
Enhancement of Incremental Design for FPGAs
Using Circuit Similarity

Xiaoyu Shi1, Dahua Zeng1, Yu Hu2, Guohui Lin1, Osmar R. Zaiane1
1Department of Computing Science, University of Alberta, Canada

1{xshi, dahua, guohui, zaiane}@cs.ualberta.ca
2Department of Electrical and Computer Engineering, University of Alberta, Canada

2bryanhu@ece.ualberta.ca
∗

ABSTRACT
This paper presents an efficient algorithm to detect the
global topological similarity between two circuits. By ap-
plying the proposed circuit similarity algorithm in an incre-
mental design flow, IDUCS (incremental design using cir-
cuit similarity), the design and optimization effort in the
previous design iterations is automatically captured and
can be used to guide the next design iteration. IDUCS is
able to identify the similarity between the original netlist
and the modified one with aggressive resynthesis, which
might destroy the naming and local structures of the original
netlist. This is superior to the existing design preservation
approaches such as naming and local topological matching.
Furthermore, IDUCS simply inserts a plugin for circuit sim-
ilarity detection, and therefore preserves the “push-button”
feature, significantly simplifying the engineering complex-
ity of incremental tasks. As a case study, we perform the
proposed IDUCS process to generate the placement for a
logically resynthesized netlist based on the placement of the
original netlist and the circuit similarity between the orig-
inal and the modified logic-level netlists. The experimen-
tal results show our IDUCS-based placement is 28X faster
than versatile place and route (VPR) with comparable wire
length and estimated critical delay.

Keywords
Circuit similarity, FPGA, Incremental design

1. INTRODUCTION
In a typical field programmable gate array (FPGA) design

cycle, series of synthesis iterations need to be performed be-
fore delivering the final design. The recompilation time for
these iterations heavily affects the time-to-market of a prod-
uct. There are several phases of a design process in which
iterative repetitions are common, including the initial checks
of the register transfer level (RTL) code, constraint verifi-
cation, timing closure, and in-system debugging [6]. Each
of these steps requires a time-consuming resynthesis of the
FPGA design. Incremental design methodology has been
devised to save the recompilation time by maintaining the
essential properties across consecutive iterations [9, 12, 23,
1, 25].

∗This work was partially sponsored by the Natural Sciences
and Engineering Research Council of Canada.

The key to incremental design methodology is design
preservation [22], i.e., maximally preserving and taking ad-
vantage of the engineering effort in the previous design it-
erations. A commonly employed method for design preser-
vation is to partition a design and avoid a recompilation of
unchanged partitions in the next iteration. This method
can yield a significant reduction in iteration time but due to
strict hierarchical boundaries, synthesis cannot perform any
cross-boundary optimizations where a partition exists. To
break this hard hierarchy boundary constraint for improving
the quality of the design, Xilinx SmartGuide [22] employs
naming and local topological matching to identify the corre-
spondence between two netlists resulting from the previous
and the current iterations, respectively. Based on this cor-
respondence, the layout from the previous iteration can be
reused in the current iteration, leading to better quality and
saving the recompilation time. However, in modern synthe-
sis algorithms (e.g., ABC [4]), the internal node boundaries
are usually destroyed by structural hashing (transforming a
logic network into an and-inverter graph (AIG)), and aggres-
sive optimization and logic restructuring performed in the
netlist make it difficult to produce the naming matching be-
tween the original and modified netlists. Consequently, the
local topological matching based on the naming matching
also becomes less effective.

In this paper, we present IDUCS, an enhanced incremen-
tal design using circuit similarity1 flow for FPGAs. In con-
trast to Xilinx SmartGuide [22], the circuit similarity iden-
tifies a correspondence between the original and modified
netlists based on a global topology matching. Based on cir-
cuit similarity, the placement and routing of the modified
netlist can be derived from the layout of the original netlist
obtained in the previous iteration. Unlike many existing al-
gorithms for incremental designs [12, 1], which require radi-
cal changes to existing computer-aided design (CAD) tools,
we have developed a plugin that preserves the “push-button”
feature in the commercial FPGA CAD tools.

A key insight used in IDUCS is that incremental func-
tional changes in RTL or logic level are small, and they
generally result in a “similar” topology of the modified
netlist compared with the original one [17]. To quantita-

1Note that the same notion of “circuit similarity” was used
in [11], but it was defined based on the Boolean functions
of logic gates in a circuit. In the future, it will be inter-
esting to combine our topology-based circuit similarity with
the function-based one to further accelerate the verification
process in an incremental design.

tively represent such a similarity, we adapt graph similarity
[26], a widely applied technique in social network and chem-
informatic domains, to measure the topological similarity
of two circuits. We present an iterative algorithm to com-
pute the circuit similarity between the modified and original
netlists, and identify the correspondence of nodes/edges.
The IDUCS flow is shown in Figure 1. IDUCS produces

an initial placement and routing solution for the modified
logic-level netlist, based on the layout of the original netlist
and the circuit similarity between the original and modified
logic-level netlists. Based on this initial solution, an effi-
cient refinement is then performed as a fine-grain tuning for
further improvement of the layout quality. Note that such a
refinement procedure does not require a new implementation
since the existing placement and routing tools can be used
with less optimization strength (e.g., lower initial temper-
ature in the simulated annealing-based placement or fewer
iterations in the negotiation-based routing). The essential
information obtained from the previous design iteration is
automatically captured and quantified by a runtime-efficient
“similarity detection” phase.
To verify the effectiveness of IDUCS, we have applied it to

placement acceleration, one of the most time-consuming de-
sign phases, in a multi-pass design. We have used IDUCS to
generate the placement for a logically resynthesized netlist
based on the placement of the original netlist and the cir-
cuit similarity between the original and the modified logic-
level netlists. Tested on the 20 largest MCNC benchmark
circuits [24], experimental results show IDUCS produces a
much higher quality initial placement than VPR’s [20] ini-
tial placement in terms of bounding box costs and delay
costs. Our IDUCS-based placement is 28X faster on aver-
age than the VPR placement, while producing comparable
wire length and critical delay. The results suggest a huge
potential to accelerate other incremental design phases, in-
cluding routing and verification, using circuit similarity.
The remainder of this paper is organized as follows. Sec-

tion 2 illustrates the overall IDUCS flow with an example.
Section 3 describes the circuit similarity algorithm. Section
4 presents a placement case study to experimentally demon-
strate the efficiency and the effectiveness of IDUCS. The
paper is concluded in Section 5.

2. MOTIVATING EXAMPLE
Following the flow in Figure 1, we use an example to illus-

trate the procedures of using IDUCS to generate the place-
ment based on the layout results obtained from the pre-
vious design iteration. In the first design iteration, given a
logic-level network G shown in Figure 2(a), where each node
denotes a look-up table (LUT) and each edge denotes an in-
terconnection between LUTs, the placement (Figure 3(a)) of
network G can be obtained by performing a time-consuming
and highly-optimized placement (e.g., VPR). Suppose a
change of RTL code is made due to a bug found after the first
iteration, and the RTL and logic-level synthesis is performed
in the following iteration, resulting in a modified network,
G′, as shown in Figure 2(b). To produce the placement
of network G′, IDUCS first computes the similarity between
networks G and G′, and finds the correspondence of nodes in
these two networks (Figure 3(a) right). Based on such node
correspondence, the initial placement (Figure 3(b)) of net-
work G′ can be determined using the placement of network
G (Figure 3(a)), e.g., if node V ′ in network G′ corresponds

RTL/Logic

Synthesis

Logic Level

Netlist

Place & Route

Placement & Routing

Constraints Met ?

Done

Functional

Change

Updated Logic

Level Netlist

Similarity

Detection

Place & Route

Refinement

IDUCS

Similarity

Matching

Verification

Yes

No

Initial Placement &

Routing

Figure 1: Incremental design flow using circuit sim-
ilarity

to node V in network G, V ′ is assigned the same coordinates
as node V .

Note that the detection of similarity and the correspon-
dence of two networks is generally much faster than the re-
placement of the entire network. Therefore, the IDUCS-
based approach is more efficient than the from-scratch de-
sign flow, which re-places the entire circuit. Furthermore,
the naming matching-based correspondence will not work in
this example since only two nodes (node 7 and node 8) out of
nine internal nodes have the same names in the original and
the modified networks. On the other hand, IDUCS employs
a topological similarity detection technique and is able to
identify a more comprehensive correspondence between the
two networks. In general, IDUCS-based flow contains the
following two phases:

1. Detection of the similarity between two networks and
the correspondence of the components (e.g., nodes and
edges) in them;

V7

V1

V8

V4

V12

V9

V13

V5

V10 V11

V14

V15

V16

V6

V2

V3

1,2 2,1

3,1

2,2

1,3

2,11,2

1,3

2,2

3,1

I/O

Node

LUT

Node

(a) G, network before RTL code change

V’7

V’1

V’8

V’4

V’11

V’10

V’9
V’5

V’12

V’13

V’14

V’15

V’6

V’2

V’3

1,2 2,1

3,1

2,2

1,3

2,1

1,3

2,2

3,1

(b) G′, network after RTL code change

Figure 2: Logic-level networks before and after op-
timization (the label above each node describes the
level and reverse level of the node)

2. Refinement of the results inferred based on the previ-
ous design iteration and the detected similarity, e.g.,
resolving overlaps in the initial placement and conges-
tions in the initial routing.

Section 3 and Section 4 will detail these two aspects, respec-
tively.

3. CIRCUIT SIMILARITY

3.1 Review of Graph Similarity
Given two graphs (or networks), there are multiple ways

to define their similarity. The characteristics of commonly
used measures of similarity are summarized in Table 1,
where column “Global Topo” indicates whether a measure
considers the global topological information, which is im-
portant to find the correspondence between nodes of two
graphs. Some measures have already been used for FPGA

V5

V4

V6

V3

V2

V1

V’5

V’4

V’6

V’3

V’2

V’1

Node

Correspondence

(V, V’) :

(1,1) (2,2) (3,3)

(4,4) (5,5) (6,6)

(7,7) (8,8) (13,9)

(9,10)(12,11)

(11,12) (14,13)

(15,14) (16,15)

I/O block

(a) Placement of network G

(b) Placement of network G’

CLB block

V’10

V’15

V’8

V’11

V’13

V’14V’9

V’7

V’12

V9

V16

V8

V12

V14

V15

V10

V13

V7

V11

Figure 3: The placement of the original and modi-
fied networks

design automation, e.g., J. Cong et al. applied the edit dis-
tance measure to FPGA resource optimization [10]. Our
IDUCS employs the iterative method, which has relatively
low computational complexity and considers the global topo-
logical information.

Different algorithms, including similarity flooding [18],
simRank [7], and the coupled node-edge [26], have been pro-
posed to compute the graph similarity based on the iterative
definition. In this work, we use an iterative graph similarity
algorithm for molecular graphs [14], which takes advantage
of graph sparsity, one of the properties of a circuit graph.
Table 2 describes all frequently used variables in this algo-
rithm.

The iterative similarity algorithm is summarized in Al-
gorithm 1. In each iteration (t), the algorithm computes

the similarity score, X
(t)
i,j , between each node pair (vi, v

′
j),

where vi ∈ G and v′j ∈ G′. The similarity score of a node
pair is a real value between 0 and 1. The higher the sim-
ilarity score of a node pair is, the more likely these two
nodes are matched together. This score is updated based on
the values of their adjacent node pairs obtained in the pre-
vious iteration and the predefined inter-similarity between
two nodes/edges. The predefined similarity is used to cap-
ture non-topological connections between two graphs. The
algorithm terminates when the difference between of the to-
tal similarity scores in two consecutive iterations is smaller

Table 1: Summary of notions of similarity
Measure Description Time Global

Complexity Topo

Isomorphism [15] Identifying a bijection between the nodes of two graphs which pre-
serves (directed) adjacency.

NP-Hard Yes

Edit distance [5] Given a cost function on edit operations (e.g., addition/deletion of
nodes and edges), determine the minimum cost transformation from
one graph to another.

NP-Hard Yes

Common subgraph [13] Identifying the ‘largest’ isomorphic subgraphs of two graphs. NP-Hard Yes
Iterative methods [21] Two graph elements (e.g., edges or nodes) are similar if their neigh-

borhoods are similar.
Cubic Yes

Statistical methods [16] Assessing aggregate measures of graph structure (e.g., degree distri-
bution, diameter, betweenness measures).

Linear No

Table 2: Summary of used variables
Variable Description

X
(n)
i,j Similarity score between node i in graph G(V)

and node j in graph G′(V ′) in iteration n
vi A node in graph G
v′j A node in graph G′

t The iteration number
n(v) The set of all adjacent nodes of node v
π An injective map from n(vi) to n(v′j), if |n(vi)| <

|n(v′j)|
An injective map from n(v′j) to n(vi), if |n(vi)| ≥
|n(v′j)|

α A weight constant within interval (0,1)
ϵ A terminating threshold for iterations
M An upper bound for number of iterations

kv : V → V ′ A predefined inter-similarity between two nodes
ke : E → E′ A predefined inter-similarity between two edges,

where (vi, v) is an edge in graph G and (v′j , π(v))

is an edge in graph G′

in(v) The set of all adjacent nodes that have an edge
entering node v

out(v) The set of all adjacent nodes that have an edge
leaving node v

than ϵ, or the number of iterations reaches an upper bound
M .

3.2 Circuit Similarity Detection
Algorithm 1 is designed for undirected molecular graphs

[14], and the computational complexity is too expensive to
handle real circuits. In this subsection, we first adapt Algo-
rithm 1 to consider a directed circuit graph and then present
two techniques to significantly improve both time and space
efficiency of the circuit similarity detection.
One unique constraint for circuit similarity detection in

incremental design is that the matching of the correspond-
ing primary inputs (PIs) and primary outputs (POs) of the
two circuits must be guaranteed. Therefore, the similarity
score for a pair of corresponding PI/PO nodes is set to 1
and is not updated during the iteration. As a result, such a
predefined PI/PO matching effectively provides extra hints
for the iterative similarity detection process and generates
better matching between the two circuits. Intuitively, for
those node pairs close to PI/PO nodes, higher scores will be
obtained because of the propagation of the constant simi-
larity score set in PI/PO node pairs. Note that other hints
such as internal registers and naming matching information
obtained in logic synthesis can also be used as the prede-
fined matching to enhance both the quality and speed of

Algorithm 1 Similarity of G and G′

Initialize X
(0)
i,j

while |
∑

X(t) −
∑

X(t−1)| > ϵ and t < M do
if |n(vi)| < |n(v′j)| then

X
(t)
i,j = (1− α)kv(vi, v

′
j)

+ αmax
π

1

|n(v′
j)|

∑
v∈n(vi)

X
(t−1)
v,π(v)

ke((vi, v), (v
′
j , π(v)))

else

X
(t)
i,j = (1− α)kv(vi, v

′
j)

+ αmax
π

1

|n(vi)|
∑

v
′∈n(v

′
j)

X
(t−1)

π(v
′
),v

′ ke((vi, π(v
′
)), (v

′
j , v

′
))

the circuit similarity detection.
For those internal nodes without predefined similarity, we

replace kv with X
(t)
i,j , and ke with 1. Instead of updating

similarity scores based on all the neighbors, we can perform
the update for edges that leave the nodes and edges that
enter the nodes, separately. More specifically, given the two
graphs, we initialize the similarity scores of all pairs of nodes

to 1. In each iteration, for |in(vi)| < |in(v
′
j)| and |out(vi)| <

|out(v
′
j)|, the similarity score X

(t)
i,j is updated as follows

X
(t)
i,j = (1− α)X

(t−1)
i,j + α

1

|out(vi)|+ |in(vi)|

[max
π

(
∑

v
′∈out(v

′
j)

X
(t−1)

π(v
′
),v

′) + max
π

(
∑

v
′∈in(v

′
j)

X
(t−1)

π(v
′
),v

′)]

(1)

In our experiments, we find α = 0.75 consistently produces
a high quality matching. For the two circuit graphs in Fig-
ure 2, the obtained similarity score matrix is shown in Table
3 (PI/PO nodes are not shown). Clearly, the topologically
similar node pairs (e.g., node 7 in graph G and node 7 in
graph G′) have scores close to 1. This matrix describes a
complete bipartite graph, where the weight associated with
each edge denotes the similarity score of two nodes. Now we
can compute a maximum matching in this bipartite graph
to obtain a node matching between the two graphs. The
min-cost network flow [19] is used to compute the maxi-
mum matching in our experiments, and the resulting node
matching is given in Figure 3(a) right.

Table 3: Similarity score matrix for two graphs in
Figure 2

V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

V ′
7 0.92 0.25 0.48 0.15 0 0 0 0.42 0.06 0

V ′
8 0 0.73 0 0 0.05 0 0.39 0 0.17 0.06

V ′
9 0 0.39 0 0 0.4 0 0.73 0 0.06 0.48

V ′
10 0.48 0 0.89 0.25 0.3 0.12 0.14 0.06 0.33 0.09

V ′
11 0 0 0.11 0.48 0 0.86 0 0.36 0.17 0

V ′
12 0 0 0.3 0.34 0.64 0.25 0.39 0.34 0.15 0.42

V ′
13 0.48 0.25 0.07 0.4 0 0.36 0 0.88 0.06 0

V ′
14 0.4 0.39 0.29 0.15 0.15 0.18 0.12 0.46 0.59 0.06

V ′
15 0 0.12 0.09 0 0.63 0 0.36 0 0.27 0.82

3.3 Performance Enhancement
In practice, it is infeasible to compute the similarity scores

of all |V |·|V ′| node pairs for large circuits. In this subsection,
we present two pruning techniques to reduce the number of
pairs that need to be updated so that we can reduce both
the runtime and storage.

Support Constraint. Two internal nodes are less likely
to be matched if they share few predefined matchings in
their supports. A support of a node is the set of nodes
with predefined matchings in the transitive fanin or fanout
cone of this node. For example, the nodes with predefined
matchings are PIs and POs in two graphs in Figure 2. The
support for node V7 is SP (V7) = {V1, V2, V4, V5}, while the
support for node V ′

15 is SP (V ′
15) = {V ′

2 , V
′
3 , V

′
6}. The support

similarity of V7 and V ′
15 is the sum of similarity scores of all

V → V ′ node pairs in their supports: XSP (V7),SP (V ′
15)

=
XV2,V

′
2
= 1. On the other hand, the support similarity of

V7 and V ′
7 is 4. Therefore, V7 is more likely to be matched

with V ′
7 than with V ′

15. Formally, for two nodes v ∈ G and
v′ ∈ G′, the support constraint requires

min(
XSP (v),SP (v′)

|SP (v)| ,
XSP (v),SP (v′)

|SP (v′)|) ≥ β (2)

where β ∈ (0, 1] is a constant. If the support constraint of
the two nodes is not satisfied, we do not update their simi-
larity score in the iteration. For example, if β = 1, we only
keep the pairs of nodes that have exactly the same support-
ing PIs and POs. 54 node pairs (e.g., (V7, V

′
11), (V7, V

′
12)) in

Figure 2 can be pruned.

Level Constraint. If only combinatorial resynthesis is in-
volved in an incremental design process, we can convert a
circuit into a directed acyclic graph (DAG) by removing all
registers and adding the register inputs (outputs) as POs
(PIs). Given a DAG, a topological sort and reverse topo-
logical sort can label each internal node v with two val-
ues (shown above each node in Figure 2), i.e., level(v) and
rlevel(v), where level(v) (rlevel(v)) denotes the length of
the longest path from PIs (node v) to node v (POs). Two
nodes with significantly different (level, rlevel) values are
less likely to be matched. Formally, for two nodes v ∈ G
and v′ ∈ G′, the level constraint requires

|level(v)− level(v′)| ≤ Bl, |rlevel(v)− rlevel(v′)| ≤ Br (3)

where Bl and Br are two nonnegative constant integers. For
example, if Bl and Br are both set to be one, 22 node pairs
(e.g., (V7, V

′
9) and (V7, V

′
15)) in Figure 2 can be pruned.

We have tested the above two pruning techniques on the

1

10

100

1000

10000

100000

1000000

10000000

100000000

cl
m
a

s3
8
5
8
4

s3
8
4
1
7

fr
is
c

p
d
c

sp
la

d
si
p

b
ig
k
e
y

d
e
s

e
x
1
0
1
0

se
q

a
p
e
x
2

ts
e
n
g

a
p
e
x
4

m
is
e
x
3

a
lu

d
if
fe
q

e
x
5
p

e
ll
ip
ti
c

s2
9
8

Bl=Br=1 Bl=Br=0 !"#$!% no_pruning

#
o

f
re

m
a

in
in

g
 n

o
d

e
 p

a
ir

s
 f

o
r

s
im

il
a

ri
ty

 s
c

o
re

 u
p

d
a

te

Circuits

Figure 4: Effectiveness of the pruning techniques

20 standard MCNC benchmark circuits. For each circuit, we
run two logic synthesis algorithms, one with ABC command
“if -K 4” and the other with “if -K 4; imfs” (an area-oriented
resynthesis engine which destroys the internal name match-
ing [2].), and generate two logic-level netlists. Figure 4 com-
pares the number of node pairs that need to be updated
in the iterative similarity with the following five schemes:
(a) without pruning (“no pruning”), (b) using a weak level
constraint-based pruning (“Bl=Br=1”), (c) using a strong
level constraint-based pruning (“Bl=Br=0”), (d) using a
weak support constraint-based pruning (“β=0.5”), and (e)
using a strong support constraint-based pruning (“β=1”).
As shown in Figure 4, our pruning techniques reduce the
number of node pairs by 3 to 4 orders of magnitude com-
pared with the total number of node pairs. More specifically,
the strong level constraint-based pruning (“Bl=Br=0”) and
the strong support constraint-based pruning (“β=1”) can
prune around 90% and 99% node pairs, respectively.

Table 4: Similarity score matrix for two graphs in
Figure 2 with pruning (β = 0.5, Bl = Br = 0)

V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

V ′
7 0.92 0 0 0 0 0 0 0 0 0

V ′
8 0 0.73 0 0 0 0 0 0 0 0

V ′
9 0 0 0 0 0 0 0.73 0 0 0.48

V ′
10 0 0 0.89 0 0 0 0 0 0.33 0

V ′
11 0 0 0 0 0 0.86 0 0.36 0 0

V ′
12 0 0 0 0 0.64 0 0 0 0 0

V ′
13 0 0 0 0 0 0.36 0 0.88 0 0

V ′
14 0 0 0.29 0 0 0 0 0 0.59 0

V ′
15 0 0 0 0 0 0 0.36 0 0 0.82

Table 4 shows the similarity score matrix obtained after
applying these two pruning techniques on the similarity de-
tection of G and G′ in Figure 2. Clearly, the iterative circuit
similarity with pruning results in a very sparse matrix, while
the most significant elements in this matrix are well pre-
served. For example, (V11, V

′
8) and (V9, V

′
7) are pruned due

to the support and level constraints, respectively while (V9,
V ′
14) is not pruned simply because it does not satisfy either

of the constraints. Nevertheless, the most useful node pairs
are preserved after our pruning and the same node match-
ing can be obtained compared to the completely computed
similarity score matrix shown in Table 3. As a result of
the sparsity of the similarity matrix, the maximum match-
ing algorithm (min-cost network flow) is significantly faster.
In Section 4, we will show that these pruning techniques
do not degrade the quality of the similarity detection and
node matching when we apply the circuit similarity to the
proposed IDUCS flow.

3.4 Circuit Similarity­based Placement
Following Figure 1, circuit similarity detection can be em-

ployed to discover the topological correspondence between
the original netlist and the modified netlist. Such informa-
tion is then used to improve the efficiency of time-consuming
CAD phases including placement, routing and verification.
We use the proposed circuit similarity algorithm to speed

up placement, which is one of the most time-consuming
phases in FPGA design cycle. More specifically, given an
original network G, its placement can be computed by per-
forming a highly-optimized but time-consuming placement
(e.g., VPR). For another network, G′, which is modified
due to optimization in an incremental iteration, the simi-
larity between networks G and G′ is firstly computed, and
a matching of corresponding nodes is obtained afterwards.
Specifically, if node V ′ in network G′ corresponds to node V
in networkG, V ′ is assigned the same coordinates as node V .
Hence, the node matching between the two networks gives a
good candidate for the initial placement of the modified net-
work G′. In return, based on such node correspondence, a
high-quality final layout of network G′ can be obtained more
efficiently with a further refinement (e.g., low-temperature
simulated annealing) on the initial placement results.

4. A CASE STUDY ON PLACEMENT
As a case study on the application of the proposed IDUCS

flow, in this section we perform experiments which employ
circuit similarity to improve the efficiency of the placement
phase in the incremental design flow.

4.1 Experimental Settings
In this work, we consider an island-style FPGA archi-

tecture, which includes an array of clustered logic blocks
(CLBs) interconnected by programmable routing. As shown
in Figure 5, two CAD flows are compared in our experi-
ments. Both flows include two design iterations and they
share the first iteration, which starts from a logic-level
netlist (BLIF). A technology mapping (using ABC com-
mand “if -K 4”) is first performed on this netlist to map it
into a 4-LUT-based network. After the mapping, T-VPack
[20] is performed with “no cluster” parameter to generate
a CLB-based network, where each CLB contains one LUT
and one flip-flop. The timing-driven placement in VPR is
then used to produce the placement result (“.p”), and the
timing-driven routing with a detailed timing analysis is fi-
nally performed.
In the second iteration, we perform a logic-level optimiza-

tion on the mapped netlist using the following ABC script
“rwsat2”:

st; rw -l; b -l; rw -l; rf -l; fraig; rw -l; b -l; rw -l; rf -l

where each command (alias) is a logic optimization in

VPR:

Placement

Iteration 1

BLIF

ABC: (if -4)

T-VPack:

(no_cluster)

Mapped

Netlist

Placed:

(.p)

VPR: Routing

Layout

ABC: (rwsat2)

Modified

Netlist

Circuit Similarity

Initial

Placement

Low Temperature

SA

VPR

P&R

Iteration 2

flow a

Iteration 2

flow b

VPR: Routing

Layout

Figure 5: CAD flows used in the experiments

ABC, e.g., “st” (structural hashing) aggressively destroys
the initial boundaries among internal nodes (LUTs); “rw”
(rewrite) and “rf” (refactor) reconstruct the network by re-
ducing the AIG size and level; “fraig” (functionally-reduced
AIG) changes the current network structure and transforms
into a functionally-reduce AIG [3]. Hence, in the modified
netlist, the name matching among the nodes are not pre-
served and the structure of the network is changed. We will
employ the proposed circuit similarity to discover the node
correspondence purely based on topological information of
the original and the “rwsat2”-modified netlists.

Starting from the modified netlist, we compare the fol-
lowing two flows: (a) IDUCS flow and (b) from-scratch
flow, as shown in Figure 5. Flow (b) uses VPR to re-
place the entire modified netlist. Flow (a) first computes
the circuit similarity between the original and the modified
netlists and uses it to generate an initial placement, which
is further refined by a low-temperature annealing process
using the VPR placement (initial temperature is set to 0.1
in VPR). As stated in Section 3, based on different prun-
ing settings and annealing parameters, we develop two ver-
sions of circuit similarity. A high-quality version, CS, uses
β = 0.5, Bl = Br = 1 and inner num = 12. A turbo ver-
sion, CS-t, uses β = 1, Bl = Br = 0 and inner num = 0.1.
Both CS and CS-t are evaluated in our experiments.

Our proposed circuit similarity algorithm is implemented
in C and evaluated on the 20 largest MCNC benchmarks.
All results are collected averaged over five runs and bench-
marked on a Linux server with dual-core 2.19GHz CPU and
5GB memory. The CS2 package [8] is used to solve the
min-cost network flow for the maximum matching problem.
Table 5 shows the characteristics of the logic-level netlist

2A parameter in VPR which controls the number of moves
at each temperature.

before (column “original”) and after “rwsat2” optimization
(column “rwsat2”). CIs (COs) include the PIs (POs) and
register outputs (inputs).

Table 5: Characteristics of the original and
“rwsat2”-modified netlists

CLB#
Circuit CI# CO# original rwsat2
alu4 14 8 719 691
apex2 38 3 963 914
apex4 9 19 788 771
bigkey 452 421 1261 1261
clma 94 115 4193 4063
des 256 245 1232 1215

diffeq 332 308 674 665
dsip 452 421 1554 1553

elliptic 196 196 441 439
ex1010 10 10 1103 851
ex5p 8 63 541 515
frisc 905 1002 2844 2320

misex3 14 14 735 629
pdc 16 40 2211 1969
s298 17 20 45 39

s38417 1490 1568 3161 3122
s38584 1297 1564 3723 3646
seq 41 35 997 932
spla 16 46 2126 1935
tseng 435 507 941 883

4.2 Experimental Results
Quality of the initial placement. Table 6 compares the
initial placement generated by the proposed circuit simi-
larity (column “CS” and “CS-t”) and the one generated
by VPR (a random initial placement) in terms of bb cost
(bounding box cost) and delay cost, two key measures of
the placement process. Clearly, both CS and CS-t pro-
duce the initial placement with a much better quality than
VPR’s, e.g., compared to VPR’s initial results, CS reduces
the bb cost and delay cost by 40% and 31%, respectively.
This result shows that the topological node correspondence
extracted by the circuit similarity algorithm indeed discovers
the intrinsic connection between the original and modified
logic-level netlists, and thus provides a reliable guidance to
generate the placement for the modified netlist.

Quality of the final placement. Table 7 compares the
final placement results produced by flow (a) (including CS
and CS-t) and flow (b) shown in Figure 5. Final bb cost,
final delay cost and estimated critical delay are compared
between the circuits produced by the two versions of flow
(a) and flow (b). As shown in Table 7, for bb cost and delay
cost, both versions of IDUCS produce quality very close to
the results produced by from-scratch flow. For critical delay,
CS and CS-t reduce it by 4% and 1%, respectively compared
to from-scratch flow. The comparison between CS and CS-t
shows the effectiveness of the proposed pruning techniques
(in Section 3.3). CS-t, geared with aggressive pruning and
significantly lower annealing effort, still produces placement
with comparable quality to CS and VPR.

Runtime comparison. Table 7 also compares the run-
time of the placement (column “Placement runtime (s)”) of
different flows. Note that a timeout is invoked if IDUCS
takes longer than the original netlist. It shows that CS-t
achieves 28X speedup on average (up to 93X), compared

Table 6: Comparisons of initial solutions for differ-
ent CAD flows

initial bb cost initial delay cost
Circuit CS CS-t VPR CS CS-t VPR
alu4 145 155 212 2.70E-052.95E-053.55E-05
apex2 213 249 341 3.38E-054.24E-055.25E-05
apex4 231 222 259 3.49E-053.66E-054.09E-05
bigkey 1294 1575 2004 2.23E-042.39E-042.49E-04
clma 1737 1615 3020 3.36E-043.28E-044.62E-04
des 306 798 1087 5.93E-051.13E-041.40E-04

diffeq 818 901 922 9.52E-051.04E-041.03E-04
dsip 448 578 2184 1.64E-041.75E-043.30E-04

elliptic 149 244 338 1.73E-052.56E-053.72E-05
ex1010 277 259 297 3.95E-053.99E-054.30E-05
ex5p 118 134 156 1.82E-052.03E-052.31E-05
frisc 5374 6530 8696 7.57E-048.49E-041.07E-03

misex3 129 162 192 2.36E-052.83E-053.23E-05
pdc 860 789 1015 1.23E-041.31E-041.55E-04
s298 3 4 5 5.50E-076.06E-077.27E-07

s38417 9254 14905193581.07E-031.74E-032.15E-03
s38584 1194820781199831.39E-032.37E-032.33E-03
seq 246 297 355 3.77E-054.72E-055.47E-05
spla 799 765 986 1.13E-041.27E-041.50E-04
tseng 801 1323 1736 1.17E-041.56E-042.00E-04

geomean 472 585 785 7.41E-058.96E-051.08E-04
ratio 60% 75% 1 69% 83% 1

with the from-scratch VPR placement. Due to space limita-
tions, a detailed breakdown of the runtime for each circuit
is not shown. Since computing the similarity between two
circuits is much faster than re-placing them from scratch,
more speedup is expected when applying IDUCS to larger
circuits. In practice, one can use CS-t as a quick estimation
of the solution quality for an iteration during the incremen-
tal design. If the quality is within a satisfied range, the VPR
placement can be performed for a better quality.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented IDUCS, an enhancement

to the incremental FPGA design flow using circuit similar-
ity. The engineering effort from the previous design itera-
tions is captured by the proposed circuit similarity detection
algorithm. Using placement as a case study, we experimen-
tally demonstrate the effectiveness of the proposed IDUCS.
Compared with VPR placement in a two-pass design pro-
cess, our IDUCS-based placement is 28X (up to 93X) faster
while preserving the wire length and delay. The speedup is
achieved because of the high-quality initial placement gen-
erated based on circuit similarity.

In the future, we will integrate the predefined matchings
(e.g., the naming matching) into our IDUCS to further en-
hance both the efficiency and the quality of the design. In
addition, we will study the effectiveness of applying our
IDUCS to the routing and verification for FPGAs.

6. REFERENCES
[1] A. Ling, S. Brown and J. Zhu. Towards Automated ECOs

in FPGAs. Intl. Symposium on Physical Design, 2000.

[2] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang.
SAT-based Logic Optimization and Resynthesis.
International Workshop on Logic and Synthesis, 2007.

[3] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton.
FRAIGs: A Unifying Representation for Logic Synthesis
and Verification. Tech. Report, EECS Dept., UC Berkeley,
2005.

Table 7: Comparisons of final placement results for different CAD flows. The ‘*’ marked time is measured
with a timeout

Final bb cost Final delay cost Estimated critical delay (s) Placement runtime (s)
Circuit CS CS-t VPR CS CS-t VPR CS CS-t VPR CS CS-t VPR
alu4 92 111 91 2.34E-05 2.48E-05 2.24E-05 5.61E-08 6.27E-08 5.88E-08 6.89 (1 x) 0.36 (28 x) 9.97
apex2 137 157 136 2.83E-05 3.00E-05 2.77E-05 6.77E-08 7.30E-08 6.45E-08 8.65 (2 x) 0.49 (31 x) 15.01
apex4 135 148 131 2.71E-05 2.87E-05 2.70E-05 6.27E-08 6.50E-08 6.27E-08 *4.16 (3 x) 0.54 (22 x) 12.03
bigkey 262 401 272 1.13E-04 1.11E-04 1.11E-04 1.32E-07 1.29E-07 1.59E-07 35.33 (1 x) 1.74 (25 x) 43.18
clma 766 956 690 2.22E-04 2.38E-04 1.93E-04 1.85E-07 1.93E-07 1.29E-07 *43.64 (3 x) 5.85 (24 x) 139.37
des 237 250 221 5.08E-05 5.23E-05 4.98E-05 8.28E-08 8.04E-08 1.01E-07 13.38 (2 x) 1.28 (22 x) 28.42

diffeq 224 237 216 3.79E-05 3.91E-05 3.68E-05 1.17E-07 1.13E-07 1.38E-07 3.11 (6 x) 0.52 (36 x) 18.73
dsip 468 518 426 1.57E-04 1.57E-04 1.65E-04 1.26E-07 1.22E-07 1.48E-07 *11.58 (4 x) 5.21 (10 x) 52.09

elliptic 91 96 84 1.41E-05 1.45E-05 1.42E-05 8.05E-08 8.73E-08 8.98E-08 3.54 (2 x) 0.24 (34 x) 8.11
ex1010 147 167 142 2.71E-05 2.91E-05 2.78E-05 6.80E-08 7.51E-08 7.22E-08 *8.38 (2 x) 0.49 (32 x) 15.56
ex5p 80 88 76 1.45E-05 1.54E-05 1.42E-05 5.06E-08 5.47E-08 5.54E-08 *2.44 (3 x) *1.84 (5 x) 8.53
frisc 2308 2376 2052 4.41E-04 4.39E-04 4.37E-04 3.13E-07 3.19E-07 3.16E-07 22.17 (8 x) 4.23 (44 x) 185.37

misex3 87 97 81 1.98E-05 2.06E-05 1.84E-05 5.19E-08 6.27E-08 5.48E-08 6.30 (2 x) 0.25 (40 x) 10.02
pdc 416 480 402 8.80E-05 9.05E-05 8.56E-05 9.70E-08 1.06E-07 1.03E-07 *19.67 (3 x) 2.70 (21 x) 56.97
s298 3 3 3 5.34E-07 5.40E-07 5.05E-07 1.78E-08 1.78E-08 1.61E-08 0.05 (5 x) 0.01 (24 x) 0.24

s38417 1091 1287 978 3.14E-04 3.25E-04 3.68E-04 3.65E-07 3.65E-07 3.83E-07 38.66 (11 x) 5.05 (84 x) 426.19
s38584 1401 1685 1352 5.25E-04 5.49E-04 4.95E-04 4.37E-07 4.13E-07 5.09E-07 29.23 (14 x) 4.52 (93 x) 421.80
seq 156 174 153 3.08E-05 3.25E-05 3.04E-05 5.53E-08 6.12E-08 5.40E-08 14.30 (1 x) 0.51 (37 x) 18.75
spla 396 481 389 7.83E-05 8.78E-05 8.18E-05 1.02E-07 1.11E-07 9.25E-08 *17.21 (3 x) 2.21 (24 x) 53.04
tseng 276 298 272 7.86E-05 7.98E-05 7.73E-05 1.46E-07 1.40E-07 1.67E-07 5.99 (6 x) 0.82 (43 x) 35.02

geomean 218 249 208 5.00E-05 5.20E-05 4.94E-05 9.84E-08 1.02E-07 1.03E-07 8.40 (3 x) 0.96 (28 x) 27.26
ratio 105% 120% 1 101% 105% 1 96% 99% 1 31% 4% 1

[4] Berkeley Logic Synthesis and Verification Group. ABC: A
System for Sequential Synthesis and Verification.
http://www.eecs.berkeley.edu/~alanmi/abc/, Release
70930.

[5] H. Bunke. Error Correcting Graph Matching: On the
Influence of the Underlying Cost Function. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 21:917–922, 1999.

[6] D. Zacher. Turbo-Charge Your FPGA Design Iterations.
http://chipdesignmag.com/display.php?articleId=3497,
2007.

[7] G. Jeh and J. Widom. A Measure of Structural-context
Similarity. Proceedings of the Eighth Intl. Conference on
Knowledge Discovery and Data Mining, 2002.

[8] A. V. Goldberg. An Efficient Implementation of a Scaling
Minimum-Cost Flow Algorithm. Journal of Algorithms,
22:1–29, 1997.

[9] J. Cong and M. Sarrafzadeh. Incremental Physical Design.
International Symposium on Physical Design, 2000.

[10] J. Cong and W. Jiang. Pattern-based Behavior Synthesis
for FPGA Resource Reduction. Proc. 16th ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, 2008.

[11] K. Chang, D. A. Papa, I. L. Markov and V. Bertacco.
InVerS: An Incremental Verification System with Circuit
Similarity Metrics and Error Visualization. International
Symposium on Quality Electronic Design, 2007.

[12] K. Chang, I. L. Markove and V. Bertacco. Fixing Design
Errors with Counterexamples and Resynthesis. IEEE
Journal on Technology in Computer-Aided Design,
27(1):184–188, 2008.

[13] M. L. Fernandez and G. Valiente. A Graph Distance Metric
Combining Maximum Common Subgraph and Minimum
Common Supergraph. Pattern Recognition Letters,
22:735–758, 2001.

[14] M. Rupp, E. Proschak and G. Schneider. Kernel Approach
to Molecular Similarity Based on Iterative Graph
Similarity. Journal of Chemical Information and Modeling,
47:2280–2286, 2007.

[15] M. Pelillo. Matching Free Trees, Maximal Cliques and
Monotone Game Dynamics. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24:1535–1541, 2002.

[16] R. Albert and A. L. Barabasi. Statistical Mechanics of
Complex Networks. Reviews of Modern Physics, 74:47–97,
2002.

[17] S. Krishnaswamy, H. Ren, N. Modi, R. Puri. DeltaSyn: An
Efficient Logic Difference Optimizer for ECO Synthesis.
International Conference on Computer Aided Design, 2009.

[18] S. Melnik, H. Garcia-Molina and A. Rahm. Similarity
Flooding: A Versatile Graph Matching Algorithm and its
Application to Schema Matching. Proceedings of the 18th
International Conference on Data Engineering, 2002.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein.
Introduction to Algorithms. MIT Press, Cambridge, MA,
USA, 2001.

[20] V. Betz and J. Rose. VPR: A New Packing, Placement and
Routing Tool for FPGA Research. International Workshop
on Field Programmable Logic and Applications, 1997.

[21] V. Blondel, A. Gajardo, M. Heymans, P. Senellart and P.
Van Dooren. A Measure of Similarity between Graph
Vertices: Applications to Synonym Extraction and Web
Searching. Society for Industrial and Applied Mathematics
Review, 46(4):647–666, 2004.

[22] Xilinx Corporation. SmartCompile Technology:
SmartGuide. Xilinx Press Release, 2008.

[23] Y. S. Yang, S. Sinha, A. Veneris and R. K. Brayton.
Automating Logic Rectification by Approximate SPFDs.
Asia-South Pacific Design Automation Conference, 2007.

[24] S. Yang. Logic Synthesis and Optimization Benchmarks
User Guide, Version 3.0. Technical Report, Microelectronics
Center of North Carolina, 1991.

[25] Z. Gu, J. Wang, R. P. Dick, and H. Zhou. Unified
Incremental Physical-Level and High-Level Synthesis. IEEE
Transactions on Computer-Aided Design, 26:1576–1588,
2007.

[26] L. Zager. Graph Similarity and Matching. PhD thesis,
MIT, 2005.

