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Abstract. Alzheimer’s disease (AD) is a common irreversible neurode-
generative disease among elderlies. Establishing relationships between
brain networks and cognitive scores plays a vital role in identifying the
progression of AD. However, most of the previous works focus on a single
time point, without modeling the disease progression with longitudinal
brain networks data. Besides, the longitudinal data is insufficient for
sufficiently modeling the predictive models. To address these issues, we
propose a SSSelf-supervised MMMulti-Task learning PPProgression model SMP-
Net for modeling the relationship between longitudinal brain networks
and cognitive scores. Specifically, the proposed model is trained in a
self-supervised way by designing a masked graph auto-encoder and a
temporal contrastive learning that simultaneously learn the structural
and evolutional features from the longitudinal brain networks. Further-
more, we propose a temporal multi-task learning paradigm to model
the relationship among multiple cognitive scores prediction tasks. Ex-
periments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset show the effectiveness of our method and achieve consistent
improvements over state-of-the-art methods in terms of Mean Abso-
lute Error (MAE), Pearson Correlation Coefficient (PCC) and Con-
cordance Correlation Coefficient (CCC). Our code is available at https
://github.com/IntelliDAL/Graph/tree/main/SMP-Net.

Keywords: Self-supervised learning · Multi-task learning · Cognitive
scores· Brain networks · Longitudinal prediction.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, which af-
fects the quality of life as it causes memory loss, difficulty in thinking and learn-
ing [12, 19, 21, 23]. Establishing relationships between brain networks and cogni-
tive scores plays a vital role in identifying the early stage of AD [15, 17]. Though
there has been substantial progress in AD diagnostics with brain networks [1,
3, 5, 14], most of the current studies focus on a single time point, without ex-
ploring longitudinal modeling for disease progression with brain networks. Some
learning-based methods are proposed for the longitudinal prediction of AD pro-
gression with multi-modal data but generally fail in utilizing brain networks
due to the large heterogeneity of brain networks between individuals as well as
developmental stages [2, 6, 8, 20].

The cognitive scores prediction with longitudinal brain networks via deep
learning models faces many challenges as follows: (i) The available longitudinal
brain networks are scarce due to few volunteers or subject dropout [10]. Pre-
dicting cognitive scores with limited data is extremely challenging for the deep
learning model training. (ii) Longitudinal brain networks provide rich structure
information and disease progression characteristics, accounting for poor general-
ization for the pure supervised learning due to the insufficient supervision. (iii)
The relationship between the brain networks and cognitive scores at multiple
time points is varied, hindering the accurate prediction performance at multiple
time points with a single task model.

To cope with the above challenges, we propose a self-supervised multi-task
learning paradigm for AD progression modeling with longitudinal brain net-
works. The proposed paradigm consists of a self-supervised spatio-temporal rep-
resentation learning module for exploiting the spatio-temporal characteristics of
longitudinal brain networks and a temporal multi-task module for modeling the
relationship among cognitive scores prediction tasks at multiple time points. In
summary, our contributions are threefold:

1) To the best of our knowledge, our work is the first attempt to predict
cognitive scores with longitudinal brain networks through a self-supervised multi-
task paradigm.

2) We design a self-supervised spatio-temporal representation learning mod-
ule (SSTR), involving masked graph auto-encoder and temporal contrastive
learning are jointly pre-trained to capture the structural and evolutional fea-
tures of longitudinal brain networks simultaneously. The SSTR module can lead
to more robust high-level representations for longitudinal brain networks.

3) We assume that inherent correlations exist among the prediction tasks at
multiple future time points. Consequently, we propose a temporal multi-task
learning paradigm to assist multiple time points cognitive scores prediction,
which enhances the model generalization by exploiting the commonalities and
differences among different prediction tasks when limited data is available.



SMP-Net 3

2 Method
2.1 Problem Formalization
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Fig. 1: Illustration of our task. The inputs of the model are T history brain
networks, and the outputs are the predicted cognitive scores at the multiple
future time points (T+1,T+2,...,T+k).

The input to the proposed model is a set of N subjects, each of which has
T longitudinal brain networks. Let Xi = [G1

i , ..., G
t
i, ..., G

T
i ] ∈ RT∗M∗M repre-

sent the input longitudinal brain networks, where M denotes the number of
brain regions based on a specific brain parcellation. Gt

i = (V t
i , A

t
i) is the brain

network of subject i at time t; V t
i and At

i are ROIs (nodes) and Pearson correla-
tions between ROIs (edges), respectively. The model outputs are the predicted
cognitive scores at k time points Yi = [Y T+1

i , ..., Y T+k
i ] for subject i, where

Y T+k
i = [Y T+k,1

i , ..., Y T+k,p
i ] and Y T+k,p

i is the p-th cognitive score of subject i
at time T + k. As illustrated in Fig. 1, our aim is to build a model f to predict
cognitive scores at time [T + 1, ..., T + k] with brain networks at time [1, ..., T ],
which is formulated as: {Y T+1, Y T+2, ..., Y T+k} = f(G1, G2, ..., GT ).

2.2 Overview
The overview of the proposed SMP-Net is shown in Fig. 2. As shown in Fig. 2,
the proposed SMP-Net consists of two modules: Self-supervised spatio-temporal
representation learning module (SSTR) for exploiting the spatio-temporal char-
acteristics of longitudinal brain network data itself and a temporal multi-task
learning module for modeling the relationship among cognitive scores prediction
tasks at multiple time points. SSTR involves a masked graph auto-encoder and
a temporal contrastive learning, both of which are jointly pre-trained to learn
the structural and evolutional brain networks representation.

2.3 Self-supervised Spatio-Temporal Representation Learning
Although brain networks provide rich structure information, the pure super-
vised learning scheme limits the representation capacity of the models due to
insufficient supervision. To solve this problem, we introduce the self-supervised
spatio-temporal representation learning module, SSTR. The procedure of SSTR
involves two stages as follow:
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Fig. 2: Illustration of the proposed SMP-Net framework.

Stage 1 Masked Graph Auto-Encoder for Graph Reconstruction In
stage 1, a masked graph auto-encoder, containing a topology-aware encoder and
a decoder, is designed to exploit the crucial structural information in brain net-
works. To sufficiently exploit the graph structure, we randomly mask some nodes
and the associated edges. The unmasked nodes and edges fed into the topology-
aware encode to learn the latent representations. Let Hu indicate the feature
map in the encoding stage. We define the adjacent matrix of the unmasked
nodes as Au, which is taken as the input of the topology-aware encoder, that
is H(0)

u = Au. The topology-aware encoder consists of three parts: 1) The edge
convolution with multiple cross-shaped filters for capturing the locality in the
graph according to H

(l)
u = EC(H

(l−1)
u ) =

∑M
i=0

∑M
j=0 Hu

(l−1)
(i,·) wr + Hu

(l−1)
(·,j) wc,

where wr ∈ R1×M and wc ∈ RM×1 are convolution kernels. 2) The node
convolution for learning the latent node embedding. It is defined as: H(l)

n =

NC(H
(l−1)
u ) =

∑M
i=1 Hu

(l−1)
(i,·) wl−1

n , where wn is the learned filter vector, H(l)
n ∈

RM×Dn is the latent unmasked node embedding and Dn is the channels in NC.
3) The graph aggregation for achieving the global graph embedding through:
H

(l)
g = GA(H

(l−1)
n ) =

∑M
i=1 Hn

(l−1)
(i,·) wg, where wg is the learned filter vector,

Hg ∈ RM×Dg is the graph embedding and Dg is the dimensionality in GA.
The decoder takes the masked nodes and the latent unmasked node embed-

dings as inputs, and then produces predictions for the masked nodes and edges
by graph convolution operations and the masked edge prediction. The graph
convolution is defined as: H(l+1) = σ(ÃH

(l)
n W (l)) + b(l), where Ã ∈ RM×M

is the binary adjacency matrix, W denotes trainable weight, H ∈ RM×D′
n is
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the node embedding and D′
n is the hidden layer size of graph convolutional

layers. The masked edge prediction is defined as: Â = H(l+1)(H(l+1))
T . The

reconstruction loss between the prediction graphs and corresponding targets is
Lrec =

∑N
i=1

∑T
t=1 ||At

i − Ât
i||22, where Ât

i is the reconstructed brain networks of
subject i at time t.

Stage 2 Temporal Contrastive Learning The longitudinal brain networks
of a subject acquired at multiple visits characterize gradual disease progression
of the brain over time, which manifests a temporal progression trajectory when
projected to the latent space. We assume that brain networks features at two
consecutive time points from the same subject are similar, while dissimilar from
different subjects. Based on this assumption, we introduce a temporal contrastive
loss by enforcing an across-sample relationship in the learning process. Specifi-
cally, Ht

g(i) is the brain network features of subject i at time t, Ht
g(i) and Ht+1

g(j)

are considered as the positive sample pair if i = j, otherwise they are considered
as the negative sample pair. The temporal contrastive framework aims to enlarge
the similarity between positive sample pair, and reduce it between the negative
sample pair. The similarity calculation function s can be any distance function,
and here we utilize cosine similarity. The loss for temporal contrastive learning
can be represented as:

Lcon = −log

N∑
i=1

T−1∑
t=1

exp(s(Ht
g(i),H

t+1
g(i) )/τ)∑N

j=1,j ̸=i exp(s(H
t
g(i),H

t+1
g(j))/τ)

, (1)

where τ is a temperature factor that controls the model’s discrimination against
negative sample pair and exp(.) is an exponential function.

2.4 Temporal Multi-task learning

Existing studies have demonstrated the effectiveness of multi-task learning for
the extraction of a robust feature representation [9][24]. In this regard, to fur-
ther exploit the correlation among the prediction tasks at multiple future time
points, we design a temporal multi-task learning paradigm. Specifically, the tem-
poral multi-task learning module consists of a shared network and multiple task-
specific networks, all of which are designed with a Long Short-Term Memory
(LSTM) architecture [4]. The shared network is trained for modeling the shared
information ht

s among cognitive scores prediction tasks at multiple time points.
The q-th task-specific network aims to capture the task-specific information ht

q

from the shared network and the brain networks features at time t. The tempo-
ral multi-task learning module can be seen as an end-to-end architecture with
the shared and task-specific parameters of Ws,Wq. By learning these parameters
jointly, we arrive at a collaborative learning method to jointly improve the perfor-
mance of the prediction tasks at multiple time points. The shared information ht

s

and task-specific information ht
q are formulated as ht

s = LSTM(Hgt, ht−1
s ,Ws)

and ht
q = LSTM([Hgt, ht

s], h
t−1
q ,Wq). The output of the temporal multi-task
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learning module is formulated as: Ŷ t = W2(W1h
t
q + b1) + b2, where W1, W2, b1,

b2 are learnable parameters of LSTM. Errors between the actual observations
Y t and predictions Ŷ t are used to update the model parameters through the
regression loss as follow:

Lreg =

k∑
i=1

T∑
t=2

(||Y t − Ŷ t||1 + ||Y T+i − Ŷ T+i||1) (2)

The overall loss function L is described as Eq. (3), where λcon and λrec are the
weights for contrastive loss and reconstruction loss, respectively.

L = Lreg + λconLcon + λrecLrec (3)

3 Experiments

3.1 Dataset and Experimental Settings

In this work, we choose 219 longitudinal resting-state fMRI scans of 73 sub-
jects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [11]7.
AAL template is used to obtain 90 ROIs for every subject [18]. We predict nine
cognitive scores at time M24, M36 and M48 with brain networks times of M0,
M6 and M12 to evaluate our proposed SMP-Net. The number of samples for the
three tasks are 73, 35 and 31, respectively.

During the model training, the Adam optimizer is used with a momentum of
0.9 and a weight decay of 0.01. The learning rate is set to 10−3. The hidden layer
size of LSTM and graph convolutional layers are set to 64 and 48, respectively.
The values of hyperparameter λc and λr are set to 1. The model is trained with
20 epochs in the self-supervised spatio-temporal representation learning stage
and 300 epochs in the temporal multi-task learning stage with a batch size of
16. To avoid over-fitting due to the limited subjects, in all experiments, we re-
peat the 5-fold cross-validation 10 times with different random seeds. We finally
report the average results. Three commonly used metrics are adopted to evaluate
all methods, including Mean Absolute Error (MAE), Pearson Correlation Co-
efficient (PCC) and Concordance Correlation Coefficient (CCC). CCC reflects
both the correlation and the absolute error between the true and the predicted
cognitive scores. Due to limited space, we report the results in terms of CCC in
this paper. The results in terms of MAE and CC are shown in the supplemen-
tary material. To ensure a fair comparison, the hyperparameters of comparable
methods are optimized to achieve their best performance.

3.2 Effectiveness Evaluation

We compare the performance of our SMP-Net with three state-of-the-art (SOTA)
sequential graph learning methods: evolveGCN [13], stGCN [22] and DySAT [16]
7 http://adni.loni.usc.edu/.
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Table 1: Experimental results in terms of CCC. The best results are bold and
the superscript symbol * indicates that the proposed method significantly out-
performed that method with p-value=0.01.

Cognitive RAVLT RAVLT RAVLT
scores CDRSB ADAS11 MMSE imm learn ADAS13 forget perc forget MOCA Average
GCN 0.190∗ 0.286∗ 0.139∗ 0.346∗ 0.280∗ 0.319∗ 0.320∗ 0.311∗ 0.201∗ 0.266 (0.045)∗
evolveGCN 0.351∗ 0.415∗ 0.141∗ 0.487∗ 0.399∗ 0.427∗ 0.283∗ 0.433∗ 0.272∗ 0.356 (0.078)∗

M24 stGCN 0.310∗ 0.391∗ 0.265∗ 0.458∗ 0.323∗ 0.415∗ 0.279∗ 0.405∗ 0.373∗ 0.358 (0.078)∗
DySAT 0.574∗ 0.416∗ 0.438∗ 0.342∗ 0.5880.5880.588 0.353∗ 0.597∗ 0.230∗ 0.531∗ 0.452 (0.051)∗
SMP-NetSMP-NetSMP-Net 0.6170.6170.617 0.7980.7980.798 0.6580.6580.658 0.7980.7980.798 0.525 0.8090.8090.809 0.6540.6540.654 0.8190.8190.819 0.6660.6660.666 0.705 (0.038)0.705 (0.038)0.705 (0.038)
GCN 0.152∗ 0.229∗ 0.122∗ 0.314∗ 0.055∗ 0.254∗ 0.099∗ 0.214∗ 0.213∗ 0.184 (0.076)∗
evolveGCN 0.350∗ 0.450∗ 0.114∗ 0.563∗ 0.508∗ 0.450∗ 0.341∗ 0.431∗ 0.219∗ 0.381 (0.124)∗

M36 stGCN 0.246∗ 0.410∗ 0.323∗ 0.439∗ 0.333∗ 0.430∗ 0.226∗ 0.491∗ 0.341∗ 0.360 (0.131)∗
DySAT 0.5560.5560.556 0.355∗ 0.561∗ 0.543∗ 0.5770.5770.577 0.281∗ 0.6290.6290.629 0.140∗ 0.569∗ 0.468 (0.048)∗
SMP-NetSMP-NetSMP-Net 0.490 0.7540.7540.754 0.5930.5930.593 0.8010.8010.801 0.496 0.7880.7880.788 0.571 0.8320.8320.832 0.6630.6630.663 0.665 (0.060)0.665 (0.060)0.665 (0.060)
GCN 0.144∗ 0.313∗ 0.159∗ 0.431∗ 0.141∗ 0.316∗ 0.168∗ 0.324∗ 0.097∗ 0.233 (0.091)∗
evolveGCN 0.471∗ 0.342∗ 0.103∗ 0.484∗ 0.397∗ 0.368∗ 0.512∗ 0.542∗ 0.108 ∗ 0.370 (0.084)∗

M48 stGCN 0.276∗ 0.300∗ 0.296∗ 0.424∗ 0.392∗ 0.321∗ 0.450∗ 0.557∗ 0.299∗ 0.368 (0.096)∗
DySAT 0.6090.6090.609 0.347∗ 0.416∗ 0.378∗ 0.640∗ 0.268∗ 0.675∗ 0.146∗ 0.441∗ 0.436 (0.085)∗
SMP-NetSMP-NetSMP-Net 0.561 0.6940.6940.694 0.5540.5540.554 0.7980.7980.798 0.5180.5180.518 0.7520.7520.752 0.7490.7490.749 0.8690.8690.869 0.5700.5700.570 0.674 (0.083)0.674 (0.083)0.674 (0.083)

as well as a baseline method: GCN [7]. Table 1 summarizes the results of all meth-
ods in terms of CCC on the ADNI dataset. As reported in the supplementary
material, consistent conclusions are obtained by SMP-Net in terms of MAE and
CC. Based on the experimental results, we have the following observations: First,
evolveGCN, stGCN and DySAT consistently outperform GCN, indicating that
evolveGCN, stGCN and DySAT are able to capture the dynamism underlying
a brain networks sequence through a recurrent model, which contributes to im-
prove performance in disease prediction. Second, DySAT shows a higher average
CCC than evolveGCN and stGCN. One possible reason is that DySAT uti-
lizes joint structural and temporal self-attention, which enables it to learn more
efficient dynamic graph representation compared with evolveGCN and stGCN.
Finally, our proposed SMP-Net maintains a stable and competitive performance
at all the time points, demonstrating that 1) SMP-Net can learn more expres-
sive representations of brain networks structure by masked graph auto-encoder
for graph reconstruction module. 2) SMP-Net suffciently takes advantage of the
temporal and subject correlation in disease progression by temporal contrastive
learning. 3) The temporal multi-task paradigm of SMP-Net effectively exploits
the inherent correlation among multiple prediction tasks at different time points,
which facilitate to improve the model performance.

3.3 Discussion

Ablation analysis To valid the effect of each proposed module, we consider
the following variants for evaluation: 1) SMP-Net-c: the temporal contrastive
loss is removed; 2) SMP-Net-r: the reconstruction loss is removed; 3) SMP-Net-
rc: both temporal contrastive loss and graph reconstruction loss are removed; 4)
SMP-Net-m: the temporal multi-task paradigm is ignored. Table 2 summarizes
the results of ablation studies in terms of CCC. It is apparent that SMP-Net
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Table 2: Average CCC results of ablation studies. The best results are bold
and the superscript symbol * indicates that the proposed method significantly
outperformed that method with p-value=0.01.

Methods SMP-Net-rc SMP-Net-r SMP-Net-c SMP-Net-m SMP-NetSMP-NetSMP-Net
M24 0.299∗ 0.382∗ 0.472∗ 0.635∗ 0.7050.7050.705
M36 0.319∗ 0.410∗ 0.490 ∗ 0.590∗ 0.6650.6650.665
M48 0.313∗ 0.434∗ 0.468∗ 0.544∗ 0.6740.6740.674

outperforms all of the variants. Specifically, SMP-Net consistently outperforms
SMPT-Net-m 11.0%, 12.7% and 23.8% at time M24, M36 and M48, respectively,
indicating the effectiveness of the temporal multi-task paradigm. It also indicates
that the multi-task paradigm in SMP-Net is more helpful for the prediction at
farther time points. The reason is that prediction tasks at farther time points are
more difficult due to the insignificant relationship between the brain networks
and the cognitive scores. Temporal multi-task paradigm enforces the long-term
prediction to benefit from short-term prediction, making the prediction tasks
at farther time points gain more improvements. Moreover, we can observe that
models with SSTR perform better than the ones without SSTR. For instance,
SMP-Net-m and SMP-Net show superior performance than SMP-Net-r, SMP-
Net-c and SMP-Net-rc. This demonstrates that SSTR facilitates the learning
of structural and evolutional features in the condition of limited samples and
insufficient supervision, thereby leading to more robust high-level representations
for downstream tasks.

Evaluating Robustness To evaluate the robustness of the SSTR module, we
pre-train SMP-Net with fMRI at three time points (M0, M6, M12) and fine-tune
it with different downstream tasks of predicting cognitive scores at different time
points. As shown in Fig. 3, MSP-Net provides comparatively stable performance
on different fine-tuning tasks, demonstrating that features learned with our pre-
trained model are robust to the different fine-tuning tasks.

M24 M36 M48
Time Point

0

1

2

3

4

M
A

E

AVL_M0_M6 AVL_M6_M12 AVL_M0_M6_M12

M24 M36 M48
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0.0

0.2

0.4

0.6

0.8

C
C

AVL_M0_M6 AVL_M6_M12 AVL_M0_M6_M12

Fig. 3: Average MAE and CC of the pre-trained model fine-tuning on three dif-
ferent downstream tasks. AVL_M0_M6 denotes that fMRI data at M0 and M6
are available.



SMP-Net 9

4 Conclusion

This paper proposes an AD progression model SMP-Net from multi-task and
self-supervised learning perspective with longitudinal brain networks. In the
proposed SMP-Net, self-supervised spatio-temporal representation learning is
designed to learn more robust structural and evolutional features from longitu-
dinal brain networks. The temporal multi-task paradigm is designed for boosting
the ability of cognitive score prediction at multiple time points. Experimental
results on the ADNI dataset with fewer samples demonstrate the advantage of
self-supervised spatio-temporal representation learning and temporal multi-task
learning.
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