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Abstract. Co-location rule mining is one of the tasks of spatial data
mining, which focuses on the detection of sets of spatial features that
show spatial associations. Most previous methods are generally based
on transaction-free apriori-like algorithms which are dependent on user-
defined thresholds and are designed for boolean data points. Due to the
absence of a clear notion of transactions, it is nontrivial to use association
rule mining techniques to tackle the co-location rule mining problem.
To solve these difficulties, a transactionization approach was recently
proposed; designed to mine datasets with extended spatial objects. A
statistical test is used instead of global thresholds to detect significant
co-location rules. One major shortcoming of this work is that it limits the
size of antecedent of co-location rules up to three features, therefore, the
algorithm is difficult to scale up. In this paper we introduce a new algo-
rithm that fully exploits the property of statistical significance to detect
more general co-location rules. We use our algorithm on real datasets
with the National Pollutant Release Inventory (NPRI). A classifier is
also proposed to help evaluate the discovered co-location rules.
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1 Introduction

Co-location mining, one of the canonical tasks of spatial data mining, has re-
ceived increasing attention in recent years. It tries to find a set of spatial features
that are frequently co-located together, i.e. in a geographic proximity. A moti-
vating application example is the detection of possible co-location rules between
chemical pollutants and cancer cases with children. Previous work [13, 15, 14, 12]
are mainly based on transaction-free algorithms with an apriori-like framework.
A prevalence measure threshold is required in the property of anti-monotonicity
for effective pruning, the strength of co-location rules are determined afterwards
with a prevalence measure threshold. However, the support-confidence frame-
work fails to capture the statistical dependency between spatial features. On
one hand, the antecedent and consequent spatial features may be independent
of each other. On the other hand, some other strong dependent co-location rules
may be ignored due to a prevalence measure value. In the worst case, all detected
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co-location rules can be spurious, and strong co-location rules are totally missing.
Another limitation of transaction-free apriori-like co-location mining algorithms
is that they use only one distance threshold to determine the neighbourhood
relationship. However, in real applications, a proper distance threshold is hard
to determine. Meanwhile, with only one distance threshold, the neighbourhood
relationship among spatial features cannot be fully exploited. For instance, the
contaminated area around a chemical facility is affected by the amount of chem-
ical pollutants the facility emits. It is apparently that the more amount of chem-
ical pollutants it emits, the more neighbourhood relationships it should capture.

To solve the previous mentioned limitations of transaction-free apriori-like
co-location mining algorithms, Adilmagambetov et al. [2] proposed a new trans-
action based framework to discover co-location rules in datasets with extended
spatial objects. Buffers are built around each spatial object, the buffer zone could
be the same for all spatial objects or it might be affected by some other spatial
or non-spatial features, like the amount of chemical pollutants the facility emits,
wind direction in this region, etc. Then, grids are imposed over the geographic
space; each grid point intersecting with a set of spatial objects could be seen
as a transaction. As mentioned above, the usage of support-confidence frame-
work may result in the discovery of incorrect co-location rules and omission of
strong co-location rules. Therefore, to find statistically significant co-location
rules, a statistical test method is used instead of global thresholds. However,
the statistical significance is not a monotonic property and it cannot be used
to prune insignificant co-location rules as apriori-like algorithms. Thus in their
work, they limit the size of the antecedent of a rule up to three features and test
each possible candidate co-location rule to see if it passes the statistical test.
The algorithm cannot scale up well for co-location rules with more than three
spatial features in the antecedent, and therefore limits its use.

In this paper, we investigate how to exploit the property of statistical sig-
nificance to scale it up to detect more general co-location rules. We propose a
new algorithm: Co-location Mining Constrained StatApriori (CMCStatApriori)
which is able to detect statistically significant co-location rules without any lim-
itation on the rule size. CMCStatApriori is based on the work of StatApriori [8,
10]. It uses the z-score to search for statistically significant co-location rules with
a fixed consequent spatial feature. The results of co-location rules are hard to
evaluate even for domain experts, therefore, we also propose to use a classifier
to help evaluate the results of co-location rules.

The remainder of the paper is organized as follows. The overview of related
work is given in Section 2. The algorithm framework is described in Section 3.
Section 4 describes the experimental results and the evaluation of the results.
Section 5 concludes the paper.

2 Related Work

In this section, we review some related work on co-location mining from two per-
spectives: the support-confidence framework and the statistical test framework.
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2.1 Support-confidence Based Co-location Mining

Shekhar and Huang [13] proposed a co-location pattern mining framework which
is based on neighbourhood relations and the concept of participation index. The
basic concept of this method is similar to the concept of association rule mining.
As an input, the framework takes a set of spatial features and a set of instances,
where each instance is a vector that contains information on the instance ID,
the feature type of the instance, and the location of the instance. As an output,
the method returns a set of co-location rules. A co-location rule is of the form
of C1 → C2(PI, cp), where C1 and C2 are a set of spatial features, PI is the
prevalence measure (participation index), and cp is the conditional probability.
A co-location pattern is considered as prevalent, or interesting, if for each fea-
ture of the pattern at least PI% instances of that feature form a clique with the
instances of all other features of the pattern according to the neighbourhood re-
lationship. Similar to association rule mining, only frequent (k− 1)-patterns are
used for the k-candidate generation process. Yoo and Shekhar [15] proposed a
join-less algorithm which decreases the computation time of constructing neigh-
bourhood relationship. The main idea is to find star neighbourhoods instead
of calculating pairwise distances between all instances in the dataset. Huang et
al. [12] continued their previous work by introducing an algorithm that finds co-
location patterns with rare features. Instead of the participation index threshold,
the authors proposed to use the maximal participation ratio threshold. Briefly, a
co-location pattern is considered prevalent if maxPR% instances of at least one
of the features in the pattern are co-located with instances of all other features,
where maxPR is the maximal participation ratio. Xiong et al. [14] introduced
a framework for detecting patterns in datasets with extended spatial objects.
Extended spatial objects are objects that are not limited to spatial points but
also include lines and polygons. In the proposed buffer-based model, the candi-
date patterns are pruned by the coverage ratio threshold. In other words, if the
area covered by the features of a candidate pattern is greater than a predefined
threshold, this pattern is considered as prevalent or interesting.

2.2 Statistical Test Co-location Mining

The approaches mentioned above use thresholds on interestingness measures,
which result in meaningless patterns when a low threshold is used, and a high
threshold may prune interesting but rare patterns. Instead of a threshold-based
approach, Barua and Sander [4] used the statistical test to mine statistically
significant co-location patterns. The participation index of a pattern in the ob-
served data is calculated as previous studies. Then for each co-location pattern
the authors compute the probability p of seeing the same or greater value of
prevalence measure under a null hypothesis model. The co-location pattern is
considered statistically significant if p ≤ α, where α is a level of significance.
Adimagambetov et al. [2] proposed a transactionization framework to find sig-
nificant co-location rules on extended spatial objects. Spatial instances are trans-
formed into transactions by buffers and grids and the expected support is used
as the interesting measure. The statistical test method they used is similar to [4].



4 Jundong Li, Osmar R. Zäıane and Alvaro Osornio-Vargas

(a) (b)

Fig. 1. Transactionization step: (a) An example of spatial dataset with point feature
instances and their buffers; (b) Grids imposed over the space.

3 Algorithm Framework

3.1 Problem Definition

The objective is to discover statistically significant co-location rules between a
set of antecedent spatial features and one single fixed consequent spatial feature.
A real world application of this task is to detect co-location rules between chem-
ical pollutants (antecedent) and cancer cases or other morbidities (consequent).
Since we do not intend to find the causality relationships, the goal is to iden-
tify potential interesting co-location associations in order to state hypotheses for
further study.

The task consists of three steps. In the initialization step, a buffer is built
around each spatial object, and it defines the area affected by that object; for
example, the buffer zone around an emission point shows the area polluted by a
released chemical pollutant. The buffer shape is defined as circle, but it may also
be affected by some other factors like wind direction. Considering the factor of
wind direction, the circular buffer is transformed to elliptical. Fig. 1(a) displays
an example of spatial dataset with buffers of various sizes (circular and elliptical)
that are formed around spatial point objects. In the transactionization step, the
transaction dataset is formed by imposing grids over all the buffer zones, as
shown in Fig. 1(b). Then a transaction is defined as a set of spatial features
corresponding to these objects [2]. After getting the derived transaction dataset
T from the spatial dataset, we intend to detect statistically significant co-location
rules in the next step.

3.2 Co-location Mining Constrained StatApriori

In this subsection, we introduce the proposed Co-location Mining Constrained
StatApriori (CMCStatApriori) algorithm which is able to detect statistically
significant co-location rules without any rule length limitation.

CMCStatApriori is a variation of StatApriori [8, 10]; the main difference is
that CMCStatApriori can efficiently detect more specific co-location rules, rules
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with one fixed consequent feature. Moreover, the non-redundancy definition in
StatApriori is not very practical, it is much more restrictive than the normal
definition. Therefore, in CMCStatApriori, we do not intend to target for non-
redundant significant co-location rules.

For the co-location rule X → A (F = {f1, ..., fm} is the set of spatial features
and X ( F , A ∈ F ), the significance of dependency between X and A is com-
pared with the null hypothesis in which X and A are independent. The statistical
significance of the dependency is measured by the p-value, i.e. the probability
of observing higher or equal frequency of X and A under null hypothesis. Sup-
pose in the derived transaction dataset T , each transaction can be viewed as
an independent Bernoulli trial with two possible results, that P (XA) = 1 or
P (XA) = 0. Thus, the statistical significance of the frequency of XA follows the
binomial distribution and the p-value can be formulated as:

p =

σ(A)∑
i=σ(XA)

(
n

i

)
(P (X)P (A))i(1− P (X)P (A))n−i (1)

where σ(XA) is the observed frequency of XA, and n is the total number of
transactions in T .

The p-value is not a monotonic property, but z-score provides an upper bound
for the binomial distribution:

z(X → A) =
σ(XA)− µ

s
=

√
nP (XA)(γ(XA)− 1)√
γ(XA)− P (XA)

(2)

where µ = nP (X)P (A), s =
√
nP (X)P (A)(1− P (X)P (A)) are the mean and

standard deviation of the binomial distribution, respectively. γ(XA) = P (XA)
P (X)P (A)

is the lift for the co-location rule X → A. It measures the strength of the depen-
dency between X and A such that γ(X → A) > 1 if X and A show a positive
correlation. It is easy to notice that the z-score is a monotonically increasing
function with the support and lift of XA: σ(XA) and γ(XA), therefore, it can
be denoted as z(X → A) = f(σ(XA), γ(XA)).

Therefore, following StatApriori [8, 10], the search problem can be reformu-
lated as searching for all statistically significant co-location rules in the form
of X → A with the following requirements (the set of statistically significant
co-location rules is denoted as P ):

Definition 1. Statistically significant co-location rules

1. X → A expresses a positive correlation, i.e. γ(X → A) > 1

2. for all (Y → A) /∈ P, z(X → A) > z(Y → A)

3. z(X → A) ≥ zmin

With this definition, the property “potentially significant” (PS) is defined as
follows. It is a necessary condition to construct the set of statistically significant
co-location rules.
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Definition 2. Let A be the fixed consequent feature, zmin is an user-defined
threshold for the z-score, and upperbound(f) be an upper bound for the function
f . The co-location rule X → A is defined as potentially significant, i.e. PS(X) =
1, iff upperbound(z(X → A)) ≥ zmin. Otherwise, the co-location rule is not
considered as statistically significant.

The property of PS displays a monotonic property in some specific situations:

Theorem 1. Let A be the fixed consequent feature and PS(X) = 1, then for
all Y ⊆ X and min(XA) = min(Y A) we can get PS(Y ) = 1, where min(XA)
denotes the feature with the minimum support in XA.

The proof of Theorem 1 is straightforward, first we can see that:

γ(Y A) =
P (Y A)

P (Y )P (A)
≤ 1

P (Y )
≤ 1

P (min(Y A))
(3)

where min(Y A) denotes the feature with the smallest support among Y A, the
upper bound of the co-location rule Y → A now is:

upperbound(z(Y → A)) = f(P (Y A),
1

P (min(Y A))
) (4)

then we have:

upperbound(z(X → A)) = f(P (XA),
1

P (min(XA)
) ≤

f(P (Y A),
1

P (min(Y A)
) = upperbound(z(Y → A))

(5)

for all Y ⊆ X such that min(XA) = min(Y A). We can see that the monotonic
property is kept only when the minimum feature (the feature with the minimal
support) in XA and Y A are the same.

With the monotonic property of PS, we can derive the algorithm that dis-
covers the potential significant co-location rules in the same way as the general
Apriori-like algorithms do, alternating between the candidate generation and
candidate pruning. First, the set of antecedent features are arranged in an as-
cending order by their frequencies. Let the renamed features be {f ′1, f ′2, ..., f ′m−1},
where P (f ′1) ≤ P (f ′2) ≤ ... ≤ P (f ′m−1). The candidate generation process is the
same as that in Apriori [3], for the l-set Sl = {f ′a1 , ..., f

′
al
} (a1 < a2 < ... < al),

we can generate (l + 1)-sets Sl ∪ {f ′aj}, where aj > al. After the generation of
the (l + 1)-sets Sl ∪ {f ′aj}, we need to check if all of its l-set “regular” parents
(the parents with the same minimum support feature when combined with A as
Sl ∪{f ′aj}∪A) can indicate PS co-location rules. If all of its regular parents can
indicate PS co-location rules, then Sl ∪ {f ′aj} is added to the candidate set for
the pruning process, otherwise, Sl∪{f ′aj} can be pruned directly. In the pruning
process, the PS co-location rule X → A is kept if it meets the zmin threshold,
otherwise, it is removed.
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Algorithm 1 CMCStatApriori Algorithm.

Require: Set of antecedent features F\A, the consequent feature A, derived transac-
tion dataset T , the threshold zmin for the z-score

Ensure: Set of potentially significant co-location rules P
1: P1 = {fi ∈ F\A|PS(fi) = 1}
2: l = 1
3: while (Pl 6= ∅) do
4: Cl+1 = GenCands(Pl, A)
5: Pl+1 = PrunCands(Cl+1, zmin, A)
6: l = l + 1
7: end while
8: P = ∪iPi

9: return P

Algorithm 2 Algorithm GenCands.

Require: Potentially significant l-sets Pl, the consequent feature A.
Ensure: (l + 1)-candidates Cl+1.
1: Cl+1 = ∅
2: for all Qi, Qj ∈ Pl such that |Qi ∩Qj | = l − 1 do
3: if ∀Z ⊆ Qi∪Qj such that |Z| = l and min(ZA) = min((Qi∪Qj)A) and Z ⊆ Pl

then
4: Cl+1.add(Qi ∪Qj)
5: end if
6: end for
7: return Cl+1

Algorithm 3 Algorithm PruneCands.

Require: l-candidates Cl, threshold zmin, the consequent feature A.
Ensure: Potentially significant l-sets Pl

1: Pl = ∅
2: for all Qi ∈ Cl do
3: calculate P (QiA) and the upperbound of lift 1

P (min(QiA))

4: if f(P (QiA), 1
P (min(Qi,A))

) ≥ zmin then

5: Pl.add(Qi)
6: end if
7: end for
8: return Pl

A problem of StatApriori is that for each potentially significant set C, only
the best rule is derived from C. For example, if C\A → A is the best rule,
where A ∈ C and the “best” indicates that the rule has the highest z-score,
then no other rules in the form of C\B → B(B 6= A) is output. However, in
our CMCStatApriori algorithm, this kind of problem does not exist, because the
PS property is for the co-location rule and the consequent feature is fixed. The
detailed pseudo code of CMCStatApriori is illustrated in Algorithms 1, 2 and 3.
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4 Experiments

4.1 Datasets

We conduct our experiments on two real datasets which contain pollutant emis-
sions and information about cancer cases for children in the provinces of Alberta
and Manitoba, Canada. The sources of the data are the National Pollutant Re-
lease Inventory (NPRI) [5] and the provincial cancer registries. The information
on pollutants is taken for the period between 2002 and 2007 and contains the
type of a chemical, location of release, and average amount of release per year.
In order to get reliable results, the chemical pollutants that had been emitted
from less than three facilities are excluded from the dataset. There are 47 differ-
ent chemical pollutants and 1,422 chemical pollutant emission points in Alberta;
26 different chemical pollutants and 545 chemical pollutant emission points in
Manitoba, several chemical pollutants might be released from the same location.
The number of cancer cases are 1,254 and 520 in Alberta and Manitoba, respec-
tively. In order to make the model more accurate, the wind speed and direction
are also taken into account in these two provinces. The interpolation of wind
information between wind stations is used. In Alberta, the data of 18 stations
are from Environmental Canada [6] and 156 stations are from ArgoClimatic In-
formation Service (ACIS) [1]. In Manitoba, the data of all 20 stations are all
from Environment Canada [6]. We obtain the wind direction and speed in the
locations of chemical facilities by making interpolations in the ArcGIS tool [7].

4.2 Experimental Settings

We are interested in co-location rules of the form of Pol → Cancer, where Pol
is a set of pollutant features and Cancer is a cancer feature. Three different
methods are compared: the co-location mining algorithm by Adilmagambetov
et al. in [2] (denoted as CM), co-location mining algorithm with Kingfisher [9,
11] (denoted as CMKingfisher) and the proposed CMCStatApriori method. In
all of these three methods, the distance between grid points is 1km.

CM CM needs a number of simulations to detect significant co-location rules,
the number of simulations for the statistical test is set to be 99 and the level of
significance α is set to be 0.05. The size of antecedent features of a candidate
rule is up to three. The randomized datasets (simulations) that are used in the
statistical test are generated according to the distributions of chemical pollutant
emitting facilities and cancer cases. Chemical pollutant emitting facilities are
not randomly distributed, and are usually located close to regions with high
population density, thus, CM does not randomize the pollutant facilities all over
the region, instead, it keeps locations of facilities and randomize the pollutants
within these regions. For the cancer cases, most of them are located within dense
“urban” regions and the rest are in “rural” regions. Therefore, the cancer cases
are randomized according to the population ratio of “urban” regions to “rural”
regions. In each simulation of CM, both pollutant chemicals and cancer cases
are randomized.
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CMKingfisher Kingfisher [9, 11] is developed to discover positive and negative
dependency rules between a set of antecedent features and a single consequent
feature. The algorithm is based on a branch and bound strategy to search for
the best, non-redundant dependency top-K rules. Kingfisher is able to detect
statistically significant positive and negative rules with any possible consequent.
But we are only interested in the positive rules whose consequent is “Cancer”,
therefore, after getting the derived transaction dataset T , we apply Kingfisher
algorithm to get the complete set of co-location rules and extract the subset of
co-location rules that we are interested in. The significance level α is 0.05.

CMCStatApriori The CMCStatApriori is the algorithm proposed in this pa-
per. Unlike CM and CMKingfisher which use the p-value as a significance level,
CMStatApriori uses the z-score which provides an upper bound for the p-value.
In the experiment, the threshold of z-score is set to be 150 in the Alberta dataset.
This threshold of 150 is too high in the Manitoba dataset and no co-location
rules are output. Therefore, we set a lower z-score threshold of 40. Indeed, the
lower the z-score threshold, the more co-location rules is generated. The pa-
rameter setting of z-score threshold of CMCStatApriori is discussed in the last
subsection.

4.3 Experimental Results

Both CMKingfisher and CMCStatApriori are able to detect more general co-
location rules (without limitation of size of antecedent features). However, to
have a fair comparison with CM, we only list the co-location rules with up to
three antecedent features. The number of rules detected by these three methods
and the number of rules overlaps with CM by CMKingfisher as well as CMCStat-
Apriori are listed in Table 1. It can be observed that in the dataset of Alberta,
both of CMKingfisher and CMCStatApriori have a small overlap with CM rules.
The situation is slightly different in the dataset of Manitoba, around 80% and
30% of detected rules by CMKingfisher and CMCStatApriori also appear in CM.

Table 1. Number of co-location generated by different methods

Alberta Manitoba
#rules # rules in CM rules # rules in CM

CM 273 – 170 –

CMKingfisher 108 7 23 19

CMCStatApriori 571 5 60 16

4.4 Evaluation

Environmental pollutants are suspected to be one of the causes of cancer in chil-
dren. However, there are other factors that could lead to this disease. Therefore,
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it is a difficult task to evaluate the detected co-location rules even for domain ex-
perts. To assist in evaluating the discovered co-location rules, we propose to use
a classifier with the co-location rules as a predictive model. The results by dif-
ferent methods are carefully and painstakingly evaluated manually by experts in
our multidisciplinary team. However, the systematic evaluation by classification
provides an estimation of the best quality co-location rule set.

We consider co-location rules generated by either method as a classifier. To
evaluate the discovered co-location rules, we randomly sample some grid points
on the geographic space. The randomly sampled grid point has to intersect with
at least one pollutant feature; it either intersects with cancer or not. For the
type of grid point (Polgrid, Cancer) intersects with both pollutant(s) and can-
cer, if we can find at least one co-location rule Pol → Cancer in the classifier
that correctly matches it, i.e. Pol ⊆ Polgrid, the grid point is indicated as cor-
rectly classified. For the other type of grid point (Polgrid,¬Cancer) intersects
with pollutant(s) but not cancer, if there does not exist any co-location rules
Pol→ Cancer that match it, i.e. Pol * Polgrid, the grid point is also indicated
as correctly classified. Otherwise, the grid points are considered as misclassified.
The ratio of correctly classified grid points to the total number of sampled grid
points is output as the classification accuracy. Fig. 2 shows a toy example of
the evaluation process. In the datasets of Alberta and Manitoba, we randomly
sample 1000 grid points each time, repeats 100 times, and calculate the aver-
age classification accuracy for the previously mentioned three methods. Table 2
presents the evaluation results, along with the classification accuracy (ACC),
the specificity (SPE) and sensitivity (SEN) are also listed. As can be observed
from the classification accuracy, CMCStatApriori is better than CM and CMK-
ingfisher. The classification accuracy is much higher in Alberta compared with
Manitoba. One possible explanation is that the co-location association between
chemical pollutants and children cancer cases is stronger in Alberta. Both the
number of rules and the accuracy is very low in Manitoba, therefore, it is possible
that chemical pollutants and children cancer cases are more likely to be indepen-
dent in Manitoba. We can also notice that the specificity is much higher than
the sensitivity in both datasets. High specificity means that grid points with-
out cancer are seldom misclassified; on the other hand, low sensitivity indicates
that grid points with cancer are mostly misclassified. This phenomenon may
imply that the co-location associations between chemical pollutants and chil-
dren cancer cases is weak. However, these assumptions still need to be carefully
scrutinized.

Table 2. Evaluation of different methods using Accuracy, Specificity and Sensitivity

Alberta Manitoba
ACC SPE SEN ACC SPE SEN

CM 83.9± 3.3 97.6± 1.6 11.4± 8.1 22.0± 4.3 55.8± 11.2 13.4± 3.7

CMKingfisher 69.2± 4.1 77.4± 4.1 28.6± 11.4 26.6± 4.6 96.4± 3.6 8.7± 3.0

CMCStatApriori 84.7± 3.4 99.6± 0.7 6.6± 6.4 27.4± 4.1 83.4± 7.7 12.2± 3.4



Statistical Significant Co-location Rules 11

Co-location rules 

P1 -> Cancer 

P1, P4 -> Cancer 

P2, P6 -> Cancer 

P3, P5 -> Cancer 

P1, P6, P7 -> Cancer 

P2, P3, P6 -> Cancer 

 

 

Sampled grids Prediction Result 

P1 C = 1 C = 1 Correct 

P1, P5 C = 1 C = 1 Correct 

P2, P5 C = 1 C = 0 Wrong 

P1, P5, P6 C = 0 C = 1 Wrong 

P1, P6, P7 C = 1 C = 1 Correct 

Evaluation by 

Classifier

Accuracy is 3/5 = 60% 

Fig. 2. Toy example of the classification evaluation.

The only parameter in CMCStatApriori is the zmin. In this subsection, we
discuss the effect of the parameter zmin. As shown in Fig. 3, the number of
discovered co-location rules drops when we increase zmin. We were not able to
find any statistically significant co-location rules when zmin > 170 in Alberta
and when zmin > 50 in Manitoba. In Fig. 4, the average classification accuracy
of the sampled grid points is presented. The classification performance is poor
when the z-score threshold is set to be low. Besides, there exists a turning point
(zmin = 100 in Alberta, zmin = 30 in Manitoba) where the accuracy improves
dramatically. In the Alberta dataset, there is not much difference when zmin
varies from 110 to 170, while in the Manitoba dataset, the performance is best
when zmin is set to be 40.
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Fig. 3. Number of co-location rules on Alberta and Manitoba dataset.

5 Conclusion

In this paper, we propose a novel co-location mining algorithm to detect statis-
tically significant co-location rules in datasets with extended spatial objects. By
exploiting the property of statistical significance, we do not have to limit the
number of antecedent features up to three in co-location rules which is a major
shortcoming of previous work. Therefore, more general co-location rules can be
generated and the algorithm is able to scale up well. In addition, we propose to
use a classifier to help the evaluation of discovered co-location rules.
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