
An Occurrence based Approach to Mine
Emerging Sequences

Kang Deng and Osmar R. Zäıane
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Abstract. An important purpose of sequence analysis is to find the
distinguishing characteristics of sequence classes. Emerging Sequences
(ESs), subsequences that are frequent in sequences of one group and
less frequent in the sequences of another, can contrast sequences of dif-
ferent classes and thus facilitating sequence classification. Different ap-
proaches have been developed to extract ESs, in which various mining
criterions are applied. In our work we compare Emerging Sequences ful-
filling different constraints. By measuring ESs with their occurrences,
introducing gap constraint and keeping the uniqueness of items, our ESs
demonstrate desirable discriminative power. Evaluating against two min-
ing algorithms based on support and no gap constraint subsequences, the
experiments on two types of datasets show that the ESs fulfilling our se-
lection criterions achieve a satisfactory classification accuracy: an average
F-measure of 93.2% is attained when the experiments are performed on
11 datasets.
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1 Introduction

Sequence comparison is an significant Data Mining Task [4], where the distin-
guishing subsequences play an important role in the contrast. Given two sequence
groups, Emerging Sequences (ESs) is defined as subsequences that are frequent
in sequences of one group and less frequent in the sequences of another, and
thus distinguishing or contrasting sequences of different classes [3]. With the
discriminative power of emerging sequences, prediction models trained by using
ESs perform well and achieve satisfactory classification accuracies on labeling
sequence instances.

Different approaches have been developed to extract ESs, in which various
mining criterions are applied. For instance, in bioinformatics, researchers align
genome by using substrings [7], in which, items have to appear immediately next
to each other in the original sequence. However, Lo et al. [8] removed the restric-
tion that related events must occur close together in a sequence, i.e. the distance
between two events could be arbitrarily large. Furthermore, most sequential
mining algorithms regard support of features (the number of transactions that
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contain the feature) as the selection standard, while the total occurrence of the
feature is also crucial.

In our research, we compare Emerging Sequences fulfilling different con-
straints and try to find the important factors for ESs. Besides the frequency
distinction, we discover that the following criterions are also significant in the
sequence classification:

– Occurrences of subsequences are more informative than supports.
– Items are unique (i.e. not repeated) in a given subsequence.
– Any two adjacent items in the subsequence should be close in the original

sequence.

To mine subsequences fulfilling the above conditions, we provide an algorithm
as well as a pruning strategy based on a previous work [6]. After ES candidates
are extracted, we perform feature selection by F-ratio [10], by which the distin-
guishing subsequences are selected to represent the original sequence groups. To
evaluate the discriminative power of emerging sequences, a SVM classifier [2] is
trained by using ESs to classify sequence instances. In this learning framework,
higher prediction accuracy indicates better emerging sequences.

For comparison, we perform controlled experiments on two recent and well-
known sequence mining algorithms. One algorithm, ConsGapMiner [6] can con-
trol the gap between related events, while another algorithm [8] removes the
gap constraint and extracts iterative patterns. We choose two types of datasets,
one is the UNIX user command sequences [1], the other is a software behavior
history [9].

The experiments demonstrate the effectiveness of our emerging sequences:
the classifier based on ESs outperforms the other two baseline algorithms. The
prediction accuracy measured by the average F-measure is 93.2% when the ex-
periments are performed on 11 datasets. On the datasets CVS-Omission and
MySQL [9], our model perfectly labels the sequences with a prediction accuracy
of 100%.

In the next section, we introduce some terminology. In Section 3, we describe
the sequence mining algorithm and the feature selection strategy. We present the
prediction performance of our proposed approach in Section 4. Finally, Section 5
presents our conclusions.

2 Preliminaries

Let I = {i1, i2, . . . , ik} be a set of all items, or the alphabet, a sequence is
an ordered list of items from I. Given a sequence S = ⟨s1, s2, . . . , sm⟩ and a
sequence S′ = ⟨s′1, s′2, . . . , s′n⟩, we say that S′ is a subsequence of S or S contains
S′, denoted as S′ ⊑ S, if there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such
that s′1 = sj1 , s

′
2 = sj2 , . . ., s

′
n = sjn .

Definition 1 (Subsequence Occurrence). Given a sequence S = ⟨s1, . . . , sn⟩
and a subsequence S′ = ⟨s′1, s′2, . . . , s′m⟩ of S, an occurrence of S′ is a sequence
of indices {i1, i2, . . . , im}, whose items represent the positions of elements in S.
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For instance, if sequence S = ⟨B,C,B,C,A,C⟩, and its subsequence S′ =
⟨B,C⟩. There are 5 occurrences of S′ in S: {1, 2}, {1, 4}, {1, 6}, {3, 4} and {3, 6}.

Definition 2 (Gap Constraint). The gap constraint is specified by a positive
integer g. In a subsequence occurrence os = {i1, i2, i3, . . . , im}, the difference of
any two adjacent indices is ik+1 − ik. If ik+1 − ik ≤ g+1, we say the occurrence
os fulfills the g-gap constraint.

For example, if g = 1, the occurrences of S′ {1, 2} and {3, 4} fulfill the 1-gap
constraint (also 0-gap) but {1, 4}, {1, 6} and {3, 6} do not.

Definition 3 (Support and Occurrence Count). Given a sequence dataset
Dc, where c is a class label, Dc consists of a set of sequences. The support of
a subsequence α is the number of sequences in Dc that contain α, while the
occurrence count is the number of non-overlapping occurrences of α in Dc.

For example, in Table 1, if the gap constraint is 1, the support of the sequence
α = ⟨a, b⟩ in Dpos is 3, meaning all sequences contain α while fulfilling 1-gap
constraint. The occurrence count of α is 4, because α appears twice in Sequence
1. One thing we need to notice is that the total occurrences of α fulfilling 1-gap
constraint in Sequence 1 is 5. However, some of them are overlapped, so the
non-overlapping count is 2.

In this paper, related support and count, denoted as support(α,Dc) and
count(α,Dc) respectively, are used to measure the frequency of subsequences.
As for the example above, support(α,Dc) =

3
3 and count(α,Dc) =

4
3 .

Table 1. A sequence dataset example.

sequence ID sequences labels

1 aabbcab pos
2 cadb pos
3 bcab pos

4 acabd neg
5 bda neg

The notion of Emerging Sequences (ESs) was introduced by Zäıane et al. [11],
here we generalize this notion and define:

Definition 4 (Emerging Sequences). Given two contrasting sequence classes,
Emerging Sequences (ESs) are subsequences that are frequent in sequences of one
group and less frequent in the sequences of another, and thus distinguishing or
contrasting sequences of different classes.
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3 Sequence Mining and Feature Selection

To distinguish one group of sequence data from another, representative subse-
quences must be extracted. In this section, we explain how we first extract the
ES candidates; then implement a dynamic feature selection to mine the most
discriminative subsequences.

3.1 Mining Criterion

To mine the representative subsequences, one fundamental question is:“what
kind of sequences should we choose?” An essential selection criterion is that fea-
tures should be discriminative. LetDpos andDneg be two classes of sequences; the
occurrence counts of a ES candidate α in both classes, denoted as count(α,Dpos)
and count(α,Dneg), need to meet the following conditions:

count(α,Dpos) > θ (1)

count(α,Dneg) ≤ θ (2)

where θ is the minimum count threshold.
Instead of supports, we use the occurrence counts of subsequences to mea-

sure their discriminative power, because repetitive features within a sequence is
important. For instance, a UNIX user may repeatedly type the same command
pattern within one session.

Another mining principle we apply is that items are unique in one sequence
pattern. Since the multiple occurrences of patterns in each original sequence are
counted, it is not necessary to consider subsequences with repetitive items.

The last standard is that items have to appear closely with each other in the
original sequence, as items far apart are less relevant in the decision making. An
example is the relationships between words in a long sentence. A verb probably
serves as the predicate of a subject if they are close to each other. Therefore,
gap constraints need to be considered in subsequence mining.

3.2 ES Candidates Extraction

To control the gap constraint when mining emerging sequences, our mining
model is based on a previous work, ConsGapMiner [6]. In their approach, how-
ever, they choose support as the selection criterion, and items are not unique in
the sequence pattern.

We enumerate ES candidates by a Depth First Search. Given an ES can-
didate, an item from the vocabulary is appended at the ending of the current
subsequence, so a new candidate is generated. Figure 1 shows the candidate
generation tree. Given a vocabulary I = {a, b, c, d}, the root of the tree is an
empty set. For a subsequence ⟨a⟩, if it fulfills the discriminative conditions 1, 2
and the gap constraint, three new candidates are generated by appending b, c
and d respectively. Sequence pattern ⟨a, a⟩ is not taken into consideration, be-
cause items ought to be unique in our emerging sequences. This pruning strategy
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Fig. 1. Candidate Generation Tree

can greatly reduce the searching space and improve the scalability of the tree
generation algorithm.

3.3 Support Calculation

Given an ES candidate, the next problem is to validate if the candidate fulfills the
discriminative conditions and the gap constraint. In [6], a bitset operation-based
algorithm is proposed because the bit is the basic operation unit in computers.

A bitset is a sequence of bits which each takes the value 0 or 1, indicating
the subsequence occurrences in the original sequence. The bitset of the length-1
subsequence is easy to generate, i.e. 1 indicates the appearance of the item, while
other digits are 0s. Given the sequence ⟨aabbcab⟩, the bitset of the subsequence
⟨a⟩ is simply 1100010. And the occurrence count of a length-1 subsequence is
also straightforward: it is the number of 1s in the bitset and the gap constraint
is irrelevant. Therefore, the occurrence count of ⟨a⟩ is 3.

For a subsequence whose length is larger than 1, the calculation of its oc-
currence count is more complicated, because the gap constraint is taken into
account. It has three steps:

1. Perform right shift operation on the bitset of its parent to generate the mask
bitset.

2. Attain the subsequence bitset by AND operation.
3. Calculate the occurrence count based on the bitset.

The first step is to generate the mask bitset by the parent of the target
subsequence. From the last example, given a subsequence α = ⟨a, b⟩, the bitset
of its parent αp = ⟨a⟩ is known. To calculate the mask bitset when the gap
constraint is g, we right shift the bitset of αp for g + 1 times, then perform OR
operation on the results. As the bitset of αp is 1100010, the process is as follows:

1100010 >> 0110001
0110001 >> 0011000

OR >> 0111001



6 An Occurrence based Approach to Mine Emerging Sequences

So the mask bitset is 0111001.
Based on the mask bitset and the bitset of the last item of α, the bitset of

α is generated by ANDing them. Taking the last example, the mask bitset is
0111001 and the bitset of ⟨b⟩ is 0011001, by ANDing them:

0111001
0011001

AND 0011001

the bitset of α = ⟨a, b⟩ is 0011001.
Finally, it is the calculation of the occurrence count. Since there is more

than one item in the subsequence, we cannot simply count the number of 1s in
the bitset. Given a bitset and a gap constraint g, for each 1 in the bitset, the
following g digit(s) must be set to 0. Then the occurrence count is the number of
1s in the bitset. For the last example, the bitset 0011001 is converted to 0010001,
so the occurrence count of the pattern α = ⟨a, b⟩ in the sequence ⟨aabbcab⟩ is 2.

3.4 Feature Selection

By combining the candidate generation tree and the bitset operation, numerous
ES candidates are extracted. In this subsection, we refine the result and select
the most discriminative subsequences as ESs.

Given several sequence groups {G1,G2, . . . ,Gm} and a set of subsequences
{s1, s2, . . . , sk}, the objective is to find the most discriminative subsequences.
For an ideal emerging sequence, its occurrence counts in several groups should
differ greatly, i.e. the variance between groups should be much larger than that
within each group. To solve this classic analysis of variance (ANOVA) problem,
we apply F-ratio to measure the discriminative power:

F − ratio =
MSbetween

MSwithin
(3)

where MSbetween is the mean square (variance estimate) explained by the dif-
ferent groups, and MSwithin is mean square (variance estimate) that is due to
chance (unexplained). Given the number of groups m and the total number of
sequences N , MSbetween and MSwithin are defined as:

MSbetween =

∑
i ni(ci − c)2

m− 1
(4)

MSwithin =

∑
ij(cij − ci)

2

N −m
(5)

where ni is the number of sequences in group i, cij is the occurrence count in
the jth sequence of the ith group, ci is the mean of the occurrence counts in
Group i, and c is the mean of those for all samples. As m and N are fixed for
all subsequences, the F-ratio can be simplified as:

F − ratio =

∑
i ni(ci − c)2∑
ij(cij − ci)2

(6)
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From Equation 6, we can see that, for an ES candidate, when the variance
of the occurrence count between groups is large and that within groups is small,
its F-ratio become large. Based on the F-ratio, we rank the ES candidates, and
the highly-ranked ones are more discriminative.

To avoid numerous ESs, we then perform a dynamic feature selection strat-
egy [5], i.e. only the top-m subsequences, based on F-ratio, are kept. It guarantees
that each sequence can be represented by at least m ESs (the high-ranked ones)
and the database does not become too large due to the possible sheer number
of candidate subsequences.

4 Experimental Results

In the last section, emerging sequences are selected by our occurrence count
based mining framework. To verify the discriminative power of ESs, we then
perform the controlled experiments on ESs.

4.1 Evaluation Methodology

To perform the experiments, the sequence datasets are transformed to transac-
tional datasets in order to be in a suitable form for learning algorithms, i.e. each
sequence is represented by a set of attribute-value pairs, where the attribute
represents an emerging sequence, and the value is its occurrence count in this
sequence. Then, a classifier is trained by using the transactional datasets. In
this paper, we choose a well-developed classification package LIBSVM [2] as the
prediction model. Finally, we perform a 6-folder cross validation on the classifi-
cation framework. The average prediction accuracy, represented by f-measures,
indicates the performance of the selected features.

For comparison, we chose two other recent and well-known mining algorithms
to extract different features from the original datasets:

– Minimal Distinguishing Subsequences (MDSs): this kind of sequences are
mined by ConSGapMiner [6]. There are two main differences between MDSs
and our ESs: 1. they use support as the selection criterion, while occurrence
count is applied in our mining model. 2. Items are unique in ESs but can be
repetitive in MDSs.

– Iterative Patterns (IPs) [8]: IPs achieve satisfactory performance on classi-
fying software behaviour sequences. As opposed to our ESs, they remove the
restriction that related events must occur close together in a sequence, i.e.
the distance between two events could be arbitrarily large.

These two kinds of features are selected and used in the validation framework
above. By comparing the prediction accuracies of those features, we can verify
the effectiveness of our selection criterions:

– Occurrences of subsequences are more informative than supports.
– Items are unique in the subsequences (i.e. not repeated).
– Any two adjacent items in the subsequence should be close in the original

sequence.
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4.2 UNIX user command dataset

The first type of datasets we use is the UNIX user commands dataset from the
UCI Machine Learning Repository [1]. It contains 9 sets of sanitized user data
drawn from the command histories of 8 UNIX computer users at Purdue Univer-
sity. This dataset only keeps command names, flags, and shell meta characters,
while removing filenames, user names, directory structures etc. For each user,
we select 100 sequences. In each experiment, two users’ commands are chosen,
and the F-measures and standard deviations are presented in Table 2.

Table 2. Classification performances on the UNIX dataset.

Datasets Length Size MDSs IPs ESs

user 0 and 1 28 176 0.770± 0.053 0.776± 0.065 0.806± 0.048
user 1 and 8 33 268 0.938± 0.045 0.959± 0.024 0.958± 0.035
user 2 and 3 39 231 0.970± 0.018 0.948± 0.078 0.965± 0.032
user 3 and 6 36 231 0.918± 0.058 0.913± 0.044 0.929± 0.044
user 5 and 6 49 278 0.865± 0.092 0.865± 0.060 0.903± 0.062
user 5 and 7 44 284 0.908± 0.028 0.905± 0.031 0.920± 0.029

In Table 2, column Length represents the average sequence length of this
user pair, while column Size means the vocabulary size. We observe that the
prediction accuracy of our ESs-based approach is comparable or better than the
other two features. This demonstrates that our selection criterions are effective
with various average sequence length and vocabulary size.

4.3 Software behaviour dataset

The second type of datasets is the set of software behaviour sequences. Software
behavior is the way a program executes. From the start of the program until its
termination, the execution events are recorded. A software behaviour, composed
by a sequence of normal individual execution events, could be broken down by
their interaction in an undesirable order. Therefore, the objective of the analy-
sis is to distinguish deviant software behaviours from regular ones by sequence
mining.

Lo et al. [8] focus on this type of data and proposed Iterative Patterns (IPs)
mining algorithm, which achieves satisfactory performance and improves the
prediction accuracy greatly. So in this subsection, we focus on the comparison
between IPs and ESs. The same datasets as in [8] are chosen to perform the
experiment. For more information about the dataset, please refer to [8].

Table 3 presents the comparison between the IPs-based and the ESs-based
SVM classifiers. Compared with IPs which was designed specifically for software
behaviour datasets, our emerging sequences also achieve satisfactory classifica-
tion accuracy.
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Table 3. Classification performances on the software behaviour dataset.

Datasets Length Size IPs ESs

CVS-Mix 9 16 0.935± 0.060 0.945± 0.058
CVS-Omission 10 16 1± 0 1± 0
CVS-Ordering 9 16 0.857± 0.031 0.951± 0.032

MySQL 24 16 1± 0 1± 0
X11 4 8 0.979± 0.015 0.888± 0.024

5 Conclusion

In this paper, we focus on Emerging Sequences (ESs), which are frequent in
sequences of one group and less frequent in the sequences of another, and thus
distinguishing or contrasting sequences of different classes. After comparing ESs
of various characteristics, we find that: 1. the occurrence count can measure
the discriminative power of ESs more precisely; 2. the uniqueness of items in a
subsequence is important; 3. the gap constraint is relevant in the decision making.
A mining model is proposed to extract ESs fulfilling our selection criterions.

The experiments demonstrate the effectiveness of our emerging sequences: an
average F-measure of 93.2% is achieved when the experiments are performed on
11 datasets. In the datasets CVS-Omission and MySQL [9], our model perfectly
labels the sequences with a prediction accuracy of 100%.

However, since our candidate generation algorithm is based on the Depth
First Search Tree, the scalability of our current approach is not desirable. As
a future work, we are looking into the possibility of a more efficient mining
algorithm or pruning strategies, while preserving and potentially improving the
prediction accuracy of the classification model.
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