 1971 and 2000. The
most frequent wind direction is the direction (out of possible eight directions)
with the highest average occurrence count. Second, the data on 156 stations
is derived from AgroClimatic Information Service (ACIS), a provincial govern-
ment service. The data is daily, between 2005 and 2011. In order to make the
data consistent, the average wind speed and the most frequent wind direction
are calculated using the same methods as for the federal government website
data.The climate normals from two sources are combined and used to make in-
terpolations in ArcGIS tool [14]. However, ArcGIS is restricted to linear surface
interpolations and the wind direction is a nonlinear attribute. In linear systems
(e.g., the number of sunny days) the number goes only in one direction. On the
other hand, nonlinear systems may have several paths. For example, there are
clockwise and counter-clockwise directions to move from 90◦ to 270◦: through
0◦ or 180◦.

Interpolation of wind fields requires a technique that considers nonlinear
nature of the wind direction attribute. The transformation is done according
to the work by Williams [15]. The wind speed and wind direction from each
monitoring station is represented as a vector with the magnitude S (wind speed)
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and direction θ (wind direction). The vector is divided into axial components
X = S sin θ (northern wind) and Y = S cos θ (eastern wind).

Based on these two components, two ArcGIS surface interpolations are cre-
ated. The type of interpolation used is spline. As a result we get two grids: for
northern X ′ and eastern wind Y ′. The magnitude of the vector, the wind speed
S′, is computed as:

S′ =
√

X ′2 + Y ′2. (2)

The calculation of wind direction angle θ′ is more complicated. From geom-
etry, the wind direction is calculated as θ′ = tan−1 (Y ′/X ′). However, due to
the fact that the inverse tangent is defined only for values between -90◦ and
90◦, each quadrant (the section of the graph which depends on the signs of wind
vector components; for example, Quadrant I is bounded by positive X ′ and Y ′,
Quadrant II - by positive X ′ and negative Y ′) requires its own formula [15]. As
a result we get interpolated values of wind speed and wind direction for each
point of the studied space.

5 Experimental Evaluation

We conducted experiments on a real dataset, containing data on pollutant emis-
sions and childhood cancer cases. The information on pollutants is for the 2002-
2007 period and contains the type of chemical, location of release, and average
amount of release per year. In order to get reliable results the chemicals that had
been emitted from less than three facilities are excluded from the dataset. There
are 47 different chemicals and 1,465 pollutant emission points; several chemi-
cals might be released from the same location. The number of cancer points
(addresses where a child lived when cancer was diagnosed) is 1,254. Claiming
discovering causality is wrong and controversial and thus we attempt only to find
”associations” rather than ”causalities”. The results are still subject to careful
evaluation by domain experts in our multidisciplinary team and the publication
of the found associations is not authorised at this point. It suffices to mention,
however, that some surprising rules were discovered indicating significant asso-
ciation between groups of chemicals, that were not categorized individually as
carcinogens, and childhood cancer, as well as rules with pairs of chemicals such
that one was known as carcinogenic but did not associate with cancer in our
data except in the presence of another that acted as a catalyzer.

We are interested in co-location rules of the form Pol → Cancer, where
Pol is a set of pollutant features and Cancer is a cancer feature. The expected
confidence is used as a prevalence measure. The distance between points in a grid
is 1 km; its effect is also evaluated. The number of simulations for the statistical
test is set to 99, so that with the observed data the denominator in Equation (1)
is 100. The level of significance α is set to 0.05. The size of an antecedent of
candidate rules is up to three. Larger candidates have low support values due to
the fact that the average number of features in a transaction in the experiment
is 1.95.
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The randomized datasets that are used in the statistical test are generated
as follows. Pollutant emitting facilities are not random and usually located close
to regions with high population density, while they are not present in other
places (e.g., in protected areas). Due to this observation, we do not randomize
pollutant points all over the region, but instead keep locations of facilities and
randomize pollutants within these positions. Out of 1,254 cancer points, 1,134
are located within dense ”urban” municipalities (cities, towns, villages, etc.) and
the rest are diagnosed in ”rural” areas. In order to have the randomized cancer
occurrence rate close to the real-world rate, we keep the number of cancer feature
instances positioned in ”urban” (”rural”) regions the same as in the real dataset.
The number of random cancer cases placed within each ”urban” municipality is
directly proportional to the number of children counted in the 2006 census.

Effect of Filtering Techniques The number of candidate co-location rules in
the experiment is 17,343 (co-locations with the antecedent size up to three). With
a naive approach all candidates would be checked in each simulation run. With
our filter excluding rules with zero-level confidence, 10,125 candidates remain.
The usage of the second filtering method (the exclusion of candidates which p-
values passed α) considerably reduces the amount of computation. While in the
first simulation run the confidence value is computed for 10,125 rules, in the last
run only 482 candidates are evaluated.

Effect of the Grid Granularity As already mentioned, the granularity of
the grid (the distance between grid points which affects the number of points
per unit of space) is crucial for the accuracy of the results. Having too long
distance between grid points may lead to omission of some regions of the space
especially when the average buffer distance is short. On the other hand, too short
distance between points leads to the greater number of transactions. Decreasing
the distance by two increases the transaction set size approximately by four.
Therefore, more computation needs to be done. The grid resolution might be set
up depending on the average buffer size.

In addition to the grid with 1 km granularity, we conducted two experiments
with 2 and 0.5 km grids. As mentioned above, the algorithm finds 482 co-location
rules with 1 km grid. With 2 km granularity 547 rules are detected from which
335 are present in both 1 and 2 km result sets, and 212 are unique for 2 km
grid. The difference means that 2 km distance between grid points is too long
for our dataset, where the average buffer size is 7.3 km, and its accuracy is
comparatively low due to the less number of transactions. The 0.5 granularity
grid reported 472 co-location rules as significant. From these, 426 are found with
both 1 and 0.5 km grids, and 46 rules are identified only by 0.5 grid. As we can
see, the difference between 0.5 and 1 km result sets is smaller than between 1 km
and 2 km grids. As the distance between points in a grid decreases, the accuracy
of the results improves.
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6 Conclusion

In this paper, we proposed a new solution to the co-location mining problem.
The transactionization step allows the conversion of spatial data into a set of
transactions. The usage of thresholds like in previous algorithms is replaced by
the statistical test. In addition, our approach takes into account uncertainty of
data. In order to decrease computation, the filtering techniques are presented.
The experiments on real and synthetic datasets showed that our approach finds
significant co-location patterns and rules.
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